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Abstract

The optical properties of a system of two identical two-level atoms in
collective (symmetric Ψs and antisymmetric Ψa) Bell states at arbitrary
interatomic distances are investigated. The closed analytical expressions
for the shifts and widths of the considered collective states are considered,
taking into account the retarded dipole-dipole interaction of atoms. When
calculating the radial matrix elements of the dipole-dipole interaction, the
wave functions of the model Fues potential are used.

1 Introduction
Search for physical processes performing logical operations is one of the main

physical problems associated with the implementation of the idea of the quan-
tum computer and quantum computing [1]. In the papers [2, 3, 4], the quantum
computer based on electric dipole transitions in a spectrum of two-level atoms
interacting selectively with short intensive optical pulses was proposed. As a stan-
dard model for describing the processes of a resonant transmission of quantum
information at arbitrary distances is the system of two identical two-level atoms,
one of which is under radiation of the field of real photons. Study of various regimes
of dynamics of such a model system interacting with the field of real photons can
serve as a basis for the construction of an element basis of quantum computers.
The theoretically elegant proof of principle possibility of quantum information
transmission from one two-level atom to another was given by A.S. Davidov [5],
and also by O.N. Gadomsky and K.K. Altunin in aforementioned paper [2].

The problem of two interacting electrons belonging to two different atoms be-
ing arbitrarily apart from each other is one of key problems in understanding the
processes of resonant transmission of quantum information at arbitrary distances.
A large number of papers (see [2, 7, 7, 29, 30, 31, 32, 12, 13, 14, 15] and references
therein) are devoted to its study. The main result of these works is that the pres-
ence of the second atom can significantly change the lifetime of the excited state
of the atom; this change in the lifetime depends on the mutual orientation of the
dipole moments of the transition of the atoms and distance between them. De-
spite existing numerous publications on the resonance interaction of atoms, many
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aspects of this interaction remain weakly investigated up to this day, especially for
two neutral atoms located at an arbitrary distance from each other.

2 Operator of electric dipole-dipole interaction of
two neutral atoms located at an arbitrary distance
from each other

The resonance interaction occurs between the excited atom and the atom in
the ground state, if the transition energy to the excited state is the same for both
atoms (the atoms are in resonance). A similar situation always takes place in the
interaction of two identical two-level atoms.

There are several reasons why the theory of resonant interaction of atoms at
arbitrary distances from each other deserves further development. First of all, in
order to realise experimentally two-qubit quantum operations with cold neutral
atoms it is necessary to be able to control the interaction between the qubites [16].
That is why thorough theoretical study of all possible types of atomic interactions
is a key to creating a quantum computer with qubits on neutral atoms in optical
traps. Depending on the specific quantum states of the atoms involved in the
process of quantum information transmission in the system of two qubits, this may
be either the Van der Waals interaction or the resonant dipole-dipole interaction
each of what is characterized by different dependence on the interatomic distance
R (R−6 and R−3 respectively, when neglecting the retardation). The dipole-dipole
interaction of atoms is stronger in large (relatively to their own sizes) distances,
and therefore its use is a priority for increasing the accuracy of quantum operations
with neutral atoms.

However, the standard quantum-mechanical calculation of the energy of the
resonance interaction of two identical atoms (see, for example, [5]) becomes un-
suitable for too large distances of R between them. The fact is that this calcu-
lation takes into account only the instantaneous Coulomb interaction of charges
(the term ∼ 1/R3 in the interaction operator (2) without the retardation factor
exp (i|ωfi|R/c)). Such a consideration is only valid until the interatomic distance
R remains small compared with the characteristic wavelengths λ0 in the spectra
of the interacting atoms.

A consistent theory of resonance interaction of atoms that correctly describes
the behavior of the forces of the dipole interaction of atoms on both near and far
distances can be constructed only if in this theory, all types of atomic electrons
interaction that are manifested in different spatial scales are taken into account
from the outset. Therefore, in describing the resonance interaction of atoms at
arbitrary distances from each other, along with the instantaneous Coulomb inter-
action, it is necessary to take into account also the retarded interaction of atoms,
which depends on the velocity of light c and disappears at c→∞.

Such a general consideration was made in [7, 29, 30, 31, 32], where the op-
erator V̂ (±)

LL of the retarded interaction of two electrons belonging to two differ-
ent hydrogen-like atoms at an arbitrary distance from each other. It is conve-
nient to write both parts of the inter-electron interaction operator constructed in
[7, 29, 30, 31, 32] i.e. the retarded part V̂ (±)

LL ) and the Coulomb part VC in the
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following form:

V̂ (±) = V̂C + V̂
(±)
LL = exp

(
i
c
|ω(1)
fi |R

){
e2

r12
− e2

2m2c2

[
~̂p1 ~̂p2 + ~n(~n~̂p1)~̂p2

r12

+R2 ~̂p1~̂p2 − 3~n(~n~̂p1)~̂p2
r3
12

]
± e2R

2mc
~n ~̂p1 + ~n~̂p2

r2
12

}
. (1)

Here c is the velocity of light, e = −|e| and m are the charge and mass of an
electron, r12 = |~r ′1−~r ′2| is the distance between electrons belonging to atom 1 and
atom 2, ~n = (~r ′1 − ~r ′2)/r12, ~r ′1 and ~r ′2 are the radius-vectors of electrons 1 and 2 in
an arbitrary coordinate system, ~̂p1 and ~̂p2 are the momentum operators of 1-st and
2-nd atomic electrons respectively. In (1) and thereafter, subscripts 1 and 2 differ
quantities connected with two different atoms; subscripts i and f characterize the
initial and final states of interacting electrons; |ω(j)

fi | = |ω(j)
f − ω

(j)
i | ≡ ω0 is the

resonant frequency of transition in the spectrum of two-level atoms; ω(j)
i and ω(j)

f

are the frequencies of initial and final states of j-th electron. In (1), the plus sign in
front of the term containing the factor R corresponds to the case ω(1)

f > ω
(1)
i , and

the minus sign corresponds to the case ω(1)
f < ω

(1)
i . Oscillating exponential factor

(so-called retardation factor) exp (iω0R/c) determines the role of time retardation
of considered type of atoms interaction [8].

Let the interatomic axis ~R of the diatomic quantum system be directed along
the z axis. We will assume further that one two-level atom is at the origin of
the coordinate system (~R1 = 0) and the other at the point ~R2 with coordinates
(0, 0, R). At large distances R, the operator V̂ ± describing the interaction between
atoms can be regarded as a small perturbation. Consequently, we can relatively
easily estimate the energy of the resonance excitation exchange between two atoms
distanced from each other on the basis of the usual perturbation theory. As follows
from the derivation (see, for example, [29, 31]) of the formula (1), the operator
V̂ (±) takes into account the transitions in the spectrum of atoms of arbitrary
multiplicity. In this paper, we restrict ourselves to considering only electric dipole
transitions for which the operator V̂ (±) is written as:

V̂
(±)
dip = exp

(
i
c
ω0R

){ ~d1 ~d2 − 3(~nR ~d1)(~nR ~d2)
R3 ± e

2mc

[
~d1~̂p2 − 3(~nR ~d1)(~nR~̂p2)

R2

− ~̂p1~d2 − 3(~nR~̂p1)(~nR ~d2)
R2

]
− e2

m2c2
~̂p1~̂p2 − (~nR~̂p1)(~nR~̂p2)

R

}
, (2)

where ~nR = ~R/R is the unit vector in the direction of the inter-atomic axis ~R, ω0 ≡
ωn0 = (En−E0)/~ is the resonance frequency in the spectrum of two-level atoms,
~d1 = e~r1 and ~d2 = e~r2 are the operators of the electric dipole moments of separate
atoms, ~r1 and ~r2 are the radius-vectors of electrons 1 and 2 relatively nuclei of
atoms A(1) and A(2), respectively. This operator is known as the generalized
operator of electric dipole-dipole interaction of two neutral atoms located at an
arbitrary distance from each other.
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3 The energy of resonance interaction of atoms at
arbitrary distances

Let us consider the system of two identical atoms at an arbitrary distance R
from each other. In each atom, we will be interested in the transition between
the same pair of levels, and the other levels will not manifest themselves in the
considered process of resonant transfer of the excitation energy from one atom
to another. In fact, in nature, there are practically no atomic systems with only
two energy levels. But if the interaction with the field is of pronounced resonant
character, then, as a rule, the influence of other levels can be neglected. Thus,
the two-level atom represents a certain mathematical model of qubit – a carrier of
quantum information. The existence in the atomic quantum system of two selected
internal basis states and the principle of superposition is enough to store one bit
of quantum information – a qubit. We characterize each atom-qubit with two
levels of energy E0 and En having the resonant transition frequency ω0 = ω

(1)
fi =

−ω(2)
fi = (En − E0)/~ and the wave functions ϕ0(j) and ϕn(j). The subscripts

0 and n denote the ground and excited states of the atom, respectively, and the
argumentj = (1, 2) of the wave function indicates a number of the electron (and a
number of the atom) to which it belongs.

Classical computers operate with bistable transistor circuits that have a non-
linear relationship between the input and output voltages [1]. In a quantum com-
puter, a role of such a bistable transistor circuit plays a two-level atom having
two orthogonal states |0〉 and |n〉, between which an electric single-electron dipole
transition with a resonant frequency ω0 is allowed. Let the state |0〉 with the wave
function ϕ0(j) and the energy E0 be a logical “0”≡ |0〉 and the state |n〉 with the
wave function ϕn(j) and the energy En (En > E0) be a logical “1”≡ |n〉. The
level-to-level dipole transitions |0〉 ↔ |n〉, E0 ↔ En with the matrix element of
the dipole moment of atom transition (~dj)n0 = 〈n|~dj |0〉 correspond to the tran-
sitions “0”↔“1”. As noted in [1], a quantum bistable element (qubit) has a new
(compared with the classical one) property of the superposition of states: it can
be in any superposition state |ϕ〉 = α|0〉+ β|n〉, where α and β are complex num-
bers satisfying the condition |α|2 + |β|2 = 1. It is the quantum principle of states
superposition that allows the quantum computer to provide fundamentally new
possibilities.

For the system of two interacting atoms having only one electron, the Hamil-
tonian Ĥ can be represented in the form of sum of Hamiltonians of isolated atoms,
Ĥ0 = Ĥ1(~r1) + Ĥ2(~r2), and operator of electric dipole-dipole interaction between
them, V̂ (±)

dip :
Ĥ = Ĥ0 + V̂

(±)
dip = Ĥ1(~r1) + Ĥ2(~r2) + V̂

(±)
dip (~r1, ~r2;R). (3)

Let En1n2 = En1+En2 and |n1n2〉 are respectively the eigenvalue and eigenfunction
of operator of energy Ĥ0 = Ĥ1+Ĥ2 without interatomic interaction. In accordance
with the partition (3), let us denote the wave function of the state of the system
in which both the non-interacting atoms are in the ground state by |00〉, that is,

|00〉 = ϕ0(1)ϕ0(2) exp(−iE0t1/~) exp(−iE0t2/~) ≡ ϕ̃0(1)ϕ̃0(2). (4)
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Here E0 is the energy of the initial states of the first A(1) and second A(2) atoms,
the numbers 1 and 2 correspond to the coordinates and times for the atoms A(1)
and A(2), respectively. For neutral atoms having not constant dipole moments, the
energy correction to the two-atom system is equal to zero, because 〈00|V̂ (±)

dip |00〉 =
0. At the same time, the dipole-dipole interaction being effective at small distances
between atoms distorts in some way the wave functions of atomic states. Thus, in
the first approximation of the perturbation theory in the interatomic interaction
V̂

(±)
dip (2), the perturbed wave function of the system of two identical atoms in the

ground state is of the standard form (see, for example, [5, 27]):

Ψ0(1)Ψ0(2) = ϕ̃0(1)ϕ̃0(2) +
∑

n1n2

〈ϕ̃n1(1)ϕ̃n2(2)|V̂ (±)
dip |ϕ̃0(1)ϕ̃0(2)〉

2E0 − En1 − En2

ϕ̃n1(1)ϕ̃n2(2), (5)

where summation is carried out with respect to all possible intermediate states of
atoms except of |00〉. According to the representation (18), a non-zero correction
to the energy of the two neutral atoms system in the ground state will appear only
in the second order of the perturbation theory [5, 27, 8]. We consider the state
Ψ0(1)Ψ0(2) (see (18)) as an initial state of pair of atoms interacting with field of
real photons.

Let the final state |n0〉 of two resonant atoms corresponds to the excited state
|n〉 of atom A(1) with wave function ϕ̃n(1) = ϕn(1) exp(−iEnt1/~) and energy
En as well as the ground state |0〉 of atom A(2) with wave function ϕ̃0(2) =
ϕ0(2) exp(−iE0t2/~) and energy E0. According to the resonance condition, the
state |0n〉 being described by the wave function ϕ̃0(1)ϕ̃n(2) corresponds to the
same energy. Consequently, the unperturbed system (two isolated identical atoms)
has the additional degeneration here associated with the possibility of permutation
of states between atoms. In the first approximation of the perturbation theory, we
have the energy matrix of the second order. It is diagonalized when constructing
symmetric and antisymmetric linear combinations of the initial wave functions of
individual atoms:

Φs(1, 2) = (1/
√

2) [ϕ̃n(1)ϕ̃0(2) + ϕ̃0(1)ϕ̃n(2)] , (6)
Φa(1, 2) = (1/

√
2) [ϕ̃n(1)ϕ̃0(2)− ϕ̃0(1)ϕ̃n(2)] . (7)

In the case of complex atoms A(1) and A(2) with an arbitrary number of elec-
trons, the interaction between them at small distances R plays a significant role. In
this, the Hamiltonians Ĥ1 and Ĥ2 as well as the zeroth approximation functions Φs
(15) and Φa (7) should be interpreted in the approximation of the self-consistent
field for the two-center potential [19]. In this case, V̂ ±dip is the correlation interac-
tion of atoms with each other. The transition to the corresponding operator of the
electric dipole-dipole interaction V̂ ±dip of atoms with many electrons can be carried
out by transition in (2) from the momentum operator ˆvecpj of j -th electron to
the operator of the dipole moment ~dj [5] and the subsequent replacement of the
operators ~d1 and ~d2 by the operators of the dipole moments of the atoms A(1)
and A(2), respectively.

In order to obtain corrections to the energy of symmetrical (15) and antisym-
metrical (7) states of the system of two resonant atoms in the first order of pertur-
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bation theory one has to calculate the mean values of the perturbation operator
V̂

(±)
dip (2) in these states, i.e.,

∆Es = 〈Φs|V̂ (±)
dip |Φs〉, ∆Ea = 〈Φa|V̂ (±)

dip |Φa〉. (8)

Substituting the expressions (2), (15) and (7) into (8), after simple transformations
with use of the known ratio [5]

〈n|~̂pj |0〉 = i(mω0/e)〈n|~dj |0〉
we obtain the final expression

∆Es(R) = −∆Ea(R) = ω3
0e

iω0R/c|〈n|~d|0〉|2

×
[(

1
ω3

0R
3 −

i
cω2

0R
2

)
Φ(1, 2)− Φ′(1, 2)

c2ω0R

]
≡∆EAA(R). (9)

Here
Φ(1, 2) ≡ cos θx1 cos θx2 + cos θy1 cos θy2 − 2 cos θz1 cos θz2 ,

Φ′(1, 2) ≡ cos θx1 cos θx2 + cos θy1 cos θy2
are the geometric factors depending on the orientation of dipole transitions in both
atoms, θxi , θ

y
i , θzi (i = 1, 2) are the angles between one of corresponding axes and

the direction of dipole transition in i-th atom A(i).When writing the expression
(9) it is taken into account that the atom-qubits of the considered quantum system
are identical, that is, they have identical matrix elements of the operator of the
dipole moment between the ground |0〉 and excited |n〉 states:

|〈n|~d1|0〉| = |〈n|~d2|0〉| = |〈n|~d|0〉| ≡ |(~d)n0|.
Note that the quantity ∆Es (∆Ea) is complex shift of energy Es (Ea) of

symmetrical (antisymmetrical) state Φs (Φa) of the pair of identical atoms. For
further analysis, in the formulas (9) for ∆Es and ∆Ea, it is convenient to separate
explicitly real and imaginary parts:

∆Es = δEs − (i/2)~γs, ∆Ea = δEa − (i/2)~γa. (10)

The complexity of the shifts ∆Es and ∆Ea reflects in the first place purely rel-
ativistic effects of retardation of the interaction (1) of two resonant atoms at an
arbitrary distance from each other. The appearance of imaginary terms −i~γs/2
and −i~γa/2 in ∆Es(a) (10) arising from the retarded dipole-dipole interaction of
atoms, was first revealed in [20], and later, independently in the more systematic
approach [14].

The first-order corrections to the energy En + E0 of initially degenerated col-
lective states (15) and (7) give only real parts δEs and δEa of the complex shifts
(8):

δEs,a(R) = ±Re∆EAA(R) = ±e2|〈n|~r|0〉|2F (1, 2;R). (11)
The dependence of the shifts δEs(a)(R) on the interatomic distance R is completely
determined by the multiplier F (1, 2;R). In order to simplify the expression (11),
there is the notation used:

F (1, 2;R) =
[

Φ(1, 2)
R3 − ω2

0Φ′(1, 2)
c2R

]
cos
(
ω0R

c

)
+ ω0Φ(1, 2)

cR2 sin
(
ω0R

c

)
, (12)
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where the plus and minus signs in (11) correspond to the symmetric Φs and the
antisymmetric Φa wave functions of the pair of identical atoms. As can be seen
in (11), for the states of different symmetries (Φs (15) and Φa (7)) with respect
to permutations of atoms, the considered retarded dipole-dipole interaction gives
the shifts δEs and δEa having opposite signs: δEs = −δEa. At the same time,
with increasing R moduli of the shifts δEs(a) of energy levels of the system of
dipole-dipole interacting atoms decrease and tend to zero in the limit of separated
(R→∞) atoms as 1/R.

Let us study the behavior of δEs(a)(R) in the limiting cases of large and smallR.
Thus, the expressions for δEs and δEa can be essentially simplified at ω0R/c→ 0,
when linear sizes of two-atom quantum system are much smaller than characteristic
wave length λ0 = 2πc/ω0 in spectrum of interacting atoms (R � λ0). In this
limiting case, one can neglect the retardation of the dipole-dipole interaction of
atoms, that makes it possible to substitute cos(ω0R/c) = 1, sin (ω0R/c) = ω0R/c
in the expression (12) for F (1, 2;R) and to omit terms proportional to 1/R and
1/R2. Then, instead of (11) we obtain

δE′s,a = ±
(
e2/R3) |〈n|~r|0〉|2Φ(1, 2). (13)

As it is expected, this expression coincides with the known formula [5] for the
energy of resonant exchange of excitations between two neutral atoms located
closely from each other.

We now consider the opposite limiting case ω0R/c � 1, when the distance
between atoms is much larger than the wavelength λ0 = 2πc/ω0. As can be seen
from (1) and (2), only the mostly long-range retardation term, proportional to
1/R, plays the main role in the interaction between atoms (when R � λ0). For
this reason, in the formula (12) for the factor F (1, 2;R), terms decreasing with the
distance as 1/R2 and 1/R3 can be neglected. As a result, for sufficiently large R
(R ≥ 0), the expression (11) got the following form:

δEs = −δEa = −
(
e2ω2

0Φ′(1, 2)/(c2R)
)
|〈n|~r|0〉|2 cos (ω0R/c) . (14)

This expression is consistent with the corresponding formula [20] for the energy of
the resonance excitation exchange between two distant (R� λ0) neutral atoms.

Let us take note of the following important circumstance related to the dif-
ference between formulas (11) and 13). The presence of the real cos(ω0R/c) and
imaginary sin(ω0R/c) parts of the retardation factor exp(iω0R/c) in various terms
of the expression (12) indicates to the complicated periodic dependence of the
matrix element of the excitation transfer δEs(a)(R) on the interatomic distance
R. It is this property of the oscillating behavior of δEs,a(R) on the background of
power decreasing (∼ 1/R) with the distance R being slower than (13) is the most
characteristic feature of the formula (11) for the energy of the resonant excitation
exchange between two neutral atoms. The dependence of δEs,a(R) on R distin-
guishes from (13) due to the retardation part of the dipole-dipole interaction of
atoms.

Therefore, we see that at account of dipole-dipole interatomic interaction (2)
the symmetrical and antisymmetrical states of the pair of atoms have the different
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energies

Es = En + E0 + δEs = En + E0 + e2|〈n|~r|0〉|2F (1, 2;R), (15)
Ea = En + E0 + δEa = En + E0 − e2|〈n|~r|0〉|2F (1, 2;R). (16)

Two collective states of the system of two resonant atoms: symmetric s and an-
tisymmetric a, initially degenerated with respect to energy, are described by the
two types of wave functions Φs (15) and Φa 7) which with taking into account the
corrections δEs, δEa to the energy En + E0 can be written as

Ψs = Φs exp(−iδEst1/~), Ψa = Φa exp(−iδEat1/~), (17)

where Φs and Φa are determined in (15) and (7), t1 is the local time for the atomic
pair associated with the position of the atom A(1).

As can be seen from (15) and 16), the dipole-dipole interaction between atoms
leads to the splitting of the initially degenerate (with respect to the energy) level
E0 +En into two collective energy levels Es (15) and Ea 16) distanced from each
other by the quantity ∆E = Es − Ea = 2δEs, which characterizes the process
of resonance transfer of the excitation energy from one atom to another. At the
same time, due to the resonance interaction of atoms, the energy level Es (15) lies
∆E = 2δEs above the level Ea (16).

Thus, in order to calculate the energy of symmetric Es (15) and antisymmetric
Ea (16) states of the system of two resonant atoms, it is necessary to calculate the
matrix elements of the dipole transitions 〈n|~r|0〉. In this case, the wave function
should take into account the influence of the electrons of the atomic core on the
non-Coulomb additive to the potential acting on the valence electron in the atom.

Such a modification is present, for example, in the Fues model potential, which
takes into account simultaneously action of the polarization potential on states
with large orbital quantum numbers l and the action of the Pauli principle that
“forces out” a valence electron from the core in states with small l [21]. The Fues
potential for the motion of an electron in the field of an ion residue with the charge
Zi has the form

V (r) = −Zi/r +
∑

l

(Bl(E)/r2)P̂l, (18)

where P̂l is the projection operator on the subspace of states with the orbital
moment l, Bl(E) is the constant that changes the centrifugal potential in this
subspace in such a way that the eigenvalues Enl = −Z2/(2ν2

nl) of the correspond-
ing radial Schrödinger equation, which are determined by the effective principal
quantum number [21]

νnl = nr + λnl + 1, λnl =
√

(l + 1/2)2 + 2Bl(Enl)− 1/2 (19)

(λ is the effective orbital moment, nr = 0, 1, 2, . . . is the radial quantum number),
coincide exactly with energies of a real atom.

The eigenfunctions of the radial Hamiltonian with the potential (18) are nor-
malized by the condition ∫ ∞

0
|〈r|nl〉|2r2 dr = 1
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and can be written using the confluent hypergeometric function 1F1(a; c;x) in the
form

〈r|nl〉 = 2Z3/2
i

ν2
nl

√
(2λ+ 2)nr
nr!Γ(2λ+ 2)

(
2Zir
νnl

)λ
exp

(
−Zir
νnl

)
1F1

(
−nr; 2λ+ 2; 2Zir

νnl

)
. (20)

Here, the standard notations for the gamma function Γ(x) and the Pochammer
symbol (a)n = a · (a+ 1) · . . . · (a+n−1) [15] are used. It is obvious that this solu-
tion satisfies the standard requirements of continuity, uniqueness and boundedness
in the entire numerical semiaxis, which represents the distance from the atomic
nucleus to electron r ∈ [0;∞). Therefore, after integrating, the radial matrix ele-
ment Rnn′ in (15) and (16) can be represented analytically using the generalized
hypergeometric function of two variables F2 [15, 23]:

Rnn′ = 1
4Zi

Γ(λ+ λ′ + 4)√
Γ(2λ+ 2)Γ(2λ′ + 2)

√
(2λ+ 2)nr

nr!
(2λ′ + 2)n′r

n′r!

(
2ν

ν + ν′

)λl+2

×
(

2ν′
ν + ν′

)λl+2
F2

(
λ+ λ′ + 4;−nr;−n′r; 2λ+ 2; 2λ′ + 2; 2ν′

ν + ν′
,

2ν
ν + ν′

)
, (21)

where the primed quantities refer to the final state, and non-primed ones – to the
initial state.

Summary
In this paper, on the basis of the theory of resonance interaction of atoms through
the field of virtual photons [7, 29, 30, 31, 32], the influence of the retarded dipole-
dipole interaction of atoms on the formation and decay of quasi-stationary col-
lective (symmetric Ψs and antisymmetric Ψa) states of the quantum system con-
sisting of two fixed identical two-level atoms is investigated. The closed analytic
expressions for the shifts and widths of the considered collective states Ψs and Ψa

are obtained taking into account the retarded dipole-dipole interaction of atoms.
The theoretical analysis of the shift and splitting of the collective energy levels of
the given system caused by interatomic interaction is carried out. The asymptotic
expansions of the real and imaginary parts of energy of the quasi-stationary Bell
states Ψs and Ψa in the limit of large and small interatomic distances are studied.
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