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Abstract. The quasiclassical expression for the exchange interaction ∆E of potential curves at the points
of their quasicrossing is found by means of the combined approach for solving the quantum mechanical
two-Coulomb-center Z1eZ2 problem. It can be used further for the calculation of cross sections of charge
exchange processes between hydrogen or hydrogen-like atoms and bare nuclei.

1 Introduction

The bound state problem for the negative charged parti-
cle (electron or muon) moving in the field of two positive
charges Z1 and Z2 (the so-called Z1eZ2 problem) is the
crucial quantum mechanical problem having a rich his-
tory [1,2]. This problem plays the same fundamental role
in solving various problems of molecular physics as the
hydrogen atom problem in atomic physics. In the atomic
collision theory, the solutions of the two-Coulomb-center
problem are used as a basis for the three-body problem in
the adiabatic representation [3].

An important feature of the considered problem is its
separability in the prolate spheroidal coordinate system
for the Schrödinger equation. The Heun-class confluent
equations [4] obtained herewith have two regular and one
irregular singularities leading to many specific properties
of their solutions. Nowadays, a lot of data obtained by
solving these equations by means of numerical and asymp-
totic methods for different limiting cases are available.
New results were obtained for both the problem of the
molecular hydrogen ion H+

2 (see, for instance, [2,5–8] and
references therein) and the problem of two centers with
differing charges [9–15]. Large-distance expansions for the
H+

2 system were thoroughly studied in [16–18] in the con-
text of their analyticity, convergency and summability.
In [19], the algebraic perturbation theory was extended
to the case of homonuclear many-electron systems. It is
based on explicit use of the generators of the SO(2,1) Lie
algebra. However, only σ-states are here considered for
which the azimuthal quantum number is zero. The two-
Coulomb-center problem was also considered for the Dirac
equation within the asymptotic methods in [20,21]. At the
same time, in a series of papers the Z1eZ2 problem was
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studied at small R in the spaces of both reduced [22] and
arbitrary dimensions [23,24].

In order to solve many problems arising in the theory
of slow atomic collisions, e.g. for calculation of the matrix
element ∆(R) of the exchange interaction between a
hydrogen atom (or H-like ion) and a bare nucleus, it is nec-
essary to know the two-center radial and angular Coulomb
spheroidal wave functions (CSWF) [1]. In the general non-
resonant case (Z1 6= Z2), the exchange matrix element
∆(R) was determined formerly [25,26] under the con-
dition requiring that the two-Coulomb-center spheroidal
wave function must tend to the one-center parabolic
wave function when an electron approaches one of the
nuclei. The correct result for the exchange energy split-
ting ∆E = 2∆(R) at the quasicrossing points can actually
be obtained only (see [27]) when the wave functions of
the zeroth order approximation are considered in the
spheroidal system of coordinates. The fact is that the
exchange matrix element ∆(R) is defined by the asymp-
totic region of electron coordinates where the one-center
parabolic and spheroidal wave functions of a hydrogen
atom differ essentially from each other. To be more spe-
cific, at large distances from the nucleus, a set of several
Coulomb parabolic wave functions makes a contribution
to the asymptotic behavior of a CSWF. This circum-
stance makes it difficult to apply the comparison equation
method [1,9,11,12] to determine the mentioned asymptotic
behavior (see, for instance, [27]).

In this paper, we use the combined approach [15] to
solve the quantum two-Coulomb-center Z1eZ2 problem in
the case of large internuclear distances R. An important
peculiarity of this approach is the application of various
methods to constructing the asymptotic expansions of the
radial and angular CSWF in different areas of the electron
motion. The perturbation theory can be used to determine
the local behavior of the solutions of the Z1eZ2 problem
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near a certain nucleus. However, the application of the
standard perturbation theory [28] leads to infinite sums
of complicated form. In connection with this, in a num-
ber of papers [29–31] the schemes of perturbation theory,
which allow one to obtain analytic expressions, have been
proposed.

In order to construct the asymptotic expansions of the
angular CSWF in the internuclear region, we propose to
employ the quasiclassical approach (the WKB method).
This approach allows us to obtain analytic solutions, but
for this problem (see (21)) it is limited to asymptotically
large internuclear distances R. These distances should be
so large that the quantum penetrability of the poten-
tial barrier separating atomic particles should be much
smaller than unity. A great number of problems can be
pointed out [32–34], whose solutions depend on this region
of internuclear distances.

The paper is organized as follows. In Section 2, we give
the basic equations of the Z1eZ2 problem in the spheroidal
system of coordinates. In Section 3, basing on our pre-
vious paper [15], we shortly describe the procedure for
obtaining the asymptotic expansions (at large R) of the
two-Coulomb-center quasiradial and quasiangular wave
functions up to terms of the third order in 1/R by means of
the modified perturbation theory. Additionally, the WKB
expansions for solutions of the quasiangular equation in
the Z1eZ2 problem are provided. Using the Firsov surface
integral method [35], in Section 4 we calculate the first
three terms of the asymptotic behavior of the exchange
interaction potential of an ion with an atom for the gen-
eral nonresonance case. In Section 5, the final results of
the paper and further studies of the Z1eZ2 problem are
discussed.

2 Basic equations

The time-independent Schrödinger equation (~ = |e| =
me = 1)(

−1

2
∆− Z1

r1
− Z2

r2

)
Ψ (~r,R) = E (R)Ψ (~r,R) , (1)

describing the motion of an electron in the field of two
positive charges Z1 and Z2, fixed at a distance R from
each other, permits complete separation of variables in
the prolate spheroidal coordinates

ξ =
r1 + r2
R

, η =
r1 − r2
R

, φ = arctan
y

x
, (2)

ξ ∈ [1;∞) , η ∈ [−1; 1] , φ ∈ [0; 2π) .

Here r1 and r2 are the distances from the electron to the
corresponding charges, the vector ~r = (x, y, z) connects
the center of segment R with an electron having the bind-
ing energy E(R). Replacing the wave function Ψ (~r,R) by
the product function

Ψ (~r,R) =
U (ξ,R)√
ξ2 − 1

V (η,R)√
1− η2

e±imφ√
2π

=
ψ (ξ, η,R)√

(ξ2 − 1)(1− η2)

e±imφ√
2π

, m = 0, 1, . . . ,

(3)

and using new variables

µ =
R

2
(ξ − 1) , µ ∈ [0,∞) , ν =

R

2
(1 + η) , ν ∈ [0, R] ,

(4)
we obtain the system of ordinary differential equations
for the radial U(ξ,R) and angular V (η,R) Coulomb
spheroidal functions:

U ′′ (µ) −
[
γ2 − Z1 + Z2 + λ1/R

µ
− Z1 + Z2 − λ1/R

R+ µ

+
R2(m2 − 1)

4µ2(R+ µ)2

]
U (µ) = 0, (5)

V ′′ (ν) −
[
γ2 − Z1 − Z2 − λ2/R

ν
+
Z1 − Z2 + λ2/R

R− ν

+
R2(m2 − 1)

4ν2(R− ν)2

]
V (ν) = 0, (6)

where γ = (−2E)
1/2

, m is the modulus of the magnetic
quantum number, λ1 and λ2 are the separation constants
depending on R. From a physical point of view, (5) and
(6) are one-dimensional Schrödinger equations for two
Coulomb and one centrifugal potentials.

Suppose that U(µ) and V (ν) satisfy the following
boundary conditions:

U(0) = 0, U(µ) −−−−→
µ→∞

0, V (0) = 0, V (R) = 0. (7)

The pair of one-dimensional boundary value problems
for the radial U(ξ,R) and angular V (η,R) Coulomb
spheroidal functions is equivalent to the original problem
(1) provided that the separation constants are equal:

λ1 = λ2. (8)

In order to make the content of this paper clearer, we shall
briefly discuss the main features of the Z1eZ2 problem in
the asymptotic region with respect to the intercenter sep-
aration. In the limit R→∞, the potential curves E(R) of
the two-Coulomb-center problem go over into the energy
levels of an isolated (e, Z1) or (e, Z2) atom, and the wave
functions corresponding to them – into the hydrogen-like
functions of these atoms in parabolic coordinates. For
this reason, it is convenient to classify the eigenfunctions
and energies Ej(R) of the Z1eZ2 problem with respect
to the parabolic quantum numbers of the states of the
(e, Z1) and (e, Z2) atoms, respectively: j = [nn1n2m] and
j′ = [n′n′1n

′
2m
′]. In the asymptotic region R → ∞, the

wave functions Ψj(~r,R) and Ψj′(~r,R) corresponding to
the eZ1 and eZ2 potential curves are concentrated around
each of the centers Z1 and Z2, and for the potential curves
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Ej(R) and Ej′(R) asymptotic expansions in inverse pow-
ers of R are valid. The asymptotic expansion of Ej(R)
(or Ej′(R)) describes the motion of the electron in the
Coulomb well deformed slightly by the presence of the sec-
ond charge; it is the expansion in multipoles of the energy
of the electrostatic interaction of the atom with the point
charge and can be obtained by perturbation theory (see
Sect. 3.1). The possibility of the classically allowed motion
of the electron with a given energy in the second well is
not taken into account here because the transition of the
electron from one Coulomb well to another is a deeply
under-barrier transition and gives exponentially small (in
R) corrections to Ej(R) and Ej′(R). The exponentially
small corrections play a fundamental part in the cases
when in the power-law approximation two potential curves
with n1 = n′1 and m = m′ intersect with decreasing dis-
tance between the centers. As expected, the allowance for
the exponential corrections gives a quasicrossing instead
of an exact crossing and it enables one to calculate (see
Sect. 4) the resulting splitting of the potential curves. It
should be noted that when there is a state with a given
energy only in one well, the exponential corrections to
Ej(R) and Ej′(R) are quadratic with respect to the expo-
nentially small corrections in the case of quasicrossing of
two potential curves. This is explained by the fact that
in the first case these corrections arise only when taking
into account twofold under-barrier transitions (from the
original well into the other and back again), whereas in
the second case, due to the presence of the bound state
there are simple “exchange” transitions in both wells.

When Z1 = Z2, both wells are identical. In this case,
there exist pairs of even (g) and odd (u) states (with
respect to the inversion of the electron coordinates). The
potential curves of these states converge as R → ∞. At
finite but large R, the wave functions are given as a
sum and difference of the wave functions centered on the
left- and right-hand nuclei [1]. Thus, the problem con-
sidered is reduced to the determination of the left- and
right-hand-side states.

Hereinafter, for the definition we shall consider the left-
hand-side states. The transfer from the left-hand side
center Z1 to the right-hand side one Z2 can be real-
ized by means of the replacements Z1 ↔ Z2, ni → n′i,
ν → R − ν, φ → −φ. The parabolic quantum numbers
n′1, n′2 of the right-hand center satisfy the condition
n′1 + n′2 +m+ 1 = n′.

3 The wave functions of the problem

3.1 The perturbation theory

In the theoretical description of the hydrogen-like atom
behavior in the field of point charge, we first need to
develop perturbation theory for large internuclear dis-
tances R. Despite the fact that this problem has been
investigated for many years, the problem of building
the perturbation theory schemes, allowing to obtain sim-
ple analytical expressions for the wave function remains
actual. One of these schemes was developed in [36] and

applied in our previous paper [15] in order to obtain third-
order (in R−1) corrections to energies and wave functions
of bounded states.

The formal scheme of these calculations consists in the
following steps. First, we represent the original differ-
ential operator L of equations (5) and (6) in the form
L = L0 + L1/R. The limiting differential operator L0 is
obtained from the original operator L by tending R to
infinity. After this, we expand the functions U(µ) and

V (ν) in the basic functions u
(0)
n1 (µ) and v

(0)
n2 (ν), which

are defined as solutions of the equations L
(µ)
0 u

(0)
n1 (µ) = 0

and L
(ν)
0 v

(0)
n2 (ν) = 0, respectively. These solutions can be

expressed in terms of the well-known special functions.
Note that in the framework of this scheme we consider the
energy as a parameter and the separation constants λ1,2
as eigenvalues of the corresponding operators (energetic
parameter γ can be found from Eq. (8)).

Omitting the details of these calculations, which can be
found in [15], we write the solutions of the quasiradial (5)
and quasiangular (6) equations in the following form:

Upert(µ) =f (0)n1
(µ) +

3∑
p=1

p∑
k=−p

c
(p)
n1+k

f
(0)
n1+k

(µ), (9)

V pert(ν) =f (0)n2
(ν) +

3∑
p=1

p∑
k=−p

c
(p)
n2+k

f
(0)
n2+k

(ν), (10)

f (0)ni
(x) =

√
(ni +m)!

ni!(m!)2(2ni +m+ 1)
(2γx)(m+1)/2

× e−γxF (−ni, m+ 1, 2γx), (11)

where F (α, β, z) is the confluent hypergeometric function

and for p = 1, 2, 3 all the c
(p)
ni+k

∼ R−p coefficients have

been calculated in [15]. The important feature of (9) and
(10) is the finite number of terms in every order of R−1.

The energetic parameter γ, as was mentioned above,
can be determined from (8). Taking into account that
n1 + n2 +m+ 1 = n, we arrive at the expression

γ = γ0 +
γ1
R

+
γ2
R2

+
γ3
R3

+ · · ·, (12)

where

γ0 =
Z1

n
, γ1 =

nZ2

Z1
, γ2 = −n

2Z2

2Z3
1

[
3(n1 − n2)Z1 + nZ2

]
,

γ3 =
Z2n

3

2Z5
1

{
Z2
1

[
6(n1 − n2)2 + 1− n2

]
+ 3Z1Z2n(n1 − n2) + Z2

2n
2

}
. (13)

The energy E = −γ2/2 and (12) give the well-known [1]
multipole expansion for the energy of electrostatic inter-
action of the atom eZ1 with the remote point charge Z2.
Note also that for γ3 there is a misprint in formula (4.60)
[1].
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Fig. 1. The effective potential energy Ueff (ν): (a) when m = 0 and m = 1, (b) when m > 1.

Herewith, the function ψ from formula (3) within
O(R−4) is of the form

ψpert(µ, ν,R) = C(R)Upert(µ)V pert(ν), (14)

where the formula for the normalization constant C can
also be found in [15].

The functions (3), (14) and (10) describe the electron
behavior in the main distribution region of electron den-
sity, where the ratios µ/R and ν/R are small quantities.
The idea of the used asymptotic method consists in the
fact that when an electron moves far away from both cen-
ters, the exchange energy is determined mainly by the
region in the vicinity of the internuclear axis R. Therefore,
next we shall consider the under-barrier motion of an elec-
tron when an electron is located far from both Coulomb
centers (nuclei).

The main idea of the asymptotic method we used is
based on the idea that when the electron is far from
the nuclei the exchange-interaction energy is determined
mainly by the electron distribution region close to the
internuclear axis R. Previously [36,37], the solution of the
quasiangular equation (6) in the aforementioned region
has been obtained only in the limiting case R � 2n2/Z1

for the internuclear distances sufficiently larger than the
sizes of electron shells of the atom (e, Z1) and ion (e, Z2).
However, the well-known asymptotic Landau–Herring
method [38], applied in [37], has a small applicability
domain because of approximations used for calculating
the so-called correction functions. Thus, in the next sub-
section, we shall consider the quasiclassical approximation
(the WKB method), applied to the quasiangular equation
(6). This approach is suitable also in the region of not too
large distances, where the wave functions of every center
overlap.

Therefore, the condition of the motion quasiclassicality
will be used below only with respect to the quasiangu-
lar variable ν saving the perturbation solution of the
problem for quasiradial variable µ. This fact allows us
to express the matrix element of the exchange interac-
tion [34], which characterizes the charge transfer process
between the hydrogen-like ions and bare nuclei, in terms

of quasiclassical penetrability of the potential barrier sep-
arating two potential wells (see Fig. 1) in the quasiangular
equation (6).

3.2 WKB solutions of the quasiangular equation in
inter-center region

In order to calculate the splitting of the potential curves
at the points of quasicrossing, it is necessary to determine
the electron wave function (3) in the internuclear region.
The interaction with another nucleus is not small here, so
it cannot be considered as a small perturbation. Solutions
of (6) for a large number of zeros of the eigenfunctions
V (ν) can be represented in a quite simple and compact
form using the WKB method (or quasiclassical approx-
imation), which was elaborated and became famous as
one of the most effective approximate methods for solving
quantum mechanical problems (see, for instance, Heading
[39], Fröman [40], Ponomarev [41], Berry and Mount [42]).

Let us rewrite the quasiangular equation (6) in the form
of the one-dimensional Schrödinger equation:

V ′′ − q2

~2
V = 0, (15)

where q =
√

2(Ueff − E), and in the quasiangular equa-
tion the function Ueff plays a role of the effective potential
energy:

Ueff (ν) = − Z̃1

ν
− Z̃2

R− ν
+

~2
(
m2 − 1

)
8ν2(1− ν/R)2

, (16)

Z̃1,2 = [±(Z1 − Z2)− λ2/R] /2. (17)

Here the Planck constant ~ is restored explicitly and the
following notation is introduced (see also Fig. 1): νi (i =
1, 4) are the turning points being solutions of the equation
q(ν) = 0, νm is the point where the effective potential
reaches a maximum. Moreover, the quantity q is real and
up to the factor of the imaginary unit i coincides with the
quasiangular momentum of a classical particle, q2(ν) > 0
at ν2 < ν < ν3.

In [15], a recurrent scheme for obtaining the WKB-
expansions for solutions of the quasiangular equation (15)

https://epjd.epj.org/
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in the under-barrier region was developed. The quasiclas-
sical formulas for a quasiangular function V quas obtained
are of the form (hereinafter ~ = 1):

V quas(ν) =
C0√
q(ν)

exp

[
−
∫ ν

ν2

q(ν′)dν′

+ S1(ν) + S2(ν) + O(R−4)

]
, (18)

where the quasiclassical corrections S1 and S2 are deter-
mined by the formulas

S1 =
Z̃1Z̃2

2γ5R3
ln

ν

R− ν
− Z̃1

4γ3ν2

[
1 +

17Z̃1

6γ2ν

]

+
Z̃2

4γ3(R− ν)2

[
1 +

17Z̃2

6γ2(R− ν)

]

− Z̃1Z̃2

4γ5R2

[
3R+ ν

ν2
− 4R− ν

(R− ν)2

]
+
m2 − 1

16γ3R

[
R+ ν

ν3
− 2R− ν

(R− ν)3

]
+ C1, (19)

S2 =
Z̃1

4γ4ν3
+

Z̃2

4γ4(R− ν)3
+ C2. (20)

The integration constants C0, C1, and C2 have been found
by exact matching V quas (ν) −−−−−−−→

ν2�ν�νm
V pert (ν); they

are given in Appendix B of [15]. Note also that, in the
expression for C0 there is a misprint: the additional factor√
γ[n2!(n2 +m)!(2n2 +m+ 1)]−1/2 was omitted.
Here we restrict ourselves only to the found terms S−1,

S0, S1, and S2 because the consideration of the higher-
order corrections does not usually improve the agreement
between the results of the WKB method and the exact
solution. As it is known [38–42], the reason for this is that
the formal series in powers of ~ is not convergent but only
asymptotic. The presence of the logarithmic term in (19)
suggests that expression (18) has a nonphysical singularity
at the location point ν = R of another nucleus, which is
not surprising: the potential of another nucleus cannot be
considered here as a small perturbation.

At some value R0 of the internuclear distance, the
influence of the cores on each other becomes too strong,
and the wave functions centered on each nucleus overlap,
which leads to the disappearance of the potential barrier
in the quasiangular equation (15). Therefore, the condi-
tion of applicability of the WKB-function (18) requires
the internuclear distance to be much larger than R0, i.e.

R� R0 =
1

2γ2

[
2(Z̃1 + Z̃2) +

√
4Z̃2

1 + γ2(1−m2)

+

√
4Z̃2

2 + γ2(1−m2)

]
. (21)

When this requirement is fulfilled, the polarization shift of
the electron energy (see (12) and (13)) is small compared

to the binding energy of an electron in the isolated atom
eZ1.

In the under-barrier region, the final expression for the
wave function Ψj(~r,R) centered on the atom of (e, Z1) is
of the form

Ψj (~r,R) = C(R)
R2

4

Upertj (µ)√
µ(R+ µ)

V quasj (ν)√
ν(R− ν)

e±imφ√
2π

, (22)

where Upertj (µ) and V quasj (ν) are given by (9) and

(18), respectively. The expression for the wave function
Ψj′(~r,R) centered on the ion (e, Z2) can be derived from
(9), (18), and (22) by making the replacements Z1 ↔ Z2,
ni → n′i, ν → R− ν, φ→ −φ.

In Tables 1 and 2, for the quasimolecule Z1eZ2 with
Z1 = 3 and Z2 = 1, we present the results of numerical
calculations for quasiangular wave functions correspond-
ing to the ground state (n1 = n2 = m = 0) and the first
(n1 = m = 0, n2 = 1) excited σ-states. The calculations
of the wave functions is performed by expressions (10),
in which a different number (p = 1, 2, 3) of corrections is
taken into account, and by quasiclassical formulas (18)–
(20). In the last column, we also present the results of
exact numerical calculation of the Z1eZ2 problem taken
from [37]. As it is seen from the tables, the accuracy of
our asymptotic formulas (10) increases with p. The quasi-
classical wave function V quas is in better agreement with
the numerical wave functions in the region of its validity
2γν2 � ρ2 � 2γν3. In connection with this, an essen-
tial and favorable fact is that exchange splitting of the
potential curves ∆E can be represented in the form of the
surface integral (23) in which a surface crossing internu-
clear axis in the under-barrier region can be chosen as S
where the quasiclassical wave function (18)–(20) is known
with higher accuracy than the perturbation solution (10).

4 Splitting of the potential curves at the
quasicrossing points

In order to calculate the probabilities of charge transfer
processes between a hydrogen or hydrogen-like atom and a
bare nucleus, it is necessary to know the exchange matrix
element ∆(R) = ∆E(R)/2 between the states of the trans-
ferring electron of atom (e, Z1) and ion (e, Z2). In the case
when the binding energies of an electron in the atom and
ion differ slightly, the calculation of the exchange splitting
∆E(R) of the potential curves at the quasicrossing points
can be carried out using the Firsov surface integral [35]

∆E =

∮
S

(
Ψ∗j ~∇Ψj′ − Ψ∗j′ ~∇Ψj

)
· d~S. (23)

Here Ψj and Ψj′ are the electron wave functions of the
quasimolecule (Z1, e, Z2), which turns in the separated
nuclei limit (R → ∞) into the wave functions of the

hydrogen-like atoms (e, Z1) and (e, Z2), respectively; d~S =
~ndS; S is the surface enclosing the half-space containing
nuclei Z1; ~n is the surface normal to S.

https://epjd.epj.org/
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Table 1. The quasiangular wave functions of the quasimolecule Z1eZ2 with Z1 = 3 and Z2 = 1 corresponding to the
ground state (n1 = n2 = m = 0), R = 2 a.u. The wave function V pertp , calculated by means of perturbation theory and

defined by (10), including terms of the second (p = 2) and third (p = 3) orders of R−1, and the quasiclassical wave
function V quas (18)–(20) are compared with the results of exact calculations V num [37].

ρ2 V pert
2 (ρ2) V pert

3 (ρ2) V quas(ρ2) V num(ρ2)

0.00 0.000 00 0.000 00 – 0.000 00
0.20 0.412 67 0.412 59 – 0.412 33
0.40 0.527 01 0.526 91 – 0.526 62
0.60 0.582 84 0.582 74 – 0.582 48
0.80 0.607 71 0.607 62 – 0.607 39
1.00 0.613 49 0.613 42 – 0.613 24
1.25 0.603 71 0.603 66 – 0.603 54
1.50 0.582 04 0.582 02 – 0.581 97
1.75 0.553 28 0.553 29 – 0.553 29
2.00 0.520 53 0.520 56 – 0.520 60
2.50 0.450 64 0.450 71 – 0.450 83
3.00 0.382 19 0.382 27 0.397 75 0.382 43
3.50 0.319 53 0.319 61 0.319 43 0.319 81
4.00 0.264 36 0.264 42 0.260 61 0.264 63
4.50 0.216 95 0.216 99 0.212 56 0.217 20
5.00 0.176 91 0.176 91 0.172 77 0.177 11
5.50 0.143 50 0.143 47 0.139 87 0.143 66
6.00 0.115 89 0.115 83 0.112 81 0.116 01
6.50 0.093 25 0.093 16 0.090 68 0.093 32
7.00 0.074 79 0.074 68 0.072 66 0.074 81
7.50 0.059 82 0.059 69 0.058 07 0.059 80
8.00 0.047 73 0.047 58 0.046 30 0.047 66
9.00 0.030 19 0.030 02 0.029 28 0.030 02
10.00 0.018 96 0.018 79 0.018 55 0.018 62
11.00 0.011 83 0.011 67 0.012 46 0.011 12

As an integration surface in (23) we choose the surface
defined by the equation η = const. Let us find the values of
exchange splitting ∆E of the eZ1 and eZ2 potential curves
in close vicinity to the quasicrossing points, where the
quasimomenta qj and qj′ of the electron centered on the
atoms (e, Z1) and (e, Z2), respectively, are approximately
equal: qj ≈ qj′ . Then, substituting the wave function Ψj
in the form (3), (22) and a similar expression for Ψj′ into
(23), we obtain

∆E = CC ′
R3

8

(
V quasj

dV quasj′

dν
− V quasj′

dV quasj

dν

)

×
∫ ∞
0

Upertj (µ)Upertj′ (µ)

µ(R+ µ)
dµ

= CC ′C0C
′
0eC1+C

′
1

×eC2+C
′
2
R3

8
e−J

∫ ∞
0

Upertj (µ)Upertj′ (µ)

µ(R+ µ)
dµ. (24)

Here J =
∫ ν3
ν2
q(ν)dν is the barrier integral, and the

constants C ′(R) and C ′i(R) can be derived from the
expressions for C(R) and Ci(R) (see [15]) by making
the replacements Z1 ↔ Z2, ni → n′i. Thus, in the case
of qj = qj′ the exchange interaction energy does not
depend on the choice of the integration surface S posi-
tion and, as expected, up to the pre-exponential factor

is determined by the quasiclassical penetrability of the
potential barrier separating two Coulomb centers in the
quasiangular equation (6).

Formula (24) determines the magnitude of the exchange
splitting of the potential curves ∆E, but it is limited by
the condition R > R0 (see (21)). At the distances between
the centers R < R0, i.e., for |Ej(R)| < |Ueff (νm)| the elec-
tron moves on the generalized orbit embracing two nuclei,
so we cannot separate the electron motion between differ-
ent potential wells, and it makes no sense to consider the
exchange interaction energy at these distances.

For the expansion of the barrier integral J in posi-
tive powers of R0/R the value of the turning points νi,
(i = 1, 4) with respect to the asymptotic parameter R
should be fixed: ν1,2 = O(1), ν3,4 = O(R). Let us consider
a point ν0 dividing the integration domain ν2 6 ν 6 ν3
into the domain ν2 6 ν 6 ν0 where the Coulomb poten-
tial −Z̃1/ν dominates and the domain ν0 6 ν 6 ν3 where

the potential −Z̃2/(R − ν) dominates. Since in the first
domain ν2 6 ν 6 ν0 the Coulomb potential of the charge
Z̃1 prevails, we choose it as a basic potential and expand
the quasimomentum q in the potential of the remote
nucleus Z̃2. In the second domain ν0 6 ν 6 ν3, we con-
sider the Coulomb potential of the charge Z̃2 as a basic
potential, assuming the potential of the remote nucleus
Z̃1 as weak perturbation. The result of the integral J thus
obtained does not depend on the choice of the point ν0

https://epjd.epj.org/
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Table 2. The quasiangular wave functions of the quasimolecule Z1eZ2 with Z1 = 3 and Z2 = 1 corresponding to the
excited state (n1 = m = 0, n2 = 1), R = 8 a.u. The wave function V pertp , calculated by means of perturbation theory

and defined by (10), including terms of the second (p = 2) and third (p = 3) orders of R−1, and the quasiclassical
wave function V quas (18)–(20) are compared with the results of exact calculations V num [37].

ρ2 V pert
2 (ρ2) V pert

3 (ρ2) V quas(ρ2) V num(ρ2)

0.00 0.000 00 0.000 00 – 0.000 00
0.20 0.183 52 0.183 20 – 0.183 07
0.40 0.178 00 0.177 72 – 0.177 71
0.60 0.134 02 0.133 85 – 0.134 00
0.80 0.073 68 0.073 65 – 0.073 96
1.00 0.007 15 0.007 26 – 0.007 71
1.50 −0.155 09 −0.154 62 – −0.153 94
2.00 −0.286 67 −0.285 95 – −0.285 17
2.50 −0.379 22 −0.378 37 – −0.377 61
3.00 −0.435 38 −0.434 51 – −0.433 83
3.50 −0.461 46 −0.460 67 – −0.460 10
4.00 −0.464 44 −0.463 80 – −0.463 35
4.50 −0.450 75 −0.450 30 – −0.449 98
5.00 −0.425 82 −0.425 60 – −0.425 40
6.00 −0.358 52 −0.358 74 – −0.358 75
7.00 −0.285 74 −0.286 33 −0.344 67 −0.286 52
8.00 −0.219 18 −0.220 03 −0.238 78 −0.220 36
9.00 −0.163 44 −0.164 43 −0.173 31 −0.164 89
10.00 −0.119 26 −0.120 29 −0.125 39 −0.120 85
12.00 −0.060 51 −0.061 41 −0.063 76 −0.062 10
14.00 −0.029 30 −0.029 97 −0.031 37 −0.030 71
16.00 −0.013 72 −0.014 17 −0.015 14 −0.014 90
18.00 −0.006 27 −0.006 55 −0.007 28 −0.007 25
20.00 −0.002 81 −0.002 97 −0.003 58 −0.003 67
22.00 −0.001 23 −0.001 33 −0.001 98 −0.002 07

Table 3. Adiabatic energy splittings ∆E at quasicrossing points Rc in the system (p, e, Z2).

Z2 (Nlm)–(N ′l′m′) Rc ∆E (27) ∆EKPS [1] ∆EB [49] ∆Enum [50]

4 (4, 3, 0)–(3, 2, 0) 7.76 6.66 × 10−2 6.56 × 10−2 – 6.94 × 10−2

5 (5, 4, 0)–(4, 3, 0) 12.9 4.07 × 10−3 6.09 × 10−3 4.16 × 10−3 4.25 × 10−3

6 (6, 5, 0)–(5, 4, 0) 21.4 2.40 × 10−5 3.37 × 10−5 2.41 × 10−5 –
7 (7, 6, 0)–(6, 5, 0) 31.9 2.06 × 10−8 2.44 × 10−8 2.14 × 10−8 –
8 (8, 7, 0)–(7, 6, 0) 44.3 3.04 × 10−12 4.51 × 10−12 2.88 × 10−12 –

and in the case m > 1 is of the form

J =γR+
Z̃1

γ
ln
ν2 − ν1

4eR
+
Z̃2

γ
ln
ν4 − ν3

4eR

+

√
m2 − 1

2
ln

(√
ν2 +

√
ν1
) (√

R− ν3 +
√
R− ν4

)(√
ν2 −

√
ν1
) (√

R− ν3 −
√
R− ν4

)
− 1

γ3R

[
Z̃1Z̃2 −

(m2 − 1)γ2

4

] [
1 +

3(Z̃1 + Z̃2)

2γ2R

]

× ln
16eR2

(ν2 − ν1) (ν4 − ν3)
+

(Z̃1 − Z̃2)2

2γ3R

+
(Z̃1 + Z̃2)(Z̃2

1 − 4Z̃1Z̃2 + Z̃2
2 )

4γ5R2
+ O(R−3), (25)

where the effective charges Z̃1,2 are determined by (17).
Although the equation q = 0 allows finding the exact
solutions, the asymptotic expressions for the turning
points νi, i = 1, 2, 3, 4 up to the terms of the order of

R−2 will be used below. In the cases m = 0 and m = 1,
the barrier integral J can be determined in the same way.

The calculation of the quasiradial integral

Ir =

∫ ∞
0

Upertj (µ)Upertj′ (µ)

µ(R+ µ)
dµ,

from (24) presents no difficulties, too. Its value can be

expressed in terms of the coefficients c
(k)
n1 from the expan-

sion (9) and the matrix elements 〈n1|ρk1 |n1〉 (see [15] for
their explicit form):

Ir =
1

R

{
〈n1|ρ−11 |n1〉

(
1 + 2c(1)n1

+ 2c(2)n1

)
− 〈n1|ρ

0
1|n1〉

2γR

+
〈n1|ρ1|n1〉

4γ2R2
+

1∑
k=−1

|c(1)n1+k
|2〈n1 + k|ρ−11 |n1 + k〉

}
.

(26)

https://epjd.epj.org/
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Substituting (25) and (26), the values of normalization
constants C, C ′, as well as formulas for the matching con-
stants Ci, C

′
i (i = 0, 1, 2) (see [15]) into (24), we obtain

the following expression for the exchange splitting of the
potential curves:

∆E =
2γ2 (−1)

n2+n
′
2 (2γR)

n2+n
′
2+m+1

e−γR√
nn′ n2! (n2 +m)!n′2! (n′2 +m)!

×

{
1− 1

2γR

[
A2

2 +A′22
4

+A2A
′
2 +

1−m2

2

]
− A2 +A′2

2γR
− A1

2γ2R

(
Z1

n
+
Z2

n′

)
+

(A1 − 1)(A2 +A′2)2 + 2A2A
′
2(A1 − 2)

8γ2R2

+
A3

2 +A′32 + (A2A
′
2 − 4A1 + 2m2 − 6)(A2 +A′2)

32γ2R2

+
[A2

2 +A′22 + 4A2A
′
2 + 2(1−m2)]2

128γ2R2

+
A1(3A1 + 1−m2)

4γ2R2
+ O(R−3)

}
, (27)

where Ai = 2ni +m+ 1, A′i = 2n′i +m+ 1. Note that the
formula (27) is valid for any value of m = 0, 1, 2, . . . In
the resonance case ZeZ, formula (27) gives the difference
between the energies of gerade and ungerade states and
coincides with the results of [16–18] for Z1 = Z2 = 1 and
of [26,43–46] for Z1 = Z2 = Z. It should be noted also
that the formulas for H+

2 in [1,26] contain a mistake in
the terms of the order of R−2.

Addressing to the result for the splitting of the poten-
tial curves obtained previously in [26,47] and given then
in [1], it should firstly be noted that the pre-exponential
factor in [26,47] was derived incorrectly because the dis-
tance between the potential curves was calculated at not
the same value of R but at the same value of the param-
eter β = (Z2 − Z1)/(−2E)1/2 = n′2 − n2. The formulas
obtained in these papers give the correct result only in
the case of equal charges when β is equal to zero. In the
general nonresonant case Z1 6= Z2, the exponential split-
ting of the potential curves at the quasicrossing points
was obtained in [26,47] by differentiating with respect to
indices of the power expansions (12) for the eZ1- and eZ2-
energies. When using different parts of the asymptotic
series, the same difference between the potential curves
at the quasicrossing points can be represented by various
formulas of the form

∆E = Tδ(n2, n
′
2,m, p), (28)

where δ is determined by formula (4.36) from [1]. Komarov
and Slavyanov [25,44] proposed to determine T by dif-
ferentiating the expression E = −(Z2 − Z1)2/(2β2) with
respect to indices, which gives

TKS = 2
(Z2 − Z1)2

(n′2 − n2)3
. (29)

Power [26] criticized this expression and noted that it does
not give a correct result for the splitting in the limit-
ing case Z1 = Z2. Thus, Power proposed to differentiate
the half-sum of the eZ1- and eZ2-energies with respect to
indices:

TP =
∂E1

∂n2
+
∂E2

∂n′2
. (30)

This result is presented in [1].
Ponomarev [48] noticed that the dependence of β(E) on

the energy should be considered when differentiating the
eZ1- and eZ2-energies. Following his ideas, the following
result was obtained in [9,11]:

TPKS =
∂E1

∂n2√
1 + ∂β

∂E1

∂E1

∂n2

+

∂E2

∂n′
2√

1− ∂β
∂E2

∂E2

∂n′
2

. (31)

The numerical values of pre-exponential factor, given by
these formulas, differ from each other. The most consis-
tent appears formula (31). One can easily show that the
expressions for the splitting of potential curves (28), (30)
and (28), (31) are different due to the terms of the order
of O(R−2).

It is of interest to estimate the limits of applicability and
practical accuracy of the asymptotic formula (27) for ∆E
by its comparison with the results of numerical integration
of a Z1eZ2 problem. In Table 3, we compare the values of
∆E in the Z1eZ2 system (Z1 = 1, 4 6 Z2 6 8) provided
by our formula (27) with analytical results ∆EKPS [1] and
∆EB [49] as well as with the exact numerical calculations
∆Enum [50] (Nlm are spherical quantum numbers in the
limit of the united atom (R = 0)). The value of γ was
calculated using expansion (12), including the terms of
the second order. As it is seen from the table, the values
of ∆E are quite close to the exact ones. The proximity of
these results convincingly demonstrates the usefulness of
the WKB method in determining the two-Coulomb-center
wave function.

Note that the range of applicability and accuracy of
asymptotic expansion (27) for ∆E decrease when we sub-
stitute (12) to (27) and make additional expansion in
powers of 1/R. This can be explained by the expansion
of exponent e−γR into converging series which should be
subsequently terminated because the final expansion as a
whole is asymptotic. Therefore, much better results can
be obtained by directly using (27) and making the sub-
stitution of γ (12) calculated by means of perturbation
theory.

5 Concluding remarks

– The asymptotic expressions for the quasiradial and
quasiangular functions, obtained in our previous
work [15], is used to calculate the matrix element
of the one-electron exchange interaction potential
determining the process of one-electron charge trans-
fer between a hydrogen-like atom (ion) and a bare
nucleus. The comparison of ∆E (27) with the results

https://epjd.epj.org/
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of exact numerical calculations [50] shows that the
domain of applicability of our asymptotic formula
(formally valid under the condition (21)) is pro-
longed up to values R > R0 even for small quantum
numbers, n = 1, 2;

– there are two ranges of distances between the two
Coulomb centers where the matrix element ∆(R) =
∆E/2 of the exchange interaction demonstrates dif-
ferent behavior depending on the variation of the
internuclear distance R. Thus, in the range R �
2n2/Z1 and Z1 = Z2 formula (27) for the exchange
splitting ∆E becomes the limiting expression [44]
obtained in the framework of the comparison equa-
tion method. In the range R0 < R < 2n2/Z1 (and
also Z2 > Z1) the asymptotic theory [44] is inap-
plicable because the exchange splitting of potential
curves (27) differs from the asymptotic result [44]
by the value of the order of Z2/R. The asymptotic
theory [44] suggests the smallness of the Z2/R in
comparison with the electron binding energy; this
requirement is not fulfilled in our case because these
values are of the same order. Meanwhile, the calcula-
tions show that the proposed quasiclassical method
describes the exchange splitting of the potential
curves ∆E(R) both for intermediate internuclear
distances R0 < R < 2n2/Z1 and in the asymptotic
limit R� 2n2/Z1;

– this paper is focused mainly on the case when the
difference between charges Z1 − Z2 of the Coulomb
centers are not so large (67). In our further studies
we shall consider the case when the charge of one of
the Coulomb centers Z1 is small and the charge of
the other one is large (Z2 � 1) so that the difference
Z2 − Z1 is also large. This situation occurs in the
physically important case of charge exchange of the
hydrogen atom on a multiply charged ion.

This research was supported by the Ministry of Education
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