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Abstract
The method of quasiclassical localized states is developed for the sta-

tionary Schrödinger equation with the potentials of the atomic field and
perpendicular electric and magnetic fields. Using this method quasiclassical
wave functions for an arbitrary atom are constructed in classically forbidden
and allowed regions. The general analytical expression for leading term of
the asymptotic (at small intensities of electrostatic E and magnetic H fields
when H/(cE) � 1) behaviour of ionization rate of an atom in such electro-
magnetic field is found. Various limiting cases of the expression obtained are
analysed.

1 Introduction
The problem of an atom in electric and magnetic fields has fundamental mean-

ing for the quantum mechanics and atomic physics and has many applications (see,
for example, [1, 2, 3] and the references therein). Since the twenties [4], properties
of an energy spectrum of hydrogen atom and other atoms in external fields were
rather intensively studied in the framework of the Schrödinger equation.

In order to construct a consistent theory of tunnel ionization of atoms one
should solve the problem of electron motion in the field created by nucleus and
constant uniform electric and magnetic fields. Since the Schrödinger equation with
such superpositional potential does not permit complete separation of variables in
any orthogonal system of coordinates, the given problem has no exact analytical
solution, and numerical methods are still demand significant computational efforts.

The quasiclassical theory of atomic particles decay elaborated in sixties (see for
instance [3]) has allowed obtaining useful analytical formulae for ionization rate
which are asymptotic in the limit of “weak” fields. Both neutral atom [1, 5, 6, 7] and
negative ions like H−, J− etc. [5, 8] (the first of these problems is more complicated
due to necessity of taking into account the Coulomb interaction between outgoing
electron and atomic core) were considered.

Subsequently (see papers [9, 10] and references therein) the imaginary time
method (ITM) was elaborated for study ionization of atoms by electric and mag-
netic fields where classical trajectories are used with imaginary time. Although
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this method is physically obvious it is not able to take into account the Coulomb
interaction between an atom and outgoing electron consequently. Second limita-
tion of this method is accounting only s-states.

Among the quantum-mechanical methods for studying the processes of interac-
tion of atomic particles with electrical and magnetic fields, 1/n-expansion method
(n – principal quantum number), which is quite effective for highly excited (Ryd-
berg) states of atoms and molecules, including the consideration of effects in strong
external fields (see, for instance, [11]) occupies a special place.

Additionally, of practical interest is the case when the intensities of the external
electric and magnetic fields are much smaller than the intensity of the characteristic
atomic fields. If this condition is satisfied the breakup of the atomic particle
occurs slowly compared to the characteristic atomic times and the leaking out
of the electron takes place primarily in directions close to the direction of the
electric field. Therefore, in order to determine the frequency of the passage of the
electron through the barrier it is convenient to solve the Schrödinger (or Dirac)
equation near an axis directed along the electric field and passing through the
atomic nucleus. This idea was used for solving the relativistic two-center problem
at large intercenter distances [12], for calculating the leading term (in intensity
of electric field F ) of the tunnel ionization rate of an atom in a constant uniform
electric field in non-relativistic [5, 13] and relativistic [14, 15, 16, 17] cases, and
first two terms in non-relativistic case [18]. Also, we have calculated the leading
term of the tunnel ionization rate of an atom in parallel electric field and magnetic
field both non-relativistic [19, 20] and relativistic [21]. In our papers such method
called “the method of quasiclassical localized states” (MQLS) is shown to be free
from limitations of ITM.

In the present paper, our aim is to apply the method of quasiclassical localized
states to solve the problem of an atom in the perpendicular constant uniform
electric and magnetic field.

The paper is organized as follows. In section 2, the problem of the the atom in
the perpendicular electric and magnetic fields is formulated. In section 3, we seek
solutions of the stationary Schrödinger equation for an atom in the perpendicular
constant uniform electric and magnetic fields in the form of the WKB expansion.
In section 4, we find the solution of the problem in the domain 2Z/γ2 � r 6 rm
where the atomic potential prevails electric and magnetic ones. In section 5, we
find the solution in the domain r > rm using the idea of localized states. In
section 6, we find the wave function in classically forbidden and allowed regions,
calculate the leading term of tunnel ionization rate, and compare our results with
ones of other authors in some limiting cases. In the last section of the paper, we
discuss advantages of the elaborated method and further perspectives concerning
its evolution.

2 The problem formulation

Consider an arbitrary non-relativistic atom placed in the constant uniform
electric (the intensity ~E is directed oppositely to z axis) and magnetic (the inten-
sity ~H is directed oppositely to y axis). The Hamiltonian for an electron in the
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electromagnetic field is (me = |e| = 1)

Ĥ =
1

2

(
~̂p− 1

c
~A

)2

+ V, (1)

where ~̂p = −i~~∇, ~A and V are the vector and electrostatic potentials, respectively,
c is the speed of light, ~ is the reduced Planck constant, which will be turned later
to unity. For the vector potential we use the Coulomb gauge:

~A =
1

2
~H × ~r.

The electrostatic potential is equal

V = Vatom − Ez, Vatom −−−→
r→∞

−Z/r.

The spectrum of such quantum-mechanical problem is quasistationary. The
energy of an electron is complex

Ec = E − iΓ/2, (2)

where E gives a position of quasistationary level, Γ = w/~ is its width.
Considering all the above mentioned, we obtain the following wave equation:

∆Ψ +
iH

~c

(
z
∂Ψ

∂x
− x∂Ψ

∂z

)
+

1

~2

[
2 (E − V )− H2

4c2
(x2 + z2)

]
Ψ = 0, (3)

unpermitting the separation of variables in any orthogonal system of coordinates.

3 WKB expansion

We seek a solution of equation (3) in the form of the WKB expansion:

Ψ = eS/~
∞∑
n=0

~nψn. (4)

Having substituted (4) into (3) and equated to zero the coefficients of each power
of ~, we arrive at the hierarchy of equations

(~∇S)2 +
iH

c

(
z
∂S

∂x
− x∂S

∂z

)
= 2

(
V − E +

H2

8c2
(x2 + z2)

)
; (5)

2~∇S~∇ψ0 +
iH

c

(
z
∂ψ0

∂x
− x∂ψ0

∂z

)
+ ∆S ψ0 = 0; (6)

2~∇S~∇ψn+1 +
iH

c

(
z
∂ψn+1

∂x
− x∂ψn+1

∂z

)
+ ∆S ψn+1 = −∆ψn, (7)

where n = 0, 1, 2, . . ..
Unfortunately, equations (5)–(7), similarly to the initial equation (3), do not

permit an exact separation of variables. In order to solve them we shall use the
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idea of splitting the whole configuration space into domains, where in each of them
only the dominating interaction type is taken into account exactly while the other
interaction types are treated as perturbations.

Note that the conditions of applicability of the quasiclassical approximation
used are (me = |e| = ~ = 1)

E� γ3, H/c� γ2, γ =
√
−2E. (8)

For such intensities, the domain 2Z/γ2 � r � rm of space exists where the atomic
field prevails the external ones, and in the zero approximation the wave function
Ψ coincides with the leading term of the asymptotic behavior (at large r) of the
unperturbed (atomic) wave function

Ψ
(as)
0 = R(as)(r)Ylm(θ, ϕ), R(as)(r) ' arZ/γ−1 exp(−γr). (9)

Here rm = rm(θ, ϕ) is the equation of the surface of space points in which the
atomic potential is equal to the potential of the external superpositional (electro-
magnetic) field (for a rough estimate we can assume rm ∼

√
Z/max(E, H/c)),

Ylm(θ, ϕ) is the spherical harmonics, l and m are respectively the orbital quan-
tum number and its projection onto the quantization axis, a is the asymptotic
coefficient of the radial wave function R(r).

This fact allows us to formulate the following boundary condition for the equa-
tion (3)

Ψ '
2Z/γ2�r�rm

Ψ
(as)
0 . (10)

Further, we shall solve the equations (5)–(7) in two domains: 2Z/γ2 � r 6 rm
and r > rm. In the first domain, it is worth to use the spherical coordinates while
in the second domain – the Cartesian ones.

4 The solutions in the domain 2Z/γ2 � r 6 rm

In the spherical coordinates (r, θ, ϕ), the equation (5) is of the form

(~∇S)2 +
iH

c

(
cosϕ

∂S

∂θ
− cos θ sinϕ

sin θ

∂S

∂ϕ

)
=γ2 − 2Z

r
− 2Er cos θ

+
H2

4c2
r2(sin2 θ cos2 ϕ+ cos2 θ). (11)

In the domain 2Z/γ2 � r 6 rm, the coordinate r−1 � 1 is a small parameter,
and the angular dependence of S is weak. Therefore, we seek the solution of (11)
in the form of series

S = s0(r) + s1(r, θ, ϕ) + s2(r, θ, ϕ) + . . . , (12)

where each term is r times smaller than a previous one. Having substituted (12)
into (11), and equated to zero the terms of each order of r, we arrive at the
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hierarchy of equations

(s′0)2 = γ2; (13)

2s′0
∂s1
∂r

= −2Z

r
− 2Er cos θ, . . . (14)

Having solved the first two equations of this system with the boundary condi-
tion (10), we obtain

S = −γr +
Z

γ
log r +

E

2γ
r2 cos θ +O(r−1). (15)

In the same way, one can get the solution of the equation (6):

ψ(0) =
a

r
Ylm(θ, ϕ)

[
1 +O(r−1)

]
. (16)

5 The solutions in the domain r > rm

5.1 The localized states
Let us now find solutions of the equations (5) and (6) in the domain r > rm,
where the Coulomb interaction can be considered as a perturbation. We seek the
solution of (5) in the form

S = S0 + S1 + S2 + . . . , (17)

where S0 is the solution of (5) without the Coulomb potential, S1, S2, ... are the
correction taking into account the Coulomb interaction:(

∂S0

∂x
+

iH

2c
z

)2

+

(
∂S0

∂y

)2

+

(
∂S0

∂z
− iH

2c
x

)2

= γ2 − 2Ez; (18)(
∂S0

∂x
+

iH

2c
z

)
∂S1

∂x
+
∂S0

∂y

∂S1

∂y
+

(
∂S0

∂z
− iH

2c
x

)
∂S1

∂z
= − Z√

x2 + y2 + z2
, . . .

(19)

In order to solve this system of equation we shall use the idea of the localized
states consisting in the following.

There are many cases when for solving quantum mechanical problem it is suf-
ficient to find a wave function not in the whole configurational space but in the
neighbourhood of manyfold M of less dimension. States described by such wave
functions are called “localized states”. It is natural to expand all the quantities
in inseparable equations including their solutions in this vicinity. This idea was
founded by Fock and Leontovich [22] and employed at solving diffraction problems
[23] (the boundary-layer method), some quantum mechanical problems [24] (the
parabolic equation method), and, finally, in the MQLS [14, 17, 19, 20, 21]. Here
we apply this idea to the equations (18), (19).
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As it is known [25] the classical trajectory of the charged particle in the per-
pendicular electric and magnetic field is located in the plane being perpendicular
to the intensity of the magnetic field and containing the intensity of the electric
field. In our field configuration, it is the plane xOz. Thus, we seek the solutions
Si of equation (18) in the form of the series in even powers of y:

Si = Si0(x, z) + Si1(x, z)y2 + . . . , i = 0, 1, 2, . . . (20)

Having substituted (20) into (18), (19) and equated to zero the coefficients of
each power of y, we arrive at the hierarchy of equations for the functions Sij . In
order to find the wave function in zero approximation, it is sufficient to find S00,
S01, and S10 which satisfy the equations(

∂S00

∂x
+

iH

2c
z

)2

+

(
∂S00

∂z
− iH

2c
x

)2

= γ2 − 2Ez; (21)(
∂S00

∂x
+

iH

2c
z

)
∂S01

∂x
+

(
∂S00

∂z
− iH

2c
x

)
∂S01

∂z
+ 2S2

01 = 0; (22)(
∂S00

∂x
+

iH

2c
z

)
∂S10

∂x
+

(
∂S00

∂z
− iH

2c
x

)
∂S10

∂z
= − Z√

x2 + z2
. (23)

5.2 The solutions of the equation (21)
The equation (21) is the non-linear but it can be “linearized” in the following way.
Rewrite it in the form:

∂S00

∂z
− iH

2c
x = ±

√
γ2 − 2Ez −

(
∂S00

∂x
+

iH

2c
z

)2

(24)

and make substitutions
∂S00

∂x
= P (x, z),

∂S00

∂z
= Q(x, z). (25)

Then equation (24) is of the form

Q− iH

2c
x = ±q, q(P, z) =

√
γ2 − 2Ez −

(
P +

iH

2c
z

)2

. (26)

After differentiating (26) in x and taking into account the relation ∂Q/∂x =
∂P/∂z, we obtain the quasi-linear partial differential equation of the 1-st order for
the unknown function P (x, z):

±
(
P +

iH

2c
z

)
∂P

∂x
+ q

∂P

∂z
=

iH

2c
q. (27)

The equation (27) can be solved by the method of characteristics and together
with the boundary condition

P '
r∼rm

−γ
(

1− Ez

2γ2

)
x√

x2 + z2
, (28)
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choosing the lower sign in (26) and (27), yields to the algebraic equation for P√
γ2 − 2Ez −

(
P +

iH

2c
z

)2

−

√
γ2 −

(
P − iH

2c
z

)2

+

Ec

H
log

Ec

H
−

√
γ2 − 2Ez −

(
P +

iH

2c
z

)2

+ i

(
P +

iH

2c
z

)
Ec

H
−

√
γ2 −

(
P − iH

2c
z

)2

+ i

(
P − iH

2c
z

) =
iH

c
x. (29)

As it is seen, an analytical solution of the equation (29) could allow us to find

S00 =
iH

2c
xz −

∫
qdz + f0(x), (30)

where f0(x) is defined by matching S with the expression (15) when r ∼ rm, and,
therefore, to solve all the equations (22)-(23) and (6) by means of the method of
characteristics. However, the equation (29) is transcendent and can be solved only
approximately. For this, in the next section, we shall limit ourselves by the case
when the the electric field prevails the magnetic one.

6 Approximation of the “weak” magnetic field

6.1 The wave function in the under-the-barrier region

Let us the situation when H/(cE) .
√
E � 1 when the classical trajectory is

located in the vicinity of the z axis.
The asymptotic solution of the equation (29) is of the form

P (x, z) = − iH(γ − q0)2

12cE
− (γ + q0)x

2z
, q0(z) =

√
γ2 − 2Ez. (31)

Having calculated the integral in (30), solved the equations (22)-(23) and (6) by
means of the method of characteristics and matching S and ψ0 when r ∼ rm
with (15) and asymptotic (at θ � 1) behavior of (16), respectively, we obtain the
functions S00, S01, S10, and ψ0. Finally, gathering all formulas together, we obtain
the following solution of the equation (3):

Ψ = ψ0eS , (32)

S =
q30 − γ3

3E
+
Z

γ
log

4γ2z

(γ + q0)2
− H2(γ − q0)3

72c2E3

[
4

5
(γ − q0)2 + 3γq0

]
− iHx(γ − q0)2

12cE
− γ + q0

4z
(x2 + y2), (33)



8 O.K. Reity, V.K. Reity, V.Yu. Lazur

ψ0 =

√
γaAlm√
q0

(
γ + q0
2γz

)|m|+1
[(

x− iHzq0
3cE

)2

+ y2

]|m|/2

× exp

im arctan
y

x− iHzq0
3cE

 , (34)

Alm = (−1)
m+|m|

2
1

2|m|(|m|)!

√
2l + 1

4π

(l + |m|)!
(l − |m|)!

. (35)

Note that the expression (32) for the wave function is valid only in the clas-
sically forbidden (under-the-barrier) region z < z1, where z1 = γ2/(2E) is the
turning point in which the quasiclassical momentum q0 = 0.

6.2 The wave function in the classically allowed region. The
tunnel ionization probability
Continuing Ψ to classically allowed region z > z1, we find (p0(z) = iq0(z) =√

2Ez − γ2)

Ψ̃ =ψ̃0eS̃ , (36)

S̃ =
ip30 − γ3

3E
+
Z

γ
log

4γ2z

(γ − ip0)2
− H2(γ + ip0)3

72c2E3

[
4

5
(γ + ip0)2 − 3γip0

]
− iHx(γ + ip0)2

12cE
− γ − ip0

4z
(x2 + y2), (37)

ψ̃0 =eiπ/4
√
γaAlm√
p0

(
γ − ip0

2γz

)|m|+1
[(

x− Hzp0
3cE

)2

+ y2

]|m|/2

× exp

im arctan
y

x− Hzp0
3cE

 . (38)

As it is known [1], the ionization probability (rate) is equal to

w =

∫
S

~jd~s, ~j =
i

2

(
Ψ̃~∇Ψ̃∗ − Ψ̃∗~∇Ψ̃

)
. (39)

Here S is the plane perpendicular to axis z and located at z > z1.
Substituting (36) into the formula (39) one can calculate the leading term of

the ionization rate

w =
a2(2l + 1)

2|m|+1|m|!γ|m|
(l + |m|)!
(l − |m|)!

(
2γ2

E

)2Z/γ−|m|−1

exp

(
−2γ3

3E
− H2γ5

45c2E3

)
. (40)

For s-states (l = m = 0) formula (40) coincides with the result [26] obtained
by ITM.
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When H → 0 the expression (40) is transformed into well-known result of
Smirnov and Chibisov [5] for ionization rate of an atom in electrostatic field.

For finding the tunnel ionization rate of one time charged negative ions (i.e.
H−, J− etc.), in (40) it is necessary to put Z = 0. If the particle is in weakly
bound states in the central field with small radius of action r0 then beyond this
radius the asymptotic behaviour of the unperturbed (E = 0) radial wave function
is of the form [1]

R(as)(R) = br−1e−γr, (41)

where b is determined by means of normalization. When r0 � 1 the behaviour
of the wave function within the potential well 0 6 r 6 r0 is inessential because
the particle stands basically beyond the well. This gives that b ≈

√
2γ and the

ionization rate of negative ion with the given energy E in the perpendicular electric
and magnetic fields is equal to

w =
2γ2(2l + 1)

|m|!
(l + |m|)!
(l − |m|)!

(
E

4γ3

)|m|+1

exp

(
−2γ3

3E
− H2γ5

45c2E3

)
. (42)

For s-states the formula (42) coincides with the result [26] obtained by ITM which
at H = 0 transforms into the famous result of Demkov and Drukarev [1, 8].

Summary

The method of quasiclassical localized states is elaborated to solve asymptotically
the Schrödinger equation with barrier-type potentials which do not permit a com-
plete separation of variables. It is based on physically clear ideas, applicable to
arbitrary states (not only s-states as ITM) and takes into account the Coulomb
interaction between the outgoing electron and atomic core during tunneling con-
sistently. This method has allowed us to obtain for the first time the wave function
and general analytical expressions for leading term of the asymptotic behaviour
of ionization rate of an arbitrary atom (and negative ion) in the perpendicular
constant uniform electric and magnetic fields whose intensities E and H are much
smaller than intensity of intra-atomic field but H/(cE) .

√
E� 1.

Our next tasks are generalizations of MQLS on other configurations of elec-
tric and magnetic fields (perpendicular fields for the case H/(cE) � 1, fields of
arbitrary orientations, ununiform fields, non-stationary fields, strong laser field of
various polarizations, etc.) and obtaining higher orders of ionization probability
expansions in powers of E and H in both the non-relativistic and relativistic cases.
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