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Abstract

The method of quasiclassical localized states is developed for the station-
ary Dirac equation with an arbitrary axially symmetrical electric potential of
barrier type and potential of uniform magnetic field directed along the sym-
metry axis. Using this method quasiclassical wavefunctions for an arbitrary
relativistic atom in the parallel uniform electric and magnetic fields are con-
structed in classically forbidden and allowed regions. The general analytical
expressions for leading term of the asymptotic (in intensities of electrostatic
F and magnetic H fields) behaviour of ionization rate of an atom and neg-
ative ion in such electromagnetic field are found. Various limiting cases of
the expression obtained are analyzed.

1 Introduction

The problem of an atom in electric and magnetic fields has fundamental mean-
ing for a quantum mechanics and the atomic physics and has many applications
(see, for example, [1, 2, 3] and the references therein). Since the twenties [4], prop-
erties of an energy spectrum of hydrogen atom and other atoms in external fields
were rather intensively studied in the framework of the Schrödinger equation.

At the same time the interior logic of development of study of atomic systems
with a high degree of ionization (the multiply charged ions) dictates, obviously,
formulation of various qualitatively new problems, similar to those which were
previously solved only for neutral or weakly ionized atoms. Essentially relativistic
character of motion of electrons in the fields created by multiply charged ions (the
characteristic velocity of the electron in H-like ions with nuclear charge Z is ∼ αZc;
α is the fine structure constant, c is the velocity of light) is the main feature of such
ions that distinguishes them from neutral atoms. Thus, the consistent theory of
tunnel ionization of such systems should be relativistic because relativistic effects
are not small corrections, and fundamentally determine the orders of spectral
characteristics.

In order to construct such a theory one should have the solution of the rela-
tivistic problem of motion of an electron in the field of nucleus and in the constant
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uniform electric and magnetic fields. Since the Dirac equation with such superpo-
sitional potential does not permit complete separation of variables in any orthogo-
nal system of coordinates, the given problem has no exact analytical solution, and
numerical methods are rather onerous.

The relativistic calculations of the linear Stark effect are carried out by means
of perturbation theory [5, 6], and quadratic Stark effect was treated by means of
RCGF (Relativistic Coulomb Green Function) method in the form of the expansion
in powers of Zα [7]. However, the most of papers were basically devoted to position
of quasistationary level, and there are only rare cases of calculation of width Γ in
the relativistic case. In our previous paper [8] within quasiclassical approximation
the hybrid version of spherically symmetrical model of the Stark effect, taking
into account the Lorentz structure of interaction potential, was studied. Rather
recently the probability of ionization of s-level, whose binding energy can be of
order of the rest energy, in electric and magnetic fields has been calculated by
means of generalization of the imaginary time method [9] and of so-called ADK-
theory [10]. However, in the general case, widths of quasistationary states are not
found until now.

Due to such situation in the theory and intensive experimental researches dur-
ing last years, asymptotic methods of calculation of ionization probability, which
are based on clear physical ideas about below-barrier electron transition, are gain-
ing in importance. From this point of view it is worthwhile to use the WKB
method (or quasiclassical approximation) which enables to find the approximative
analytical solutions of the relativistic problem and to express required ionization
probability in terms of quantum penetrability of the potential barrier which sep-
arates domains of discrete and continuous spectra. As is known, this method has
rather high accuracy even for small quantum numbers. For the first time the three-
dimensional version of WKB approximation for the Dirac equation with axially
symmetrical potential was elaborated and used for the relativistic two-center prob-
lem in [11]. In the present work, we apply this method to the problem of tunnel
ionization of an arbitrary multiply charged ions in parallel electric and magnetic
fields.

The quasiclassical theory of atomic particles decay elaborated in sixties (see
for instance [3]) has allowed obtaining useful analytical formulae for ionization
rate which are asymptotic in the limit of “weak” fields. Both neutral atom [1, 12,
13, 14] and negative ions like H−, J− etc. [12, 15] (the first of these problems is
more complicated due to necessity of taking into account the Coulomb interaction
between outgoing electron and atomic core) were considered.

Subsequently (see [16, 17, 18] and references therein), the imaginary time
method (ITM) was elaborated for study ionization of atoms by electric and mag-
netic fields where classical trajectories used but with imaginary time. Although
this method is physically obvious it is not able to take into account the Coulomb
interaction between an atom and outgoing electron consequently. Second limita-
tion of this method is accounting only s-states.

Among the relatively new quantum-mechanical methods for studying the pro-
cesses of interaction of atomic particles with electrical and magnetic fields, 1/n-
expansion method (n – principal quantum number), which is quite effective for
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highly excited (Rydberg) states of atoms and molecules, including the considera-
tion of effects in strong external fields (see, for instance, [19]) occupies a special
place.

Additionally, of practical interest is the case when the intensities of the external
electric and magnetic fields are much smaller than the intensity of the characteristic
atomic fields. If this condition is satisfied the breakup of the atomic particle
occurs slowly compared to the characteristic atomic times and the leaking out
of the electron takes place primarily in directions close to the direction of the
electric field. Therefore, in order to determine the frequency of the passage of the
electron through the barrier it is convenient to solve the Schrödinger (or Dirac)
equation near an axis directed along the electric field and passing through the
atomic nucleus. This idea was used for solving the relativistic two-center problem
at large intercenter distances [11], for calculating the leading term (in intensity
of electric field F ) of the tunnel ionization rate of an atom in a constant uniform
electric field in non-relativistic [20] and relativistic [21, 22, 23, 24] cases, and first
two terms in non-relativistic case [25]. In [26], we solved such problem for parallel
electric and magnetic field for the Schrödinger equation. In our last papers, such
method called “the method of quasiclassical localized states” (MQLS) is shown to
be free from limitations of ITM.

In the present paper, our aim is to apply the method of quasiclassical localized
states to solving the problem of an atom in the parallel constant uniform electric
and magnetic field.

The paper is organized as follows. In section 2, the method of quasiclassical
localized states is developed for the problem of atom in the barrier-type axially
symmetric electrostatic and constant uniform magnetic fields. In section 3, we
analytically solve the Dirac equation for an atom in the parallel constant uniform
electric and magnetic fields in under-the-barrier range. In section 4, we find the
wavefunction in classically allowed range, calculate the leading term of tunnel
ionization rate, and compare our results with ones of other authors in some limiting
cases. In the last section of the paper, we discuss advantages of the elaborated
method and further perspectives concerning its evolution.

2 The MQLS in the problem of an atom
in the axially symmetric electrostatic
and constant uniform magnetic fields
For the bispinor Ψ the stationary Dirac equation is (me = |e| = ~ = 1)

σ (cp−A) ξ = (E − V + c2)η,
σ (cp−A) η = (E − V − c2)ξ, Ψ =

(
ξ
η

)
, (1)

where p = −i∇ is the momentum operator, c is the velocity of light, σ are the
Pauli matrices, E is the electron energy including c2, A and V are the vector and
electrostatic potentials, respectively.

Consider the magnetic field directed along z axis:

H = (0, 0, H), A = (−Hy/2, Hx/2, 0) . (2)
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The spectrum of such quantum-mechanical problem is quasistationary. The
energy of an electron is complex

Ec = E − iΓ/2, (3)

where E gives a position of quasistationary level, Γ = w/~ is its width, w is the
ionization rate.

By inserting the first equation of (1) into the second one and using the substi-
tution

ξ = (W+)1/2Φ, W± = E − V ± c2, (4)
we arrive at the matrix equation

∆Φ + k̂2Φ = 0, k̂2 = 1
~2c2

[
(E − V )2 − c4 − H2ρ2

4

]
− ∆V

2W+−

− 3
4

(
∇V
W+

)2
+ i

W+σ [∇V,∇]− iH

~c
∂

∂φ
− H

~c
Σ, (5)

where

Σ =

 −
ρ

2W+
∂V

∂ρ
− 1 e−iφ

ρ

2W+
∂V

∂z

eiφ
ρ

2W+
∂V

∂z

ρ

2W+
∂V

∂ρ
+ 1

 .

Here we have restored the reduced Planck constant ~. Since the potential V
is axially symmetrical, the Hamiltonian commutes with the operator of projection
of total angular momentum of the electron onto a potential symmetry axis z, and
equation (5) permits separation of a variable ϕ. For this purpose we represent the
solution of (5) in the form

Φ =
(
ψ1(z, ρ) exp [i (m− 1/2)φ]
ψ2(z, ρ) exp [i (m+ 1/2)φ]

)
, (6)

where ψ1,2 are new unknown functions, m is the projection of the total angular
momentum of the electron onto a potential symmetry axis z.

By defining the spinor

ψ =
(
ψ1
ψ2

)
and by substituting (6) into (5), we obtain the matrix differential equation for ψ

(∆ + ∂̂)ψ = (~−2q2 + ~−1γ1 + γ2)ψ, (7)

where

q = 1
c

√
c4 − (E − V )2 + H2ρ2

4 , ∂̂ = 1
W+

(
∂V

∂ρ

∂

∂z
− ∂V

∂z

∂

∂ρ

)(
0 −1
1 0

)
,

γ1 =

 −m− 1/2− ρ

2W+
∂V

∂ρ

ρ

2W+
∂V

∂z
ρ

2W+
∂V

∂z
−m+ 1/2 + ρ

2W+
∂V

∂ρ

 ,
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γ2 =
(
am−1/2 bm+1/2
bm−1/2 a−m−1/2

)
,

aµ(z, ρ) = µ2

ρ2 + 1
W+

[
µ

ρ

∂V

∂ρ
+ ∆V

2 + 3
4

(∇V )2

W+

]
, bµ(z, ρ) = − µ

ρW+
∂V

∂z
.

We seek a solution of equation (7) in the form of a WKB expansion:

ψ = ϕ exp(~−1S), ϕ =
∞∑
n=0

~nϕ(n). (8)

Here ϕ(n) is a bispinor (the upper component corresponds to the function ψ1, the
lower to ψ2). Having substituted ψ, determined by (8), into (7) and equated to
zero the coefficients of each power of ~, we arrive at the hierarchy of equations

(∇S)2 − q2 = 0, (9)

2∇S · ∇ϕ(0) +
(

∆S + ∂̂S − γ1

)
ϕ(0) = 0, (10)

2∇ · S∇ϕ(n+1) +
(

∆S + ∂̂S − γ1

)
ϕ(n+1) = −∆ϕ(n) − ∂̂ϕ(n) + γ2ϕ

(n), (11)

where n = 0, 1, 2, . . . Unfortunately, equations (9)–(11), similarly to the initial
equation (1), do not permit exact separation of variables. In order to solve this
problem, we use the idea of the localized states consisting in the following.

There are many cases when for solving quantum mechanical problem it is
sufficient to find a wave function not in the whole configurational space but in
the neighbourhood of manyfold M of less dimension. States describes by such
wave functions are called “localized states”. In the under-the-barrier range, unlike
for the classically allowed range, the wave function is localized in the vicinity of
the most probable tunnelling direction. It is natural to expand all the quantities in
inseparable equations including their solutions, in the vicinity of the z axis. This
idea was founded by Fock and Leontovich [27] and employed at solving diffraction
problems [28] (the boundary-layer method), some quantum mechanical problems
[29] (the parabolic equation method), and, finally, in the MQLS [24, 26]. Here we
generalize the MQLS on the equation (1).

Consider equation (9) and assume that

q2 (z, ρ) = q2
0 (z) +

∞∑
k=1

Qk(z)ρ2k, q2
0 (z) = q2 (z, 0) , Qk = 1

(2k)!
∂2kq2(z, 0)

∂ρ2k .

(12)
According to the above speculations, the solution of equation (9) can also be
represented in the form of an expansion in powers of the coordinate ρ:

S (z, ρ) =
∞∑
n=0

sn(z)ρ2n. (13)
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By inserting (13) into (9) and equating to zero the coefficients of each power of ρ,
we obtain the recurrent system of first-order differential equations

(s′0)2 − q2
0 = 0, (14)

2s′0s′1 + 4s2
1 = Q1 + H2

4c2 , (15)

2s′0s′2 + 16s1s2 = Q2 − (s′1)2
, . . . , (16)

2s′0s′n + 16s1sn = Qn −
n−1∑
j=1

s′js
′
n−j − 4

n−2∑
j=1

(j + 1)(n− j)sj+1sn−j , (17)

from which the values sn (n = 0, 1, 2, . . .) are successively determined. Here the
prime means the derivative with respect to z. Note that if in the expansion (13)
the coefficients of negative and odd powers of ρ are taken into account, after
substitution of (13) into (9) they will be equal to zero. The similar situation will
arise later for the functions ϕ(n).

Consider the first two equations of the given system. It is easy to show that
the solution of equation (14) is

s0 = ±
∫
q0dz + C0, C0 = const. (18)

In the below-barrier range, the wave function should decrease exponentially with
increasing z, and in (18), the negative sign should be chosen.

Equation (15) is the nonlinear Riccati differential equation and are not solvable
analytically in a general case. However, by making the substitution

s1 = q0 (z)
2

(
1
2
q′0 (z)
q0 (z) −

σ′ (z)
σ (z)

)
, (19)

one can proceed from (15) to the linear second-order equation

σ′′ +
[

1
4

(
q′0
q0

)2
− 1

2
q′′0
q0
− Q1

q2
0

]
σ = 0. (20)

In the nonrelativistic limit c → ∞, equation (20) is transformed into the similar
equation, obtained by Sumetsky [29] by solving the Schrödinger equation with an
axially symmetrical potential by the parabolic equation method.

The solutions of the equations (10), (11) are sought in the form

ϕ(n)(z, ρ) =

 ρ|m−1/2|
∞∑
k=0

ϕ
(n)
1k (z) ρ2k

ρ|m+1/2|
∞∑
k=0

ϕ
(n)
2k (z) ρ2k

 . (21)

By substituting (21) into the corresponding equations and equating to zero the
coefficients of each power of ρ in the each of the two components, we obtain the
system of ordinary first-order differential equations being solvable. Since in the
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exponent we restricted ourselves to the first two terms s0 and s1 in the expansion
of s in ρ2, in order to avoid exceeding the accuracy of the approximation chosen by
us in the pre-exponent, it is sufficient to take into account only the leading term
in ϕ(0), and to neglect ϕ(1).

Thus, for m > 0 we obtain:

ϕ
(0)
10 = C

(+)
1√
q0

[√
q0

σ
exp

(
H

2c

∫
dz

q0

)]|m|+1/2
,

ϕ
(0)
20 = C

(+)
1√
q0

[√
q0

σ
exp

(
H

2c

∫
dz

q0

)]|m|+3/2 [∫
σA1(z)
q0
√
q0
dz + C

(+)
2

]
, (22)

where
A1 (z) = 1

W+
0

[(
s1 −

H

4c

)
V ′0 − q0V1

]
, C

(+)
1,2 = const,

V0 (z) = V (z, 0), V1(z) = 1
2
∂2V (z, 0)
∂ρ2 , W±0 = W± (z, 0) .

In the case m < 0, the functions ϕ(0)
10 (z) and ϕ(0)

20 (z) can be obtained from (22) by
simultaneous replacements: ϕ(0)

10 → ϕ
(0)
20 , ϕ

(0)
20 → −ϕ

(0)
10 , C

(+)
1,2 → C

(−)
1,2 .

Note all equations for next corrections (s2, s3, . . . in the exponent as well as ϕ(j)
1i

and ϕ(j)
2i (i, j = 1, 2, . . . ) in pre-exponent) are linear, of first order and integrated in

quadratures. Moreover, if it is necessary to find the first l terms of the expansion
(13), then in each function ϕ(n) of (22) one has to take into account the first
l − n− 1 (n = 0, 1, . . . , l − 2) terms of the expansion in ρ.

The lower component η of Ψ is obtained from the upper one ξ by the operation

ξ −−−−−−→
W+→W−

η. (23)

In the next section, we will consider a specific potential consisting of a Coulomb
term and the potential of a constant homogeneous electric field.

Thus we have obtained the quasiclassically localized solutions Ψ of the Dirac
equation (1) with arbitrary axial-symmetric potential of a barrier type within the
constants C0, C±k (k = 2, 3). In order to determine them, one should take a certain
potential and normalize the wave function. In the next section, we shall consider
the potential V consisting of the Coulomb interaction and of the constant uniform
electric field being parallel to the magnetic one.

3 The MQLS in the problem of an atom
in the parallel constant uniform electric
and magnetic fields
If an arbitrary (including multi-electron) atom is placed in the constant uniform

electric field, then an interaction potential at r � 2Z/λ2 is

V (z, ρ) ∼ −Z
r
− Fz, (24)



156 O.K. Reity, V.K. Reity, V.Yu. Lazur

where Z is the nuclear charge, F = const is the electric field intensity, λ =
c
√

1− ε2, ε = E/c2.
Similarly to the WKB method for the Dirac equation with spherically sym-

metrical potential [8], we represent the quantity q0(z) as q0 =
√

2 (Ueff − Eeff),
where according to the expressions (7), (12) Eeff = −λ2/2 is the effective energy
and effective potential is equal to

Ueff(z, ε) = εV0 − V 2
0 /2c2, V0 = −Z/z − Fz. (25)

The form of the effective potential Ueff(z, ε) is shown in Fig. 1.

Figure 1: The dependence of the effective potential Ueff(z, ε) on coordinate z; z1,
z2 are roots of equation q0(z) = 0, zm =

√
Z/F is the maximum point.

If F � λ4/4Z then the under-the-barrier range is quite wide (z1 � z � z2).
There is the range z1 � z � zm where

Ψ '
z1�z�zm

Ψ(as)
0 , (26)

Ψ0 (r) =
(

f (r) Ωjlm (n)
ig (r) Ωjl′m (n)

)
, l = j ± 1/2, l′ = 2j − l, n = r/r, (27)

f(r)
g(r)

}
' ±
√

1± εArεZ/λ−1e−λr. (28)

Here j and l are the total and orbital moments, respectively, A is the asymptotic
coefficient.

We can find the quasiclassical localized wave function Ψ in the range z1 � z <
z2 under the boundary condition (26) by means of the elaborated MQLS. However,
for this purpose we should solve the Riccati equation (15) writing

2q0s
′
1 + 4s2

1 = Z

c2z3 [E − V0(z)] + H2

4c2 . (29)

We seek a solution of (29) in the form

s1(z) = s10(z) + s11(z) + · · · , (30)
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where s1i+1(z)/s1i(z) ∼ 1/z. Then in zero approximation

2q0s
′
10 + 4s2

10 = H2

4c2 . (31)

The replacement s10(z) = H/4c + χ0(z) leads (31) to the Bernoulli equation
for χ0(z) which is solved analytically and under the condition (26) we obtain

s1(z) = −H4c coth

H
2c

z∫
z1

dx

q0(x)

 . (32)

Finally, in the under-the-barrier range we obtain the wave function

Ψ(±) = C(±)

σ

(√
q0ρ

σ

)|m|−1/2


√
c2 + E0 − V0 δm,|m|√
c2 + E0 − V0 δ−m,|m|

i
√
c2 − E0 + V0 δm,|m|

−i
√
c2 − E0 + V0 δ−m,|m|

×

× exp

−
z∫

z1

[
q0(x) + H(|m|+ 1/2)

2cq0(x)

]
dx+ s1(z)ρ2 + i(m∓ 1/2)φ

 , (33)

where the upper (lower) sign corresponds to m > 0 (m < 0), δij is the Kronecker
symbol,

q0 =1
c

√
c4 − (E − V0)2, σ = cλ

H

√
q0

1− H

c
exp

 z∫
z1

dz

q0

 ,
C(±) =C(±)

1
√
λ

(
Z

2λ2e

)εZ/λ
e−Zα arccos ε, k = (−1)j−l+1/2(j + 1/2),

C
(+)
1 =A

√
λ

c

(−1)|m|+1/2sgnk
2|m|−1/2(|m| − 1/2)!

√
(j + |m|)!

4π(j − |m|)! , C
(−)
1 = C

(+)
1 (−1)|m|+1/2sgnk.

4 The wave function in the classically allowed
region. The ionization probability
Let us continue Ψ(±) to classically allowed region z > z2. Using for this the

so-called Zwaan method [1] we obtain

Ψ(±) = B(±)

σ

(√
p0ρ

σ̃

)|m|−1/2


√
E − V0 + c2δm,|m|√
E − V0 + c2δ−m,|m|√
E − V0 − c2δm,|m|

−
√
E − V0 − c2δ−m,|m|

×

× exp

i
z∫

z2

[
p0(x)− H(|m|+ 1/2)

2cp0(x)

]
dx+ s1(z)ρ2 + i(m∓ 1/2)φ

 , (34)
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where

B(±) = C(±) exp
[
−J1 −

H(|m|+ 1/2)
c

J2 + iπ

4

]
,

σ̃ = cλ

H

√
q0

1− exp

−H
c
J2 −

iH

c

z∫
z2

dz

p0

 , s̃1 = ip0

2

(
σ̃′

σ̃
− 1

2
p′0
p0

)
.

p0(z) = iq0(z) = c−1
√

(E − V0)2 − c4, J1 =
z2∫
z1

q0(z)dz, J2 =
z2∫
z1

dz

q0(z) .

The ionization rate is equal to the total probability flux through the plane S
which is perpendicular to z-axis and located in the domain z > z2:

w = c

∫
S

Ψ+αΨdS = c

2π∫
0

dφ

∞∫
0

(Ψ+αzΨ)ρdρ, (35)

where α = (αx, αy, αz) is the Dirac α matrices vector.
Substituting (34) into the formula (35) one can obtain the leading term of the

ionization rate

w = 2λ|A|2

(|m| − 1/2)!
(j + |m|)!
(j − |m|)!

(
Z

2λ2e

) 2εZ
λ e−2J1−2Zα arccos ε[ 2cλ2

H

(
1− exp

[
− 2H

c J2
])]|m|+1/2 . (36)

After asymptotical (at F � λ4/16Z) calculation of the barrier integrals J1 and
J2 we obtain the following result

w = 2λ|A|2

(|m| − 1/2)!
(j + |m|)!
(j − |m|)!

e2Zα arccos ε[
cλ2

H

(
1− e−2HF arccos ε

)]|m|+1/2×

×
(

2λ2

F

) 2εZ
λ −|m|−1/2

exp
{
−c

3Φ(ε)
F

}
, (37)

where
Φ(ε) = arccos ε− ε

√
1− ε2. (38)

For s-states (j = |m| = 1/2), formula (36) within the factor 2 coincides with
the result of [9] obtained in the framework of the relativistic version of ITM.

When H → 0 the expression (36) is transformed into our previous result [24]
for ionization rate of an atom in electrostatic field.

For finding the tunnel ionization rate of singly charged negative ions (i.e. H−,
J− etc.), in (36) it is necessary to put Z = 0. If the particle is in weakly bound
states in the central field with small radius of action r0 then beyond this radius
the asymptotic behaviour of the unperturbed (F = 0, H = 0) radial wavefunctions
are of the form

f(r)
g(r)

}
= ±
√

1± εA0
e−λr

r
, (39)
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where a is determined by means of normalization. When r0 � 1 the behaviour of
the wavefunction within the potential well 0 6 r 6 r0 is inessential because the
particle stands basically beyond the well. This gives |A0|2 ≈ λ and the ionization
rate

w = 2λ2

(|m| − 1/2)!
(j + |m|)!
(j − |m|)!

[
2cλ4

FH

(
1− e−2HF arccos ε

)]−|m|−1/2

exp
{
−c

3Φ(ε)
F

}
.

(40)

Conclusion
The method of quasiclassical localized states is elaborated to solve asymptotically
the Dirac equation with barrier-type potentials which do not permit a complete
separation of variables. It is based on physically clear ideas, applicable to arbitrary
states (not only s-states as ITM) and takes into account the relativistic and spin-
orbital effects as well as Coulomb interaction between the outgoing electron and
atomic core during tunneling correctly. This method has allowed us to obtain for
the first time the wavefunctions and general analytical expressions for leading term
of the asymptotic behaviour of ionization rate of an arbitrary atom (and negative
ion) in the parallel constant uniform electric and magnetic fields whose intensities
F and H are much smaller than intensity of intra-atomic field.

Our next task is to generalize MQLS on other configurations of electric and
magnetic fields (perpendicular fields, fields of arbitrary orientations, ununiform
fields, non-stationary fields, strong laser field of various polarizations) and to ob-
tain higher orders of ionization probability expansion in powers of F and H in
both the non-relativistic and relativistic cases.
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