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Abstract
A brief analysis of the fundamental bases of the hydrogen atom, which

are the eigenfunctions of its Hamiltonian and of the one of the generators of
the hidden symmetry group SO (4) is carried out. The spheroidal corrections
to the spherical and parabolic bases up to the corrections of third order are
calculated by means of perturbation theory. These expansions were analysed
in terms of additional integrals of motion.

1 Introduction
The study of systems with hidden symmetry in spaces of constant curvature

has a rich history. Starting from the works of Laplace [1], Runge [2] and Lenz [3],
in which the additional integral of motion was firstly proposed, namely Laplace-
Runge-Lenz vector, the theory of hidden symmetries has found a large variety
of applications. The first succesfull applying of this theory to the quantum-
mechanical problems was carried out by Pauli [4] for the calculation of the hy-
drogen atom discrete energy spectrum [5]. It is well known, that the quantum-
mechanical quantization problem for hydrogen atom or hydrogen-like ion allows
the separation of variables in spherical, parabolic and prolate spheroidal coordi-
nate systems. Since the energy levels in this problem for every coordinate system
are the same, only the wave functions must be considered.

A wide variety of problems makes it necessary to work with different coordinate
systems and use the interbasis expansions. For instance, a spherical coordinate
system is commonly used for the spectroscopy of hydrogen-like systems, while for
the study of the Stark effect the parabolic coordinate system is more preferable.
On the other hand, the spheroidal coordinate system is the most convenient for
the study of the electron motion in a field of two fixed Coulomb centres. Coulomb
spheroidal wave functions obtained herewith were determined by many authors
both directly, using explicit form of basic functions [6, 7, 8], and obliquely, i.e.
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through the additional motion integrals [9, 10]. For fixed n and m (here n is
the principal quantum number, m is the magnetic quantum number) the problem
reduces to finding the solution of the linear homogeneous algebraic equation system
of order n − |m|. Moreover, for small n − |m| this system of equations can be
solved analytically. However, for arbitrary n− |m| and R (here R is the distance
between the foci of the spheroidal coordinate system) the general solution is still
unavailable.

Coulomb spheroidal wave functions can be determined in general form in two
limiting cases of large and small internuclear distances R. In the first case,
these functions can be represented in the form of linear combination of Coulomb
parabolic wave functions [6, 11] when in the second case – in the form of linear
combination of Coulomb spherical wave functions [11].

In this paper, the spheroidal corrections to the spherical and parabolic bases
of hydrogen atom for small and large R were obtained. Our approach is based
on the employing the standard scheme of the Rayleigh-Schrödinger perturbation
theory and on the taking into account the additional integrals of motion. In
Sec. 2, we consider the additional motion integrals and the spherical, parabolic
and spheroidal bases of hydrogen atom. In Sec. 3, the spheroidal corrections to the
spherical and parabolic bases of hydrogen atom were calculated in the framework
of the perturbation theory. We also show that in each order of our approach the
corrections to the Coulomb spheroidal wave functions are expressed in a finite
number of the basic functions of the corresponding representation.

2 Spherical, parabolic and spheroidal bases
of hydrogen atom

The one-centre Coulomb problem allows to separate the variables in three
coordinate systems: spherical, parabolic and prolate spheroidal, where the first two
of them are the limiting cases of the third one (see §1 of [6]). Thus, the solutions
of hydrogen-like atom problem in spheroidal coordinates can be found without
considering the equations for Coulomb spheroidal quasiradial and quasiangular
wave functions but using the interbasis expansions. Here we will construct the
solutions of the hydrogen-like atom problem using the additional motion integrals
(constant of motion) and known solutions of this problem in other coordinate
systems [10, 12]. For this purpose let us first consider the spherical Ψsph

nlm, parabolic
Ψpar
n1n2m and spheroidal Ψspher

nqm bases of hydrogen atom for discrete spectrum.
A. Spherical basis. The hydrogen atom wave function Ψsph

nlm in spherical
coordinate system is an eigenfunction of the following operators (hereinafter we
use the atomic system of units: e = me = ~ = 1):

ĤΨsph
nlm = EnΨsph

nlm,
~̂L2Ψsph

nlm = l(l + 1)Ψsph
nlm, L̂zΨsph

nlm = ±mΨsph
nlm. (1)

Here ~̂L = [~r× ~̂p ] and L̂z are the orbital angular momentum operator and operator
of its projection to the intercentre axis ~R (centres are the foci of the prolate
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spheroidal coordinate system), respectively, and Ĥ is the Hamiltonian of the one-
centre Coulomb problem:

Ĥ = ~̂p 2

2m −
1
r
, En = − 1

2n2 , n = l + nr + 1. (2)

In (1), (2) the numbers n > l ≥ m are integers, l is the azimuthal quantum
number.

B. Parabolic basis. The hydrogen atom wave function Ψpar
n1n2m in parabolic

coordinate system is an eigenfunction of the operators

ĤΨpar
n1n2m = EnΨpar

n1n2m, ÂzΨ
par
n1n2m = (n1−n2)Ψpar

n1n2m, L̂zΨ
par
n1n2m = ±mΨpar

n1n2m,
(3)

where non-negative integers n1, n2 are the parabolic quantum numbers so that
n = n1 + n2 + m + 1. The appearing in (3) operator is the Laplace-Runge-Lenz
vector

~̂A = n

{
1
2 [~̂L× ~̂p ]− 1

2 [~̂p× ~̂L ]~r
r

}
, (4)

which commutes with the Hamiltonian Ĥ of the hydrogen atom and thus it is the
integral of motion.

C. Spheroidal basis. The hydrogen atom wave function Ψspher
nqm in prolate

spheroidal coordinate system is an eigenfunction of the operators

Ĥψsphernqm = Enψ
spher
nqm , Λ̂ψsphernqm = λqψ

spher
nqm , L̂zψ

spher
nqm = ±mψsphernqm , (5)

where k and q – spheroidal quantum numbers, and k + q +m+ 1 = n. The sepa-
ration of variables in the prolate spheroidal system [6] for the considered Coulomb
problem is possible because along with the hamiltonian Ĥ and the projection of the
orbital angular momentum operator L̂z there is an additional integral of motion
here – the separation constant, operator of which has the following form:

Λ̂ = −~̂L2 − R

n
Âz. (6)

Here R is a parameter of the spheroidal system (the distance between the foci).
From the properties of the SO(4) algebra it follows that nonzero matrix el-

ements of the third component Âz of the Laplace-Runge-Lenz vector ~̂A (4) in
spherical basis are determined by the following formula [13]:

(
Âz

)
l′l

=
∫
ψñô∗
nl′mÂzψ

ñô
nlmdV = −

{
(l + |m|)(l − |m|)(n− l)(n+ l)

(2l + 1)(2l − 1)

}1/2
δl′,l−1

−
{

(l + |m|+ 1)(l − |m|+ 1)(n− l − 1)(n+ l + 1)
(2l + 1)(2l + 3)

}1/2
δl′,l+1.

(7)
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Let us write the transformations connecting the spherical and parabolic wave
functions of hydrogen atom for a discrete spectrum [12, 13]:

ψparn1n2m = (−1)n2+m+1
2

n−1∑
l=|m|

(−1)lCl,|m|n−1
2 ,

n1−n2+|m|
2 ;n−1

2 ,
n2−n1+|m|

2
ψsphnlm, (8)

ψsphnlm = (−1)l+
m−|m|

2

n−|m|−1∑
n2=0

(−1)n2C
l,|m|
n−1

2 ,n−1
2 −n2;n−1

2 ,n2+|m|−n−1
2
ψparn1n2m, (9)

where Cl,|m| are the Clebsch-Gordan coefficients. These transformations reduce
the calculation of matrix elements of operator ~̂L2 on parabolic functions ψparn1n2m

(3) to the simpler problem of finding the matrix elements of the same operator ~̂L2

but on spherical basis (1). The resulting expression for
(
~̂L2)

n2 n′2
is of the form [12](

~̂L2
)
n2 n′2

= [(n2 + 1)(n− |m| − n2 − 1) + (n− n2)(n2 + |m|)] δn′2,n2

− [(n2 + 1)(n− |m| − n2 − 1)(n− n2 − 1)(n2 + |m|+ 1)]1/2 δn′2,n2+1

− [n2(n− |m| − n2)(n− n2)(n2 + |m|)]1/2 δn′2,n2−1. (10)

Finally, we give the transformation from the spheroidal basis (5) to a parabolic
one (3):

ψsphernqm =
n−|m|−1∑
n2=0

Un2
nqmψ

par
n1n2m. (11)

In [12], the following three-term recurrence relation for the coefficients Un2
nqm

was obtained:

[
λq + (n2 + 1)(n− |m| − n2 − 1) + (n− n2)(n2 + |m|)

+ R

n
(n− |m| − 2n2 − 1)

]
Un2
nqm = [n2(n− |m| − n2)(n− n2)(n2 + |m|)]1/2 Un2−1

nqm

+ [(n2 + 1)(n− |m| − n2 − 1)(n− n2 − 1)(n2 + |m|+ 1)]1/2 Un2+1
nqm . (12)

The integrals of motion considered above along with the Hamiltonian Ĥ(2)
of the hydrogen atom form the quadratic algebra. In the case of fixed negative
energy values, the motion integrals form an algebra SO(4), and in the case of
positive values of energy – algebra SO(3.1). Due to the hidden symmetry, the
hydrogen atom problem allows the separation of variables not only in spherical
and parabolic coordinate systems, but also in spheroidal one.
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3 The Rayleigh-Schrödinger perturbation theory

Consider the Sturm-Liouville equation for operator Λ̂ in the case of small R:(
−~̂L2 − R

n
Âz

)
ψsphernqm = λqψ

spher
nqm . (13)

When R � 1, the second term in the left part of (13) can be considered as a
small perturbation and the spheroidal basis forms the unperturbed zeroth-order
functions. Considering the explicit form (7) of matrix elements of operator Âz
and the formulae of the standard Rayleigh-Schrödinger perturbation theory [5],
we find the following expressions for the eigenvalues λq(R) and eigenfunctions
ψsphernqm including the terms of third order:

λq(R) = −l(l + 1) + R2

2n2

[
An,l+1Bl+1,m

(l + 1) − An,lBl,m
l

]
+ O(R4), (14)

ψsphernqm = ψsphnlm −
R

2n

√
An,lBl,m

l
ψsphn,l−1,m + R

2n

√
An,l+1Bl+1,m

(l + 1) ψsphn,l+1,m

− R2

8n2

[
An,l+1Bl+1,m

(l + 1)2 + An,lBl,m
l2

]
ψsphnlm + R2

4n2

√
An,l−1An,lBl−1,mBl,m

l(2l − 1) ψsphn,l−2,m

+ R2

4n2

√
An,l+2An,l+1Bl+2,mBl+1,m

(2l + 3)(l + 1) ψsphn,l+2,m

− R3

24n3l(l − 1)

√
An−2,lAn−1,lAn,lBl−2,mBl−1,mBl,m

(2l + 1)(2l − 3)(2l − 1)3 ψsphn,l−3,m

+ R3

24n3

√
An,l+3An,l+2An,l+1Bl+3,mBl+2,mBl+1,m

(l + 1)(l + 2)(2l + 3) ψsphn,l+3,m

+
R3√An,l+1Bl+1,m

16n3(l + 1)3

[
2(l + 1)An−1,lBl+2,m

(2l + 3)(2l + 5) − l2 − 1
l2

An,lBl,m

+ 3An,l+1Bl+1,m

]
ψsphn,l+1,m −

R3√An,lBl,m
16n3l3

[
2l2An,l−1Bl−1,m

2l − 1 − 3An,lBl,m

+ l(l + 2)An,l+1Bl+1,m

(l + 1)2

]
ψsphn,l−1,m + O(R4), (15)

where
An,l = n2 − l 2

2l + 1 , Bl,m = l2 −m2

2l − 1 .

Note that the corrections to the eigenvalues of the first λ(1)
q ∼ R1 and third

λ
(3)
q ∼ R3 orders are equal to zero due to the fact that the matrix element (Az)l l

for corrections of all odd powers is also equal to zero.
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Consider now the case of large values of R. Multiplying (13) by n/R we arrive
to the following equation(

Âz −
n

R
~̂L2
)
ψsphernqm = n

R
λqψ

spher
nqm . (16)

The role of the perturbation here plays the second term n~̂L2/R in the left part
of (16). Thus, the parabolic basis acquires the status of undisturbed wave func-
tions in the framework of the perturbation theory and all higher-order corrections
then can be represented by the matrix elements on the parabolic wave functions
(see (11)). Considering the expressions (10) for the matrix elements of the per-
turbation operator n~̂L2/R and applying the standard scheme of the Rayleigh-
Schrödinger perturbation theory [5] up to the terms of third order we obtain the
following results for the eigenvalues λq(R) and the wave functions ψsphernqm in the
form of series in R−1:

λq(R) = −R
n

(n− |m| − 2n2 − 1)− (n2 + 1)(n− |m| − n2 − 1)

− (n− n2)(n2 + |m|) + n

2R

[
n2(n− |m| − n2)(n− n2)(n2 + |m|)

− (n2 + 1)(n− |m| − n2 − 1)(n− n2 − 1)(n2 + |m|+ 1)
]

− n2

2R2

[
(2n2 − n− |m|)n2(n− |m| − n2)(n− n2)(n2 + |m|)

− (2n2 − n+ |m|+ 2)(n2 + 1)(n− |m| − n2 − 1)(n− n2 − 1)(n2 + |m|+ 1)
]
,

(17)

ψsphernqm = ψparn1n2m −
n

2R

√
Cn2+ 1

2 ,|m|
ψparn1−1,n2+1,m + n

2R

√
Cn2− 1

2 ,|m|
ψparn1+1,n2−1,m

− n2

8R2

[
Cn2+ 1

2 ,|m|
+ Cn2− 1

2 ,|m|

]
ψparn1n2m

+ n2

4R2

{√
Cn2− 1

2 ,|m|
[(n− n2)(2n− 2n2 − |m| − 3) + 2(n2 + |m|)]ψparn1+1,n2−1,m

+
√
Cn2+ 1

2 ,|m|
[(n− n2)(2n− 2n2 − |m| − 3) + 2(n2 + |m|+ 2)]ψparn1−1,n2+1,m

}
+ n2

8R2

[√
Cn2+ 1

2 ,|m|
Cn2+ 3

2 ,|m|
ψparn1−2,n2+2,m +

√
Cn2− 1

2 ,|m|
Cn2− 3

2 ,|m|
ψparn1+2,n2−2,m

]
− n3

4R3

[
Cn2+ 1

2 ,|m|
(2n2 − n+ |m|+ 2) + Cn2− 1

2 ,|m|
(2n2 − n+ |m|)

]
ψparn1n2m

+ n2

16R3

√
Cn2+ 1

2 ,|m|

[
8(2n2 − n+ |m|+ 2)2 + Cn2− 1

2 ,|m|
− 3Cn2+ 1

2 ,|m|

+ Cn2+ 3
2 ,|m|

]
ψparn1−1,n2+1,m −

n3

16R3

√
Cn2− 1

2 ,|m|

[
8(2n2 − n+ |m|)2

+ Cn2+ 1
2 ,|m|

− 3Cn2− 1
2 ,|m|

+ Cn2− 3
2 ,|m|

]
ψparn1+1,n2−1,m
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+ n3

8R3 [4n2 − 2n+ 2m+ 5]
√
Cn2+ 1

2 ,|m|
Cn2+ 3

2 ,|m|
ψparn1−2,n2+2,m

+ n3

8R3 [4n2 − 2n+ 2m− 1]
√
Cn2− 1

2 ,|m|
Cn2− 3

2 ,|m|
ψparn1+2,n2−2,m

+ n3

48R3

√
Cn2+ 1

2 ,|m|
Cn2+ 3

2 ,|m|
Cn2+ 5

2 ,|m|
ψparn1−3,n2+3,m

− n3

48R3

√
Cn2− 1

2 ,|m|
Cn2− 3

2 ,|m|
Cn2− 5

2 ,|m|
ψparn1+3,n2−3,m, (18)

where

Cn2,|m| = (n2 + 1/2)(n− |m| − n2 − 1/2)(n− n2 − 1/2)(n2 + |m|+ 1/2).

The formulae (14)–(15) and (17)–(18) were obtained in the framework of third-
order perturbation theory. Note also that in the formula for ψsphernqm at large R
presented in [12] the second and the third terms must be four times smaller.

The main results of this paper are the interbasis expansions (14)–(15) and
(17)–(18). They can be used in solving various problems of atomic and molecular
physics, for instance, the 1/R-expansions (17), (18) are applicable for construction
of the two-centred wave function near the remote nucleus [14], which plays the
crucial role in the two-electron exchange processes.

Conclusions
A brief analysis of the hydrogen atom fundamental bases, which are the eigen-
functions of the Hamiltonian Ĥ(2), and of the one of the generators of the hidden
symmetry group SO(4) was carried out. The expansions of one of the fundamental
bases in the other ones were examined in terms of additional integrals of motion,
allowing to calculate the spheroidal corrections to the spherical and parabolic bases
of the hydrogen atom at small and large intercentric distances R. It was also shown
that in every order of the perturbation theory the corrections to the wave function
are expressed in terms of a finite number of basis functions.
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