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Abstract
The first two terms of the asymptotics (for large internuclear distances

R) of the spheroidal wave function of the two-Coulomb-center problem are
calculated both in the internuclear region and in the vicinity of each of cen-
ters. In the spherical basis, the general formula is obtained for the expansion
of a two-center wave function of the left center in two-center spheroidal wave
functions. Using this formula, the asymptotics of the two-center wave func-
tion in a spherical basis is calculated, which in boundary cases is compared
with the results of other authors. The combined use of the approach de-
veloped in this paper and the Holstein-Herring method made it possible for
the first time to calculate the term proportional to R−2 of the asymptotic
expansion of the quasimolecule energy in spherical quantum numbers.

1 Introduction
The problem of the motion of a charged particle (electron, muon) in the field

of two fixed positive (fixed) Coulomb centers Z1 and Z2 located at a distance R
from each other (the so-called Z1eZ2 problem) is an important model in study
of many elementary collision processes of multy-electron atoms and ions: excita-
tion, charge exchange, ionization. In the theory of the structure and spectra of
molecules, it plays the same fundamental role as the hydrogen atom problem in
the theory of atom. However, unlike the latter, the two-Coulomb-center problem
has no solutions in a closed analytical form for arbitrary values of Z1, Z2, R and
quantum numbers. Its exact solution is possible to be obtained by means of only
numerical methods. Nevertheless, it is analytically possible to obtain results in
the limiting cases of large and small internuclear distances. Historical reviews and
an extensive list of bibliographic references to works devoted to the study of the
discrete and continuous spectra of the system Z1eZ2 and the asymptotic proper-
ties of two-center Coulomb spheroidal functions for large and small R are given in
the monograph [1] and recent publications [2, 3, 4, 5, 6].

Despite the visibility of the relative simplicity and completeness of the Z1eZ2
system research, works devoted to identifying some of the previously unnoticed
features of the Z1eZ2 problem and to improving the methods for its solving (see,
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for example, [2, 3, 4, 5, 6, 7, 8, 9]) continue to appear. In connection with the devel-
opment of quantum information systems [10, 11, 12] and frequency-time standards
of the new generation [13, 14], in recent years, highly excited (Rydberg) states of
Z1eZ2 system are of particular interest whose study require application of methods
developed specifically for problems with a randomly degenerate energy spectrum
of unperturbed system [3, 9, 15]. Results of such studies are also of general the-
oretical interest (important from a general theoretical point of view), since On
many grounds, highly excited states of the Z1eZ2 system are an intermediate link
between states of the continuous spectrum and the ground or low-lying excited
states of the two-Coulomb-center problem.

When solving many problems arising in the physics of slow atomic collisions, for
example, in order to calculate the two-electron exchange interaction of an excited
hydrogen atom with the ion [16], to determine the shape of the nodal surfaces
of two-center systems [17], etc., it is necessary to know the two-Coulomb-center
spheroidal radial and angular wave functions not only in the main region of the
spatial distribution of the electron density but also in the vicinity of the second
Coulomb center, where they are strongly perturbed by this center. Until now, the
asymptotic behavior of such wave functions was constructed only in the zeroth
approximation in 1/R [17] and there was no method to consistently find higher
approximations.

Additionally, it is worth to note here that the spheroidal basis is only suitable
for the wave functions of the problem of two purely Coulomb centers. In interac-
tions with the participation of many-electron atoms/ions, the wave functions are
constructed in the spherical quantum numbers. If in the left center region and in-
ternuclear region, the asymptotic behavior of such wave functions was repeatedly
constructed, for example, using the Holstein-Herring method [18, 19, 20], in the
region of the right center, only Chibisov’s result [18, 21] exists, where the wave
function was calculated only in zero order of R−1 using the matching method in
the case of the pure Coulomb center Z2, and the Green function method in the
case of the non-Coulomb center.

2 Basic equations
The motion of an electron in the field of two positive charges Z1 and Z2, fixed

at a distance R from each other is described by the following Schrödinger equation
(~ = e = me = 1):

(
−1

2∆− Z1
r1
− Z2
r2

)
Ψ (~r,R) = E (R) Ψ (~r,R) , (1)

where r1 and r2 are the distances from the electron to the corresponding charges,
E(R) is the energy of an electron. The Schrödinger equation (1) permits complete
separation of variables in the prolate spheroidal coordinates

ξ = r1 + r2
R

, η = r1 − r2
R

, ϕ = arctan y
x
, (2)

ξ ∈ [1;∞) , η ∈ [−1; 1] , ϕ ∈ [0; 2π) ,
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where x, y, z are the Cartesian coordinates of an electron (the z axis coincides
with the internuclear axis ). Replacing the wave function Ψ (~r,R) by the product
function

Ψ (~r,R) = U (ξ,R)√
ξ2 − 1

V (η,R)√
1− η2

eimϕ
√

2π
= ψ (ξ, η,R)√

(ξ2 − 1)(1− η2)
e±imϕ
√

2π
(3)

and using new variables

µ = R

2 (ξ − 1) , µ ∈ [0,∞) , ν = R

2 (1 + η) , ν ∈ [0, R] , (4)

we obtain the system of ordinary differential equations for the radial U(µ) and
angular V (ν) Coulomb spheroidal functions:

U ′′ −
[
γ2 − Z1 + Z2 + λ1/R

µ
− Z1 + Z2 − λ1/R

R+ µ
+ R2(m2 − 1)

4µ2(R+ µ)2

]
U = 0, (5)

V ′′ −
[
γ2 − Z1 − Z2 − λ2/R

ν
+ Z1 − Z2 + λ2/R

R− ν + R2(m2 − 1)
4ν2(R− ν)2

]
V = 0, (6)

where γ = (−2E)1/2, m is the modulus of the magnetic quantum number, λ1 and
λ2 are the separation constants depending on R. From a physical point of view,
(5) and (6) are one-dimensional Schrödinger equations for two Coulomb and one
centrifugal potentials.

Suppose that U(µ) and V (ν) satisfy the following boundary conditions:

U(0) = 0, U(µ) −−−−→
µ→∞

0, V (0) = V (R) = 0. (1)

The pair of the one-dimensional boundary value problems for the radial U(µ) and
angular V (ν) Coulomb spheroidal functions is equivalent to the original problem
(1) provided that the separation constants are equal: λ1 = λ2.

As it is known (see, for instance, [1, 2, 5, 17, 21, 22] and references therein), the
form of the two-center wave function, or rather of its quasi-angular part, depends
on the region of space in which the electron is located. In this paper, we denote
the wave functions in the region of the left center, the internuclear region and
the region of the right center (traditionally also called the alien center/core) by
superscripts I, II and III, respectively (see Fig. 1). Below, we will construct the
asymptotic expansions (in the large parameter R) for solving the Z1eZ2 problem
in these three regions of the electron’s motion and match them in the overlapping
regions.

3 Asymptotics of the two-center wave function.
Spheroidal basis
3.1 The region of the left center. When R is much larger than the size of
electron shells centered on the left core, the ratios µ/R and ν/R are small values in
the intraatomic region (here r1 � R). This fact allows us to use the perturbation
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Figure 1: The separation of the space of electronic coordinates into the regions

theory for the equations (5) and (6) in the intraatomic region to find both the
separation constant λ1,2 and the asymptotics of the radial U (µ) and angular V (ν)
wave functions.

Applying the standard instruments of the Rayleigh–Schrödinger perturbation
theory leads to infinite sums of complicated form. In connection with this, per-
turbation theory schemes that allow finding analytic expressions were proposed in
several papers [22, 23, 24]. One of these schemes was developed in [22]. Using it
in the case of large internuclear distances R, we have obtained asymptotic expres-
sions for the two-Coulomb-center quasiradial and quasiangular functions U(µ) and
V (ν) up to terms of the third order in 1/R included [5]. In this paper, we restrict
ourselves to the terms ∼ 1 and ∼ 1/R. In this approximation, the two-center wave
function ΨI in the vicinity of the left center has the form (3), where [5, 25]

ψI(µ, ν,R) = C(R)U I(µ)V I(ν), (2)

U I(µ) = fn1(µ), V I(ν) = fn2(ν), (3)

fni(x) =
[

(ni + |m|)!
ni!(|m|!)2(2ni + |m|+ 1)

]1/2
e−αiγx(2γx)

|m|+1
2 F (−ni, |m|+ 1, 2αiγx).

(4)

Here the parabolic quantum numbers n1 and n2 are related by the relation n1 +
n2 + |m| + 1 = n, where n is the principal quantum number, F (α, β, z) is the
confluent hypergeometric function, and the normalization coefficient is

C =
4√γ
R

[
α1

2n1 + |m|+ 1 + α2
2n2 + |m|+ 1

]−1/2
, (5)

where

α1 =
[
1− Z1 + Z2 − λ/R

γ2R
− 3(1−m2)

4γ2R2

]1/2

,

α2 =
[
1 + Z1 − Z2 + λ/R

γ2R
− 3(1−m2)

4γ2R2

]1/2

. (6)
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The energy parameter γ =
√
−2E and the separation constant λ are equal

γ = γ0 + γ1
R

+ γ2
R2 , λ = λ0R+ λ1, (7)

respectively, where

γ0 = Z1
n
, γ1 = nZ2

Z1
, γ2 = −n

2Z2
2Z3

1
[3(n1 − n2)Z1 + nZ2], (8)

λ0 = Z1
n

(n1 − n2)− Z2, λ1 = −2n1n2 − (|m|+ 1)(n− 1). (9)

Taking into account (7)-(9) expressions (5) and (6) are of the corresponding form

C = 2
√

2Z1(2n1 + |m|+ 1)(2n2 + |m|+ 1)
nR

{
1− n[(n1 − n2)Z1 − 2nZ2]

2Z2
1R

}
,

(10)

α1 = 1− n[(n1 − n2 − n)Z1 − 2nZ2]
2Z2

1R
, α2 = 1 + n[(n1 − n2 + n)Z1 − 2nZ2]

2Z2
1R

+ 1
8Z4

1R
2
[
3(m2 − 1)Z4

1 − 4n2Z2
1 ((|m|+ 1)(n− 1) + 2n1n2)

− 8n3Z2((n+ n1 − n2)Z1 − 2nZ2) + n2((n+ n1 − n2)Z1 − 2nZ2)2] . (11)

Note that the expansions of α2, γ and λ in R−1 are given here with more
precision than the formula (2) requires. This is necessary to obtain a two-center
wave function in II and III regions (see the following subsections below).

3.2 The internuclear region. As noted in [5], when the electron goes away from
the left center, the quasi-radial wave function U I(µ) contained in (2) retains its
form, and formulas (3), (4), and the quasi-angular wave function V I(ν) becomes
inapplicable. Therefore, in the internuclear region (r1,2 ∼ R), the quasi-angular
equation (6) must be solved anew, using non-perturbative methods. For this, we
can use the semiclassical WKB method developed in our work [5], which has a
wide range of applicability. However, for our purposes that do not require high
accuracy, it is more expedient to use the asymptotic Holstein-Herring method [26]
(in the literature also called the Landau-Herring method or the corrective function
method). This approach to the two-Coulomb-center problem was already used in
[25], however, when receiving higher corrections to the solution of the quasi-angle
equation, the error was made. Referring for details to the paper [25], we write
out here only the corrected final result for the function V (ν) in the internuclear
region:

V II(ν) = V I(as)(ν)
(

1− ν

R

)Z1−Z2+λ/R
2α2γ exp

(
Z1 − Z2 + λ/R

2α2γR
ν

)

×
{

1 + 1
4γ0R

[(
k2

2 − k2 +m2 − 1
) ν

R− ν −
(
k2

2 + 3m2 − 3
) ν2

2R(R− ν)

+
(
(2n2 + |m|+ 1)k2 +m2 − 1

)
ln
(

1− ν

R

)]
+ O(R−2)

}
, (12)
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where k2 = (Z1 − Z2 + λ0)/γ0, V I(as)(ν) is the asymptotic expansion of quasi-
angular wave function V I(ν) in ν−1 to within terms O(ν−2). Here the function
V II(ν) satisfies the boundary condition

V II(ν) =
ν∼
√
R
V I(as)(ν)

[
1 + O(R−2)

]
. (13)

Note that if in the formula (12) instead of V I(as)(ν) use the exact expression
of V I(ν) from (3), then this formula will define the two-center quasi-radial wave
function V (ν), valid in both regions I, II and satisfying the boundary condition

V II(ν) −−−→
ν→0

V I(ν)
[
1 + O(R−2)

]
. (14)

3.3 The region of the right center. When approaching the right center,
U I( mu) retains its behavior, and the quasi-angle wave function obtained in the
internuclear domain (12) becomes singular, because ν → R. The solution of
the quasi-angle equation (6) that is regular at ν = R can be obtained using the
technique applied by Gershtein and Krivchenkov [17] in calculating the zeroth term
of the asymptotic behavior in 1/R of quasi-angular wave function in the vicinity
of right center. As a result, we get

V III(ν) = CIIIe−α̃2γν̃(2γν̃)
|m|+1

2 F (−ñ2, |m|+ 1, 2α̃2γν̃), (15)

where

ν̃ = R−ν, ñ2 = n2+n
(
Z2
Z1
− 1
)
−Z2(Z2 − Z1)

γ3
0R

, α̃2 = 1+Z2 − Z1 + λ0
2γ2

0R
. (16)

In zeroth order in 1/R, expression (15) coincides with the result of Gershtein
and Krivchenkov [17] up to the factor CIII , which is not defined in [17]. The
normalization constant CIII can be found by matching the asymptotics of the
functions V III and V II at a sufficient distance from the right center, i.e. in the
region ν̃ ∼

√
R:

CIII = Γ(−ñ2)(2α̃2γR)ñ2+|m|+1(−2α2γR)n2

√
n2!(|m|!)2(n2 + |m|)!(2n2 + |m|+ 1)

× exp
[
−α2γR+ Z1 − Z2 + λ/R

2α2γ
− n2(n2 + |m|)

2γ0R

]
. (17)

Summarizing up the results obtained in this section, we can assert that we
managed to construct normalized two-center wave functions on a spheroidal basis,
which in each of the three regions I, II, III have the following form:

ΨI,II,III
n1n2m = C(R)R

2

4
U I (µ)V I,II,III (ν)√
µ(R+ µ)ν(R− ν)

eimϕ
√

2π
. (18)

Here, in the notation of two-center spheroidal wave functions, we used more con-
venient parabolic quantum numbers {n1, n2,m}, through which the spheroidal
quantum numbers {n, q,m} can always be expressed [1, 17].
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4 Transition from spheroidal to spherical basis
Let us begin by considering a simpler problem — the quantum mechanical

problem of the hydrogen atom, for which the Schrödinger equation is separable in
spherical, parabolic, and spheroidal coordinates [27, 28, 29]. The transition be-
tween spherical and parabolic bases in the wave function of this problem is carried
out using the well-known exact formulas [27, 29]. So, for example, the Coulomb
spherical wave function ψsphnlm can be represent through Coulomb parabolic func-
tions ψparn1n2m using expressions [27, 29]

ψsphnlm = (−1)l+
m−|m|

2

n−|m|−1∑

n2=0
(−1)n2C

l,|m|
n−1

2 ,n−1
2 −n2;n−1

2 ,|m|+n2−n−1
2
ψparn1n2m, (19)

where Cjmj1m1j2m2
are the Clebsch-Gordan coefficients.

Also, the spheroidal basis can be expanded in the parabolic one:

ψsphrnqm =
n−|m|−1∑

n2=0
Un2
nqmψ

par
n1n2m. (20)

In the papers [28, 29], three-term recurrence relations were constructed for the
coefficients Un2

nqm. If we restrict ourselves to the first two terms in the expansions
of Un2

nqm in R−1, then we get

ψsphrnqm = ψparn1n2m +
√
n1(n1 + |m|)(n2 + 1)(n2 + |m|+ 1)

2γ0R
ψparn1−1,n2+1,m

−
√
n2(n2 + |m|)(n1 + 1)(n1 + |m|+ 1)

2γ0R
ψparn1+1,n2−1,m + O(R−2). (21)

Obviously, there is the expansion inverse to (20) – the expansion of the para-
bolic basis in the spheroidal one, and, taking into account (19), the expansion of
the spherical basis in the spheroidal one

ψsphnlm =
n−|m|−1∑

n2=0
Ū ln1n2mψ

sphr
nqm . (22)

The coefficients Ū ln1n2m of the expansion (22) also satisfy certain three-term
recurrent relations and can be calculated either approximately or numerically.
Below we obtain them in the form of expansions in R−1 to within terms O(R−2).

As is well known, [1], the spheroidal wave functions of the two-Coulomb-center
problem at R→∞ are transformed to one-center ones and, accordingly, they can
also be represented in both parabolic and spherical bases. Since for calculations
of various matrix elements in the physics of slow ion-atomic collisions it is often
necessary to know two-center wave functions in the spherical basis, we dwell on
them.
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Similarly to (22), we write the expansion of the two-center wave function in the
spherical basis Φnlm in the two-center spheroidal wave functions Ψn1n2m obtained
in the previous section as follows

Φnlm =
n−|m|−1∑

n2=0
V ln1n2mΨn1n2m, (23)

where V ln1n2m(R) are the coefficients to be determined. Although the type of the
wave functions Ψnlm and Ψn1n2m depends on the region of determination (I, II,
III), the coefficients V ln1n2m(R) in the formula (23) always remains constant. We
will seek them in the form of expansions in R−1:

V ln1n2m(R) = V l (0)
n1n2m + V

l (1)
n1n2m

R
+ V

l (2)
n1n2m

R2 + · · · , (24)

where the expansion coefficients V l (i)n1n2m (i = 0, 1, 2, . . .) do not depend on R.
Let us find the first two terms of the expansion (24), having considered the

formula (23) in the left center region (I region), where (as it is easy to check with
(18))

ΨI
n1n2m = ψsphrnqm

[
1 + O(R−2)

]
. (25)

Having substituted (21), (24) and (25) into (23) and retaining the first two
terms of the expansion in R−1, we get to within terms O(R−2)

ΦInlm =
n−|m|−1∑

n2=0
V l (0)
n1n2mψ

par
n1n2m +R−1

n−|m|−1∑

n2=0

[
V l (1)
n1n2mψ

par
n1n2m

+
√
n1(n1 + |m|)(n2 + 1)(n2 + |m|+ 1)

2γ0
V l (0)
n1n2mψ

par
n1−1,n2+1,m

−
√
n2(n2 + |m|)(n1 + 1)(n1 + |m|+ 1)

2γ0
V l (0)
n1n2mψ

par
n1+1,n2−1,m

]
. (26)

As the boundary condition (40) for the wave function ΦIInlm obtained using the
Holstein-Herring method shows, in the left center region, the equality similar to
(25)

ΦInlm = ψsphnlm

[
1 + O(R−2)

]
(27)

is valid. Having substituted (27) with (19) into the left-hand side of (26) and
equated to zero the coefficients of each power of R, we obtain the system of equa-
tions for calculating the zeroth and first terms of the expansion (24) which can be
solved with taking into account the linear independency of the Coulomb parabolic
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functions ψparn1n2m:

V l (0)
n1n2m = (−1)l+n2+m−|m|

2 C
l,|m|
n−1

2 ,n−1
2 −n2;n−1

2 ,|m|+n2−n−1
2

; (28)

V l (1)
n1n2m = (2γ0)−1

[
−
√

(n1 + 1)(n1 + |m|+ 1)n2(n2 + |m|)V l (0)
n1+1,n2−1,m

+
√

(n2 + 1)(n2 + |m|+ 1)n1(n1 + |m|)V l (0)
n1−1,n2+1,m

]
= (−1)l+n2+1+m−|m|

2

2γ0

×
[√

(n1 + 1)(n1 + |m|+ 1)n2(n2 + |m|)Cl,|m|n−1
2 ,n−1

2 −n2+1;n−1
2 ,|m|+n2−1−n−1

2

−
√

(n2 + 1)(n2 + |m|+ 1)n1(n1 + |m|)Cl,|m|n−1
2 ,n−1

2 −n2−1;n−1
2 ,|m|+n2+1−n−1

2

]
.

(29)

Although here we have restricted ourselves to only the first two terms of the
expansion (24), using the method outlined above, we can also find the coefficients
for the higher corrections V l (2)

n1n2m, V l (3)
n1n2m, etc. We also note that, since in the

left center region, the two-center wave functions in both bases transform to within
terms O(R−2) to the one-center ones (see formulas (25)) and (27)), the coefficients
Ū ln1n2m of the expansion (22) of the Coulomb spherical wave functions in the
spheroidal wave functions coincide with the found above V ln1n2m, i.e. Ū ln1n2m =
V ln1n2m[1 + O(R−2)].

Note that in the internuclear region (where
√
R . ν, ν̃ . R, ν̃ = R−ν), and in

the region of the right center (where ν ∼ R, 0 6 ν̃ .
√
R) the use of the formula

(23) is greatly simplified, because the functions ΨII
n1n2m depending on the quantum

number n1 have different order with respect to R. Thus, in the internuclear region
(in the region of the right center) each subsequent term in the sum (23) is R (R2)
times less than the previous one.

5 Asymptotics of the two-center wave function.
Spherical basis
5.1 The region of the left center. In the region I, as the formula (27) shows,
the two-center spherical function ΦInlm coincides with the Coulomb spherical wave
function ψsphnlm = Rnl(r1)Ylm(θ1,ϕ1) to within terms O(R−2). If for specific calcu-
lations of matrix elements the wave function ΦInlm needs to be known in spheroidal
coordinates, to obtain it one can take the Coulomb wave function ψsphnlm(r1, θ1,ϕ1)
and transmit there from the spherical coordinates of the left center (r1, θ1,ϕ1) to
the spheroidal coordinates (ξ, η,ϕ), where ϕ = ϕ1. However, this procedure will
lead to complicated dependencies that do not allow for factorization of integration
along the variables µ and ν. Thus, it is preferable to use expansion (23), in which,
obviously, according to the selection rules, only a few terms of the entire sum will
rest.

If we consider the asymptotic region ν ∼
√
R, when the electron is at a rather

large distance from its nucleus, and the influence of a right center is still weak
(i.e., on the border between regions I and II), the asymptotics in ν−1 of the wave
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function ΦInlm in the spheroidal coordinates up to a phase factor, which can be
omitted here, is of the form:

ΦI (as)
nlm = a1Blm2|m|µ

|m|
2 νn−1− |m|2 e−γ0(µ+ν)

(
1 + l(l + 1)− n(n− 1)

2γ0ν

)

×
(

1− |m|ν2R

)[
1 + (2n− |m| − 2)µ

2R − l(l + 1)− (|m|+ 1)(n− 1)
|m|+ 1

×µ
ν

(
1− ν

R

)
+ O(R−2)

] eimϕ
√

2π
, (30)

where

a1 = γ0(2γ0)n√
Z1(n+ l)!(n− l − 1)!

, Blm = 1
2|m|+1/2|m|!

[
(2l + 1)(l + |m|)!

(l − |m|)!

]1/2
(31)

are the asymptotic coefficients of the Coulomb radial wave function Rnl(r1) for
large r1 and the spherical function Ylm(θ1,ϕ1) at small angles θ1, respectively:

Rasnl (r1) = a1r
n−1
1 e−γ0r1

[
1 + l(l + 1)− n(n− 1)

2γ0r1
+ O(r−2

1 )
]
, (32)

Y aslm (θ1,ϕ1) = Blm sin|m| θ1

[
1− (l + |m|+ 1)(l − |m|)

4(|m|+ 1) sin2 θ1 + O(sin4 θ1)
]

eimϕ1

√
2π

.

(33)

5.2 The internuclear region. Substituting into (23) the two-center wave func-
tion ΨII

n1n2m from (18), we obtain (up to the same phase factor as for ΦInlm)

ΦIInlm = a1Blm2|m|µ
|m|

2 νn−1− |m|2 exp
[
−γ0(µ+ ν)− Z2ν

γ0R

](
1− ν

R

) |m|
2 −

Z2
γ0

×
[
1 + l(l + 1)− n(n− 1)

2γ0ν

]{
1 + 3Z2(1 + |m| − n)ν

2γ2
0R

2 + Z2ν

γ2
0R(R− ν)

×
[
Z2
γ0

(
1− ν

2R

)
− |m|2

]
+ Z2(Z2 − Z1)

γ3
0R

ln
(

1− ν

R

)
+ (2n− |m| − 2)µ

2R

− l(l + 1)− (|m|+ 1)(n− 1)
|m|+ 1

µ

ν

(
1− ν

R

)
+ O(R−2)

}
eimϕ
√

2π
. (34)

It is easy to see that as ν � R the wave function ΦIInlm transmits into ΦI asnlm (30).
Transmitting from the spheroidal coordinates { xi, η,ϕ} to the spherical ones

of the left center {r1, θ1,ϕ1} with θ1 � 1 we obtain the asymptotic behavior of
the two-center wave function ΦIInlm in the vicinity of the z internuclear axis:

ΦII (as)
nlm = Rasnl (r1)Y aslm (θ1,ϕ1)

(
1− r1

R

)−Z2/γ0
exp

(
−Z2r1
γ0R

)

×
{

1 + 3Z2(1 + |m| − n)r1
2γ2

0R
2 + Z2

γ2
0R

[
Z2
γ0

(
1− r1

2R

)
− |m|2

]
r1

R− r1

− Z2r
2
1 sin2 θ1

4γ0(R− r1)2 + Z2(Z2 − Z1)
γ3

0R
ln
(

1− r1
R

)
+ O(R−2)

}
. (35)
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The two-center spherical wave function ΦIInlm can also be calculated by the
Holstein-Herring method [26] already used above. However, in order to find it in
the internuclear domain, it is needed to know the E2/R

2 correction term in the
energy expansion of the Z1eZ2 quasimolecule in R−1:

E = E0 −
Z2
R

+ E2
R2 + E3

R3 + · · · , (36)

where E0 = −γ2
0/2 is the energy of a hydrogen-like ion eZ1. Although for real

atoms, as is known (see for instance [21]), E2 and E3 are equal to zero, and E4 =
−ε1Z

2
2/2, where ε1 is the polarizability of the considered state of the unperturbed

of the atom eZ1, when solving the problem of two purely Coulomb centers, the
account of E2/R

2 is required.
If in the parabolic quantum numbers the value E2 for the problem Z1eZ2 is

obtained analytically [1]:

E2 = 3Z2n(n1 − n2)
2Z1

, (37)

in the spherical basis it is unknown, since the application of the standard Rayleigh-
Schrödinger perturbation theory here leads to infinite sums in the equations for
determining corrections of the order of R−2 and higher. However, this value can be
calculated by comparing the two-center wave functions ΦIInlm found independently
by the Holstein-Herring method and by “re-quantizing” (23) from the spheroidal
basis to the spherical one.

It should be noted that in order to obtain the asymptotics of the ΦIInlm in
R−1 the Holstein-Herring method was used repeatedly by many authors (see, for
example, [18, 19, 20]). However, either the leading term of the asymptotics of the
two-center wave function [18] was calculated, or the next correction ∼ 1/R was
calculated but only for the s-states (l = m = 0) of the system Z1eZ2 and provided
E2 = 0 [19, 20].

In the present paper, the first two terms of the asymptotics of ΦIInlm for large R
for any states are found by the Holstein-Herring method taking into account the
value of E2/R

2 in the expansion (36) of the energy of the Z1eZ2 quasimolecule.
Omitting the mathematical calculations, we present only the final result of the
calculation of the two-center spherical wave function:

ΦIInlm = Rasnl (r1)Ylm(θ1,ϕ1)
[
r1 + r2 −R cos θ1
R(1− cos θ1)

]Z2/γ0

exp
(
−Z2r1
γ0R

){
1 + E2r1

γ0R2

+ Z2
γ2

0R

[
R− r2 − r1 cos θ1

r1 sin θ1

1
Ylm

∂Ylm
∂θ1

− (n− 1) ln R+ r2 − r1 cos θ1
2R

− ln R+ r2 + r1
2R − ln R+ r2 − r1

2R + Z2
γ0

(
r1
2R − ln R+ r2 + r1

R+ r2 − r1

+ R

R+ r2 − r1
− R

R+ r2 + r1

)]
+ O(R−2)

}
, (38)

satisfying the boundary condition

ΦIInlm =
r1∼
√
R
Rasnl (r1)Ylm(θ1,ϕ1)

[
1 + O(R−2)

]
. (39)
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Note that similarly to the quasi-angular wave function V II(ν), if in (38) in-
stead of the asymptotics of the radial wave function Rasnl (r1) one uses the exact
expression Rnl(r1) [27], then the formula (38) will define the two-center spherical
wave function Φnlm in both domains I and II, and the boundary condition (39)
transforms into the following relation:

ΦIInlm −−−→
r1→0

ΦInlm
[
1 + O(R−2)

]
= ϕsphnlm

[
1 + O(R−2)

]
, (40)

and thus leads to the formula (27).
When expanding (38) in the vicinity of the internuclear axis (θ1 � 1), it

transmits to (35) if E2 is substituted by the expression (37) with n1 = 0, n2 =
n−|m|−1. Thus, in the spherical basis, there occurs the energy levels degeneration
of multiplicity n − |m|, i.e. instead of n − |m| levels (corresponding to n1 =
0, 1, . . . , n− |m| − 1) in parabolic quantum numbers we have only one energy level
in the spherical one. Additionally, in both bases, the degeneracy by the sign of
the magnetic quantum number m is present.

5.3 The region of the right center. In this region, the formula (23) leads to
the following expression for the spherical wave function (up to the same phase
factor as for ΦInlm and ΦIInlm)

ΦIIInlm = C̃III
(2γµ)

|m|+1
2√

µ(R+ µ)
e−α1γµ

(2γν̃)
|m|+1

2√
ν̃(R− ν̃)

e−α̃2γν̃F (−ñ2, |m|+ 1, 2α̃2γν̃)

×
[
1 + O(R−2)

]
, (41)

C̃III = (−1)n−|m|−1

√
(2l + 1)(l + |m|)!(n− 1)!(n− |m| − 1)!

(|m|!)2(|m|+ 1)(l − |m|)!(n+ l)!(n− l − 1)!

×
[
1 + l(l + 1)− (|m|+ 1)(n− 1)

2γ0R

]
R2

4 C(R)CIII(R), (42)

where all constants of γ, C, CIII , α1, α̃2, ñ2 are determined above and taken here
with n1 = 0, n2 = n− |m| − 1.

It is easy to show that in the parabolic coordinates, the leading term of the
expansion (41) coincides with Chibisov’s result [18, 21].

Summary
In this paper, we have elaborated the recurrent scheme of constructing asymptotic
expansions of two-center wave functions in an arbitrary order of R−1 in the entire
space of electron’s distribution. Using this scheme we have obtained first two term
of the asymptotics of two-center wave functions in not only “natural” spheroidal
basis but also in the spherical basis of the left centre. Having these wave functions
and inter-electron interaction operator constructed in our previous papers [30, 31,
32, 33, 34] we are able to calculate the two-electron exchange interaction of an
excited hydrogen atom with the ion taking into account the retardation and spin
effects that will be an aim of our further works.
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