-5-

УДК:546.36+546.863+546.24+546.14+546.15+548.736.462+548.736.442.6

¹Барчій І.Є., д.х.н., проф.; ¹Зубака О.В., к.х.н., доц.; ¹Стерчо І.П., к.х.н., доц.; ¹КоханО.П., к.х.н., доц.; ¹Погодін А.І., к.х.н., с.н.с.; ¹Переш Е.Ю., д.х.н., проф.; ²Федорчук А.О., д.х.н., проф.; ¹Шпеник О.О., к.ф.-м.н., доц.; ¹Молнар О.Б., к.ф.-м.н., доц.

ВЗАЄМНА СИСТЕМА $Cs_3Sb_2Br_9+Cs_2TeI_6 \leftrightarrow Cs_3Sb_2I_9+Cs_2TeBr_6$: ФАЗОВІ РІВНОВАГИ, ЕЛЕКТРОННА СТРУКТУРА ТА ОПТИЧНІ ВЛАСТИВОСТІ ПРОМІЖНИХ ФАЗ

¹Ужгородський національний університет, вул. Підгірна 46, м. Ужгород, Україна ²Львівський національний університет ветеринарної медицини та біотехнологій імені С.3. Ґжицького, вул. Пекарська 50, м. Львів, Україна e-mail: igor.barchiy@uzhnu.edu.ua

Стрімкий розвиток альтернативної «зеленої» енергетики стимулює пошук нових матеріалів із необхідними та прогнозованими властивостями. Ha сьогоднішній день спостерігається стійка тенденція розвитку засобів для вироблення електрики та тепла, що представляють альтернативу традиційним джерелам енергії, частка яких вже складає більше 25% від загального енергобалансу. Поряд із такими екологічним технологіями, біо-. вітрогенераторні, як геліо-. геотермальні, значна увага приділяється розвитку сонячної енергетики [1]. Одним із основних методів генерації сонячної енергії є використання фотогальванічних (PV) або сонячних елементів. Генерація сонячної енергії з використанням фотоелектричних технологій найбільш екологічним € джерелом, найменш матеріально витратним Розвиток елементів сонячних [2]. перетворювачів відбувається y трьох напрямках: неорганічні елементи – тонкі плівки, гетеропереходні плівки, моно- та органічні полікристалічні плівки; низькомолекулярні та полімерні сполуки; _ сенсибілізовані органічним гібридні барвником сонячні комірки (DSSC) та перовскітні матеріали [3,4]. Ефективними фотоелектричними перетворювачами £ гібридні органо-неорганічні галогеніди зі структурою перовскіту типу СН₃NH₃PbI₃, перетворення потужності ККЛ яких становить вище 20% [5,6]. Перевагами органо-неорганічних галогенідних перовскітів у порівнянні з неорганічними Si та GaAs матеріалами € ïχ хороша технологічність та невеликі витрати на виробництво [7-10]. Проте їх недоліками, які обмежують комерційне застосування, є внутрішня нестабільність матеріалу (за рахунок органічного катіону) та висока токсичність (за рахунок водорозчинного Pb²⁺). Усунення токсичності для зменшення негативного впливу на оточуюче середовище можливе шляхом заміщення у структурі $2Pb^{2+} \rightarrow M^{+} + M^{3+}, 2Pb^{2+} \rightarrow M^{4+}$ (число валентних електронів залишається сталим), підвищення стабільності перовскітних плівок досягається заміною іонів СН₃NH₃⁺ у катіонній підгратці іонами лужних металів [11-13]. В якості потенційних сполук для фотоелектроніки запропоновано використовувати Cs-, Rbвмісні галогенідні подвійні перовскіти типу вакантно-упорядковані A_2B1B2X_6 та перовскіти типу А₂В□Х₆ (де □ вакансія) [14-18].

Аналіз фізико-хімічної взаємодії y четверних системах Cs-Sb-Br-I та Cs-Te-Br-I (рис.1) показав, що в них утворюються проміжні бінарні галогеніди з конгруентним характером плавлення CsBr(I), SbBr₃(I₃), TeBr₄(I₄) [19,20]. На квазібінарних CsBr(I)- $SbBr_3(I_3)$ ta CsBr(I)перерізах TeBr₄(I₄) утворюються тернарні сполуки $Cs_3Sb_2Br_9(I_9)$, $Cs_2TeBr_6(I_6)$ [21,22]. Можливість утворення твердих розчинів в процесі сумісного катіон-катіонного Sb->Te та аніон-аніонного Br→I заміщень у взаємній системі Cs₃Sb₂Br₉+Cs₂TeI₆ \leftrightarrow Cs₃Sb₂I₉+Cs₂TeBr₆ згідно кількісних критеріїв

© Барчій І.Є., Зубака О.В., Стерчо І.П., КоханО.П., Погодін А.І., Переш Е.Ю., Федорчук А.О., Шпеник О.О., Молнар О.Б. DOI: 10.24144/2414-0260.2020.2.5-18

Б. Воздвіженського розглянуто [23]. В Показано, що формування необмежених рядів твердих розчинів (НРТР) можливе у системі Cs₂TeBr₆-Cs₂TeI₆. В інших бінарних системах в процесі аніон-аніонного замішення $Cs_3Sb_2Br_9$ – Cs_2TeBr_6 , $Cs_3Sb_2I_9 Cs_2TeI_6$, катіон-катіонного заміщення $Cs_3Sb_2Br_9-Cs_3Sb_2I_9$ та всередині взаємної системи $Cs_3Sb_2Br_9+Cs_2TeI_6$ \leftrightarrow $Cs_3Sb_2I_9+Cs_2TeBr_6$ можливе утворення протяжних областей граничних твердих розчинів.

Рис. 1. Утворення складних сполук у четверних системах Cs-Sb-Br-I та Cs-Te-Br-I.

Експериментальна частина

Одержання тернарних сполук $Cs_3Sb_2Br_9$, $Cs_3Sb_2I_9$, Cs_2TeBr_6 , Cs_2TeI_6 здійснювали з елементарних компонентів високої чистоти Sb. Te. Br. I (не менше 99.8 ваг.%) та попередньо очищених вакуумною плавкою та спрямованою кристалізацією бінарних галогенідів CsBr, CsI. Синтези проводили прямим двохтемпературним методом шляхом сплавлення стехіометричних кількостей компонентів у 0.13 Па вакуумованих ло спеціальних двохсекційних кварцових ампулах. Режими синтезу: швидкість нагрівання 20-30 К/годину до максимальної температури, яка перевищувала температури плавлення тернарних сполук на 50-60 К (948 К для Cs₃Sb₂Br₉, 926 К для Cs₃Sb₂I₉, 1068 К для Cs₂TeBr₆. 886 K лля Cs_2TeI_6). При максимальній температурі витримка 72 години. Нагрівання супроводжувалось обертанням кварцових ампул для кращої змішуваності компонентів. Охолодження до встановленої на основі подвійних діаграм стану температури гомогенізуючого відпалу 573 К проводили зi швидкістю 20-30 К/годину. Гомогенізацію здійснювали протягом 169-240 годин з наступним охолодженням до кімнатної температури в режимі виключеної печі. Лінійність процесів нагрівання та охолодження контролювали програмованим приладом РІФ-101.

Для вивчення характеру фізикохімічної взаємодії взаємній системі v $Cs_3Sb_2Br_9$ - $Cs_2TeI_6 \leftrightarrow Cs_3Sb_2I_9$ - Cs_2TeBr_6 було сплавів синтезовано 17 3 попередньо одержаних тернарних сполук 3 використанням прямого однотемпературного методу. Нагрівання сплавів до максимальної температури 1035 К проводили зі швидкістю 50 К/годину, витримка при максимальній температурі складала 48 годин, швидкість охолодження до температури гомогенізуючого відпалу 573 К складала 50 К/годину, витримка при температурі відпалу 240 годин подальшим 3 загартуванням сплавів у «льодяній воді».

Одержані тернарні галогеніди та сплави на ïχ основі досліджували диференційним термічним (комбінована хромель-алюмелева термопара, автоматичний запис даних на комп'ютер, швидкість нагрівання/охолодження 700 К/годину,

-6-

точність вимірювання температури ±5 К), рентгенівським фазовим (дифрактометр DRON 4-07, СиK_а випромінювання, Niфільтр, інтервал вимірювання $10 \le 2\theta \le 90$, крок $0.02 \ 2\theta$, час експозиції 2 сек), мікроструктурним (металографічний мікроскоп LomoMetam-R1) аналізами. Математичне моделювання фазових рівноваг базувалось на використанні симплексних методів. Кристалохімічний аналіз та візуалізацію електронної густини зв'язків проводили з використанням програмних комплексів UnitCell (метод Халланда-Редферна) [25], PowderCell 2.3 [26], Vesta 3 [27]. Ab initio квантово-хімічні розрахунки структури здійснювали електронної за допомогою програми Quantum Espresso (QE), який містить основні пакети для обчислень електронної структури В межах теорії функціоналу густини (DFT) [28,29]. Вивчення спектрів флуоресценції проводили на приладі Shimadzu RF-6000 серії.

Результати та їх обговорення

Φ ізико-хімічна взаємодія у взаємній системі $Cs_3Sb_2Br_9-Cs_2TeI_6 \leftrightarrow Cs_3Sb_2I_9-Cs_2TeBr_6$

Топологія фазових рівноваг у взаємній $Cs_3Sb_2Br_9-Cs_2TeI_6$ $Cs_3Sb_2I_9$ системі \leftrightarrow Cs₂TeBr₆ підтверджує взаємодію у бінарних. Відповідно до того, що у квазібінарній утворюються системі Cs₂TeBr₆–Cs₂TeI₆ неперервний ряд твердих розчинів Cs₂TeBr_{6-x}I_x [22], який розглядається як одна фаза змінного складу Cs2TeBr6-xIx (компонент взаємодії), досліджувану систему можна представити як квазіпотрійну Cs₃Sb₂Br₉- $Cs_3Sb_2I_9$ – $Cs_2TeBr_{6-x}I_x$ [24].

За результатами термічних, рентгенівських та мікроструктурних досліджень побудовано поверхню ліквідусу та її проекцію на концентраційний трикутник (рис.2), просторову діаграму стану (рис.3а), ізотермічний переріз при 573 К (рис.3б) квазіпотрійної системи Cs₃Sb₂Br₉-Cs₃Sb₂I₉-Cs₂TeBr_{6-x}I_x. Систему утворюють базисні квазібінарні системи Cs₃Sb₂Br₉-Cs₃Sb₂I₉ [30], $Cs_3Sb_2Br_9-Cs_2TeB_6$ [31], $Cs_3Sb_2I_9-Cs_2TeI_6$ [32] з евтектичним типом взаємодії та система Сs₂TeBr₆-Сs₂TeI₆ з утворенням НРТР з мінімумом на кривих ліквідусу та солідусу [22]. В системі утворюються тверді розчини: α- на снові Cs₂TeB_{6-x}I_x, β- та β'- на основі низько- та високотемпературних (*нтм*- та *втм*- відповідно) поліморфних модифікацій сполуки Cs₃Sb₂Br₉, γ- на основі Cs₃Sb₃I₉.

У вершинах тетрагональної призми точки A, B, C, D відповідають температурам плавлення сполук $Cs_3Sb_2Br_9$ (864 K), Cs_2TeBr_6 (1019 K), Cs_2TeI_6 (806 K), $Cs_3Sb_2I_9$ (876 K). Завдяки поліморфному перетворенню сполуки $Cs_3Sb_2Br_9$ у квазіпотрійній системі при 720 К на дифрактограмах сплавів при 573 К відсутні рефлекси, які відносяться до високотемпературної модифікації (β '-фаза).

Система $Cs_3Sb_2Br_9$ $Cs_3Sb_2I_9$ характеризується $Cs_2TeBr_{6-x}I_x$ (рис.2) проходженням потрійного нонваріантного евтектичного процесу $L \leftrightarrow \alpha + \beta' + \gamma$ (точка *E*: 737 К, 26 мол.% Cs₃Sb₂Br₉, 32 мол.% Cs₃Sb₂I₉, 19 мол.% Cs₂TeB₆, мол.% Cs₂TeI₆). Точки *e1* (810 К, 47 мол.% Cs₃Sb₂Br₉, 53 мол.% Cs₃Sb₂I₉), e2 (830 К, 67 мол.% Cs₃Sb₂Br₉, 36 мол.% Cs₂TeB₆), *ез* (772 К, 20 мол.% Cs₃Sb₂I₉, 80 мол.% Cs_2TeI_6) відповідають нонваріантним евтектичним процесам у квазібінарних системах, *min* – точці мінімуму на лініях ліквідусу та солідусу α-НРТР (740 К, 45 мол.% Сs₂TeBr₆, 55 мол. Сs₂TeI₆). Ліквідус системи складається з полів первинних кристалізацій: α-кристалів (В-е2-E-e3-C-min-B), β'-кристалів (A-e1-E-e2-A) та ү-кристалів (*D*-*e*1-*E*-*e*3-*D*), які поділені між собою лініями моноваріантних рівноваг *e1–Е* (процес $L \leftrightarrow \beta' + \gamma$), е2–Е (процес $L \leftrightarrow \alpha + \beta'$), е3–Е (процес $L \leftrightarrow \alpha + \gamma$). У підсолідусній частині системи (рис.3а) при 737 K відбуваються нонваріантний евтектичний процес L↔α+β'+γ (евтектичний трикутник *а1-а2-а3*), на основі поліморфного перетворення сполуки Cs₃Sb₂Br₉ при 710 К евтектоїдний нонваріантний процес $\beta' \leftrightarrow \alpha + \beta + \gamma$ (евтектоїдний трикутник *b1-b2b3*). Утворення нових складних сполук не зафіксовано (рис.3б).

Будова октаедричних комплексних іонів $[SbX_6]^{3-}(X-Br, I)$

Оцінка кристалографічної стабільності структури перовскітних матеріалів у відповідності до правила Гольдшмідта (у межах ідеалізованої моделі твердої сфери) показала, що фактор толерантності t(0,86 < t <1.0) для сполук типу Cs₃Sb₂Br₉(I)₉ (відповідно 0.9983, 0.9747) вищий, ніж для сполук типу $Cs_2TeBr_6(I)_6$ (відповідно 0.9267, 0.9101), значення октаедричного фактору μ ($\mu > 0.41$) навпаки вищий для сполук типу Cs_2TeX_6 [23]. Це зумовлено формуванням стабільних фаз за участю октаедричних

комплексних іонів $[SbX_6]^{3-}$ та $[TeX_6]^{2-}$. Будову комплексного аніону $[TeX_6]^{2-}$ нами представлено в [33].

Рис. 2. Поверхня ліквідусу системи Cs₃Sb₂Br₉– Cs₃Sb₂I₉–Cs₂TeBr_{6-x}I_x та її проекція на концентраційний трикутник.

 $Cs_3Sb_2Br_9-Cs_3Sb_2I_9-Cs_2TeBr_{6-x}I_x$.

Розглянемо у межах теорії кристалічного поля лігандів (ТКП) та методу молекулярних орбіталей (МО) будову октаедричних комплексних іонів $[SbX_6]^{3-}$ (Х – Вг, І), в яких виявлено лише σ -зв'язки. Перекриття атомних орбіталей центрального іону Sb^{3+} та шести лігандів Х⁻ сприяє

виникненню серії МО (рис.4). У відповідності до ТКП ліганди слабкого поля, до яких відносяться іони Br^- , Γ , формують зовнішньо-орбітальні октаедричні комплекси з sp^3d^2 гібридизацією центрального іону метала [34].

У комплексному аніоні $[SbX_6]^{3-}$ (X – галоген) проявляється sp^3d^2 гібридизації електронних орбіталей центрального атома Sb (4d орбіталі іона Sb³⁺ не беруть участі в комплексоутворенні). У процесі реалізації іона Sb³⁺ відбувається відрив $5p^3$ -електронів. На 5*s*-рівні залишаються два електрони, на 4d-рівні – десять електронів. Три 5d-орбіталі (d_{XZ}, d_{XY}, d_{YZ}) ізольованого іона Sb³⁺ не беруть участь в утворенні зв'язків і формують три t_{2g} незв'язувальні молекулярні орбіталі. Утворення серій зв'язувальних i розпушуючих молекулярних орбіталей у комплексі [SbX₆]³⁻ відбувається за рахунок перекриття двох $5d - (d_{72}, d_{x^2-y^2})$, трьох 5p - iоднієї 5*s*-орбіталей з *p*-орбіталями іонів Оскільки (рис.4). 5*d*-орбіталі галогену зовнішнього енергетичного рівня знаходяться на меншій відстані від іонів лігандів, ніж 4dорбіталі передостаннього рівня, то це призводить до більш щільного перекриття d_Z2 і $d_{X^2-Y^2}$ -орбіталей з *p*-орбіталями іонів галогену з утворенням молекулярних двох зв'язувальних e_g та двох розпушуючих e_g^* .

ис. 4. Схема розподплу електронив на молекулярних орбіталях комплексного аніону $[SbX_6]^{3-}$ (X – галоген).

Властивості сполук типу Cs2TeX₆ і Cs₃Sb₂X₉ залежать від ступеня перекривання орбіталей центрального атому (Sb, Te) комплексоутворювача та лігандів (галогенами). Відомо, що ступінь окиснення металу-комплексоутворювача впливає на щільність перекриття його гібридних орбіталей з орбіталями ліганду. Іон Те⁴⁺ з більш високим ступенем окиснення ніж Sb³⁺ за рахунок більшої різниці зарядів утворює Заповнена двома спареними електронами 5sорбіталь та три вільні 5р-орбіталі разом з *р*–орбіталями іонів чотирма галогену формують чотири зв'язувальні (одну *a*_{1g}, три t_{1u}) та чотири розпушуючі (одну a_{1g}^* , три t_{1u}^*) молекулярні орбіталі. Із 14 валентних електронів (2 електронів іону Sb³⁺ та 12 електронів лігандів – іонів галогену X⁻) 12 електронів заповнюють зв'язувальні а10 t_{1u} , e_g , 2 електрони – незв'язувальні t_{2g} молекулярні орбіталі (у відповідності до правила Хунда по одному неспареному електрону на орбіталі). Розпушуючі $a_{1g}^*, t_{1u}^*,$ *e*^{*s*} орбіталі залишаються незаповненими. Утворюється високоспіновий зовнішньоорбітальний октаедричний комплексний іон $[SbX_6]^{3-}$. Відсутність участі *d*-електронів Sb в зв'язків утворенні підтверджується результатами квантово-механічних розрахунків DOS-структури (густини станів) - участь в утворенні рівнів валентної зони та зони провідності беруть тільки s- та pелектрони Sb (рис.5).

Рис. 5. Парціальна густина станів (pdos) *s*-, *p*електронів атому Sb в сполуці Cs₃Sb₂Br₉.

менш віддалені до атомів галогену dорбіталі, тому зв'язки Те–Х більш щільні по відношенню до Sb–Х. Також, галогенід-іони ближче підходять до меншого за розмірами і більш високо зарядженому іону Te⁴⁺ (радіуси іонів в кристалах r_{ion} Te⁴⁺ = 0.56 Å, r_{ion} Sb³⁺ = 0.60 Å [35]) і більш сильніше взаємодіють з його d-орбіталями. Це добре узгоджується з результатами кристалоструктурних розрахунків сполук -10-

типу Cs₂TeX₆ і Cs₃Sb₂X₉. Відстані Sb–Br(I) дорівнюють 2.881÷2.836 Å та 2.876÷3.208 Å відповідно, що більші за аналогічні Te–Br(I) – 2.695 Å та 2.730 Å відповідно [23]. На рис.6 представлені моделі розподілу електронної густини в сполуках, які характеризують тип хімічних зв'язків (розрахунки та візуалізація здійснені з використанням програми Vesta 3 [27]). Зв'язки Sb–Br(I) більш поляризовані ніж Te–Br(I), що вказує на посилення іонної компоненти хімічного зв'язку при переходах Te→Sb.

Електронна структура та оптичні властивості сполук Cs₂TeX₆ і Cs₃Sb₂X₉

Ab initio квантово-хімічні розрахунки електронної структури сполук Cs_2TeX_6 і $Cs_3Sb_2X_9$ здійснювали DFT методом (теорія функціоналу густини) з використанням програмного пакету Quantum Espresso.

Геометричну оптимізацію структури сполук проводили на основі ітераційного методу самоузгодженого поля (SCF) на основі алгоритму Брюдена – Флетчера – Гольдфарба - Шанно (BFGS). Зонну структуру сполук Сs₃Sb₂Br₉(I)₉ та твердого $Cs_2TeBr_6(I)_6$, розчину складу Cs₂TeBr₃I₃ розраховували по лініях, що з'єднують високі точки симетрії першої зони Бріллюена (БЗ) (рис.7). На теоретичних обчислень основі зонної структури загальної густини станів (DOS) (рис.8-9) було визначено криві розподілу енергії електронних станів у валентній зоні (ВЗ) та зоні провідності (ЗП) (рис.10). Результати DFT розрахунків (напівпровідниковий енергія тип. кристалічної комірки, енергія на атом. енергія Фермі, максимум валентної зони, мінімум зони провідності, ширина забороненої зони) представлені в таблиці 1.

Рис. 6. Модель розподілу електронної густини у сполуках $Cs_3Sb_2Br_9(I_9)$, $Cs_2TeBr_6(I_6)$ (роздільна здатність 0.05 Å).

Рис. 7. Перша зона Бріллюена для гранецентрованої кубічної (FCC) (а) та гексагональної (HEX) (б) комірок. [Setyawan and Curtarolo, Doi: 10.1066/j.commatsci.2020.05.010]

Сполука	Н/п тип	E _{кр} , Ry	E/ат, Ry	$E_{\Phi e p M i}, e B$	B3 _{max} , eB	$3\Pi_{\min}, eB$	E _g , eB
Cs ₂ TeBr ₆	непрямозон.	-179.66	-19.96	1.35	-1.10	1.14	2.24
$Cs_2TeBr_3I_3$	непрямозон.	-168.44	-16.50	2.67	-0.70	0.73	1.43
Cs ₂ TeI ₆	непрямозон.	-157.21	-17.47	1.60	-0.69	0.66	1.35
Cs ₃ Sb ₂ Br ₉	прямозон.	-45.51	-3.21	2.04	-0.88	1.30	2.18
Cs ₃ Sb ₂ I ₉	непрямозон.	-74.76	-5.29	1.93	-0.95	0.92	1.87

Таблиця 1. Характеристичні параметри електронної структури сполук Cs₂TeX₆ та Cs₃Sb₂X₉

Рис. 9. Результати збіжності методом SCF (а), геометричної оптимізації (б,в), загальної та парціальної густини станів (DOS) (г) твердого розчину Cs₂TeBr₃I₃.

-12-

Енергія кристалічної гратки (Екр) для сполук типу Cs₂TeX₆ більша по відношенню до сполук типу Cs₃Sb₂X₉, що пояснюється більшою ковалентністю зв'язків комплексних ioнах $[TeX_6]^{2-}$ ніж у $[SbX_6]^{3-}$ (рис.6). Адитивна зміна $E_{\kappa p}$ у напрямку $Cs_2TeBr_6 \rightarrow$ $Cs_2TeBr_3I_3 \rightarrow Cs_2TeI_6$ добре узгоджується із утворенням неперервних рядів твердих розчинів $Cs_2TeBr_{6-x}I_x$ ($0 \le x \le 6$). Для характеристики походження рівнів досліджуваних енергетичних у сполуках були розраховані загальна та парціальна густина станів (DOS). Як бачимо з рис.8а-б для сполук типу Cs₂TeX₆ верх валентної зони (ВЗ) утворюють Te 5s, Br 4p (або I 5p) стани, в той час як дно зони провідності (ЗП) утворюють Те 5р стан для Cs_2TeBr_6 , Te 5*p* та I 5*d* для Cs_2TeI_6 . Оптична заборонена зона (E_g) формується переходами

Br 4p (I 5p) \rightarrow Te 5p affor Te $5s \rightarrow$ Te 5p. Y сполуці Сs₂TeBr₆ для Цезію 5р стан розташований при -14.8 eB, -13.6 eB, -2.9 eB, -2.3 eB, 6s стан при 3.7 eB, 4.4 eB, 6.5 eB, 5d стан при 4.5 ÷ 6.5 eB (серія піків); для Телуру 5s стан при -14.5 eB, -11.1 eB, -1.8 eB та -1.2 eB, 4d стан (d_Z2 i d_X2-_Y2) при -13.6 eB, 4d стан (d_{XZ} , d_{XY} , d_{YZ}) при $-3.5 \div -2$ eB (серія піків), 5*p* стан при -13.6 eB, -4.9 eB, 1.2 ÷ -2.2 eB (серія піків), 5d стан (d_{Z^2} і $d_{X^2-Y^2}$) при 4.5 ÷ 6.0 eB (серія піків), 5d стан (d_{XZ} , d_{XY} , d_{YZ}) при 5.0 ÷ 6.7 eB (серія піків); для Брому 4s стан при -13.6 eB та -11.1 eB, 4p стан при -2.9 ÷ -1.3 eB (серія піків) та при $1.1 \div 2.1$ eB. У сполуці Cs₂TeI₆ для Цезію 5р стан розташований при -13.4 eB, -12.0 eB та -7.5 eB, 6s стан при 3.2 eB та 4.4 eB, 5d стан при 4.0 ÷ -6.2 eB (серія піків); для Телуру 5*s* стан при –13.5 еВ, -10.5 eB та -1.2 eB, 4d стан (d_Z2 i d_X2_{-Y}2) при -11.7 eB, 4d стан (d_{XZ} , d_{XY} , d_{YZ}) при -2.5 ÷ -2.0 eB (серія піків), 5р стан при 0.7 ÷ 1.8 eB (серія піків), 5d стан при 4.0 ÷ 6.2 eB (серія піків); для Йоду 5s стан при –12.5 eB та –10.5 eB, 4d стан (d_{Z^2} i $d_{X^2-Y^2}$) при –4.5 eB, 4d стан (d_{XZ}, d_{XY}, d_{YZ}) при –1.9 eB, -1.1 eB, 5p стан при -2.5 ÷ -0.7 eB (серія піків) та при $0.6 \div 1.2$ eB, 5d стан (d_{Z^2} і $d_{X^2-Y^2}$) при 0.7 ÷ 1.8 eB, 5d стан (d_{XZ} , d_{XY} , d_{YZ}) при 4.0 ÷ 5.8 eB (серія піків).

Для сполук типу $Cs_3Sb_2X_9$ верх B3 утворюють Br 4p (або I 5p) стани, дно ЗП

утворюють Sb 5p стан для Cs₃Sb₂Br₉, Sb 5p та I 5d для Cs₃Sb₂I₉ (рис.8в-г). Оптична E_{g} формується відповідно переходами Br $4p \rightarrow \text{Sb } 5p$ I $5p \rightarrow \text{Sb} 5p$ (або та Sb $5s \rightarrow$ Sb 5p). У сполуці Cs₃Sb₂Br₉ для Цезію 5p стан відповідає -14.8 eB, -14.3 eB, -9.7 eB, -9.3 eB, -4.3 eB, -3.8 eB, 6s стан 2.8 eB, 3.7 eB, $4.3 \div 5.2$ eB, $5d \ 1.3 \div 1.9$ eB (d_{72} і $d_{X^2-Y^2}$), 4.1 ÷ 5.8 eB (d_{XZ} , d_{XY} , d_{YZ}); для Стибію 5s стан при -14.9 eB, -9.9 ÷ -9.5 eB, -2.3 eB та –1.5 eB, 5p стан при 0.9 ÷ 2.7 eB (4 піки); для Брому 4s стан -14.8 eB та -14.3 eB, 4p стан при -5.2÷-1.4 eB (серія піків) та $1.0 \div 2.7$ eB. У сполуці Cs₂TeI₆ для Цезію 5*р* стан розташований при -13.3 ÷ -12.5 eB, -4.1 eB та -2.7÷-1.7 eB, 6s стан при -2.7 ÷ -1.7 eB, 1.2 eB. 1.8 eB, 2.6 ÷ 5.0 eB, 5d стан при 1.7 eB, 2.1 eB та 3.4 ÷ 4.8 eB (серія піків); для Стибію 5s стан при -13.2 eB, -12.5 eB, -1.4 eB та -0.9 eB, 5p стан при 1.2 eB, 1.8 eB; для Йоду 5s стан при $-13.3 \div -12.5$ eB, 4d стан (d_Z² i d_X²-_Y²) при -4.3 eB, 4d стан (d_{XZ}, d_{XY}, d_{YZ}) при -2.8 eB, 5p стан при -4.7 ÷ -3.7 eB, -2.5 ÷ -0.7 eB (серія піків), 5d стан (d_{Z^2} і $d_{X^2-Y^2}$) при 1.2 ÷ 1.9 eB, 5d стан (d_{XZ} , d_{XY} , d_{YZ}) при 3.4 ÷ 4.8 eB (серія піків).

Як бачимо з рис.10 розрахункові забороненої значення ширини зони становлять $E_g = 2.24$ eB (Cs₂TeBr₆), $E_g =$ 1.43 eB (Cs₂TeI₆), $E_g = 2.18$ eB (Cs₃Sb₂Br₉), $E_{\rm g} = 1.87$ eB (Cs₃Sb₂I₉) ta $E_{\rm g} = 1.35$ eB (Cs₂TeBr₃I₃). При переході Br→I у сполукахспостерігається аналогах зменшення величини Eg, що пов'язано із зростанням металічної складової хімічного зв'язку. Також, величина енергії Фермі (E_{Fermi}) для телурвмісних сполук більша по відношенню до стибійвмісних. Для всіх досліджуваних перовскітних сполук (окрім $Cs_3Sb_2Br_9$) максимум валентної зони (ВЗ_{тах}) та мінімум зони провідності (ЗП_{тіп}) розташовані в різних точках зони Брюллена (рис.10а,б,г,д), що відносить ïΧ непрямозонних до напівпровідників. Для сполуки Cs₃Sb₂Br₉ B3_{max} максимум мінімум та $3\Pi_{\min}$ співпадають, що вказує на прямозонний тип напівпровідника (рис.10в).

Результати вивчення спектрів флуоресценції (RF) сполук $Cs_3Sb_2Br_9(I_9)$ та $Cs_2TeBr_6(I_6)$ (рис.11) показали, що максимальні піки в зоні поглинання відповідають 395±5 нм та 468±5 нм (УФ область), зона реадсорбції припадає на видиму частину спектра, максимуми спектрів випромінювання відповідають 730±5 нм та 877±5 нм (ІЧ-область). Максимальне співвідношення між інтенсивностями

спектрів випромінювання та поглинання I_{rad}/I_{ab} складає 3.61 для Cs₃Sb₂Br₉ та 3.31 для Cs₃Sb₂I₉. Для сполук Cs₂TeBr₆(I₆) відношення дещо менші за значеннями і становлять $I_{rad}/I_{ab} = 1.2 \div 2.26$.

-13-

твердого розчину $Cs_2TeBr_3I_3$ (д).

Рис. 11. RF-спектри сполук $Cs_3Sb_2Br_9(I_9)$ та $Cs_2TeBr_6(I_6)$.

-14-

Проведені оптичні дослідження вказують на можливість використання перовскітних сполук типу Cs₃Sb₂X₉ як перспективних функціональних матеріалів для елементів сонячних панелей

Висновки

Класичними методами фізикохімічного аналізу (ДТА, РФА, МСА) із залученням математичного моделювання вивчено фазові рівноваги у взаємній системі Cs₃Sb₂Br₉-Cs₂TeI₆ \leftrightarrow $Cs_3Sb_2I_9-Cs_2TeBr_6$. Показано, що завдяки утворенню неперервних рядів твердих розчинів у системі Cs₂TeBr₆–Cs₂TeI₆ досліджувана взаємна система веде себе як квазіпотрійна $Cs_3Sb_2Br_9 - Cs_3Sb_2I_9 - Cs_2TeBr_{6-x}I_x$ (відбувається нонваріантний евтектичний процес $L \leftrightarrow \alpha + \beta' + \gamma$, температура 737 K, склад 26 мол.% Cs₃Sb₂Br₉, 32 мол.% $Cs_3Sb_2I_9$, 19 мол.% Cs₂TeB₆, мол.% Cs₂TeI₆. З позицій ТКП та МО розглянуто будову комплексного октаедричного іону [SbX₆]³⁻ (Х – галоген), який характеризується sp^3d^2 гібридизацією електронних орбіталей центрального атома Sb. Ab initio квантово-хімічні розрахунки електронної структури з використанням метода теорії функціоналу густини (DFT) показали, що всі досліджувані сполуки (окрім Cs₃Sb₂Br₉) відносяться до непрямо зонних напівпровідників з шириною забороненої зони $E_g = 2.24$ eB (Cs₂TeBr₆), $E_g = 1.43$ eB $(Cs_2TeI_6), E_g = 2.18 \text{ eB} (Cs_3Sb_2Br_9), E_g =$ 1.87 eB (Cs₃Sb₂I₉) та $E_{g} = 1.35$ eB (Cs₂TeBr₃I₃). Оптичні дослідження спектрів флуоресценції перовскітних сполук типу Cs₃Sb₂X₉ вказують на можливість використання ïΧ ЯК перспективних функціональних матеріалів для елементів сонячних панелей.

Список використаних джерел

1. Мисак Й. С., Озарків І. М., Адамовський М. Г., Максимів В. М., Туниця Т. Ю. Нетрадиційні джерела енергії: теорія і практика. Львів: *НВФ* «Укр. технології», 2013. С. 356.

2. Jeon N.J., Noh J.H., Yang W.S., Kim Y.C., Ryu S., Seo J., Seok S.I. Compositional engineering of perovskite materials for high-performance solar cells. *Nature*. 2015, 517(7535). 476–480. Doi: 10.1038/nature14133.

3. Vidyasagar C.C., Munoz Flores B.M., Jimenez Perez V.M. Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics. *Nano-Micro Lett.* 2018, 10, 68. Doi: 10.1007/s40820-018-0221-5.

4. Bohee Hwang, Chungwan Gu, Donghwa Lee, Jang-Sik Lee. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory. *Sci. Rep*, 2017, 7(1), 43794. Doi: 10.1038/srep43794.

5. Bi D., Xu B., Gao P., Sun L., Grätzel M., Hagfeldt A. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material. *Nano Energy*. 2016, 23, 138–144. Doi: 10.1038/srep42564.

6. Kulbak M., Cahen D., Hodes G. How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr₃ Cells. *J. Phys. Chem. Lett.* 2015, 6(13), 2452–2456. Doi: 10.1021/acs.jpclett.5b00968.

7. McMeekin D.P., Sadoughi G., Rehman W., Eperon G.E., Saliba M., Hörantner M.T., Haghighirad A., Sakai N., Korte L., Rech B., Johnston M.B. Herz L.M., Snaith H.J A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. *Science*. 2016, 351(6269), 151–155. Doi: 10.1126/science.aad5845.

8. Jacobsson T.J., Pazoki M., Hagfeldt, A., Edvinsson T. Goldschmidt's Rules and Strontium Replacement in Lead Halogen Perovskite Solar Cells: Theory and Preliminary Experiments on CH₃NH₃SrI₃. *J. Phys.Chem. C.* 2015, 119(46), 25673–25683. Doi: 10.1021/acs.jpcc.5b06436.

9 Mosconi E., Amat A. Nazeeruddin Md. K., Gratzel M., De Angelis F. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. *J. Phys. Chem. C.* 2013, 117(27), 13902–13913. Doi: 10.1021/jp4048659.

10. Niu G., Guo X., Wang L. Review of recent progress in chemical stability of perovskite solar cells. *J. Mater. Chem. A.* 2015, 3(17), 8970–8980. Doi: 10.1039/C4TA04994B.

11. Sutton R.J., Eperon G.E., Miranda L., Parrott E.S., Kamino B.A., Patel J.B., Hörantner M.T., Johnston M.B., Haghighirad A.A., Moore D.T., Snaith H.J. Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. *Adv. Energy Mater.* 2016, 6(8), 1502458. Doi: 10.1002/aenm.201502458.

12. Filip M.R., Giustino F. Computational Screening of Homovalent Lead Substitution in Organic-Inorganic Halide Perovskites. J. Phys. Chem. C. 2016, 120(1), 166–173. Doi: 10.1021/acs.jpcc.5b11845.

13. Körbel S., Marques M.A., Botti S. Stability and electronic properties of new inorganic perovskites from high-throughput *ab initio* calculations. *J. Mater. Chem.* C.4 2016, (15), 3157–3167. Doi: 10.1039/C5TC04172D.

14. Li Z., Yang M., Park J.-S., Wei S.-H., Berry J.J. Zhu K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. *Chem. Mater.* 2016, 28(1), 284–292. Doi: 10.1021/acs.chemmater.5b04107.

15. Yi C., Luo J., Meloni S., Boziki A., Ashari-Astani N., Grätzel C., Zakeeruddin S. M., Röthlisberger U., Grätzel M. Entropic stabilization of mixed A-cation ABX₃ metal halide perovskites for high performance perovskite solar cells. *Energy Environ. Sci.* 2016, 9(2), 656–662. Doi: 10.1039/C5EE03255E.

16. A.E. Maughan A.E., Ganose A.M., Bordelon M.M., Miller E.M., Scanlon D.O., Neilson J.R. Defect Tolerance to Intolerance in the Vacancy-Ordered Double Perovskite Semiconductors Cs_2SnI_6 and Cs_2TeI_6 . J. Am. Chem. Soc. 2016, 138, 8453–8464. Doi: 10.1021/jacs.6b03207.

17. Volonakis G., Haghighirad A.A., Milot R.L., Sio W.H., Filip M.R., Wenger B., Johnston M.B., Herz L.M., Snaith H.J., Giustino F. Cs₂InAgCl₆: A New Lead-Free Halide Double Perovskite with Direct Band Gap. *J. Phys. Chem. Lett.* 2017, 8, 772–778. Doi: 10.1021/acs.jpclett.6b02682.

18. Saidaminov M.I., Abdelhady A.L., Murali B., Alarousu E., Burlakov V.M., Peng W., Dursun I., Wang L.F., He Y., Maculan G., Goriely A., Wu T., Mohammed O.F., Bakr O.M. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. *Nature Commun.* 2015, 6, 7586–7592. Doi: 10.1038/ncomms8586.

19. Зырянов В.Г., Петров Е.С. Диаграммы состояния систем CsI-SbI₃ и RbI-SbI₃. *Изв. АН СССР. Сер. хим. наук.* 1974, B2(4), 109–111.

20. Кун С.В., Переш Е.Ю., Лазарев В.Б., Кун А.В. Фазовые равновесия в системах CsBr-Bi(Sb)Br₃, получение и свойства образующихся соединений. *Неорган. матер.* 1991, 27(3), 611–615.

21. Peresh E.Yu., Zubaka O.V., Sidei V.I., Barchii I.E., Kun S.V., Kun A.V. Preparation, Stability Regions, and Properties of M_2 TeI₆ (M = Rb, Cs, Tl) Crystals. *Inorgan. Mater.* 2002, 38, 859–863. Doi: 10.1023/A:1019747432003.

22. Peresh E.Yu., Sidei V.I., Zubaka O.V. Phase relations in the systems A_2TeI_6 - TI_2TeI_6 (A = K, Rb, Cs) and A_2TeBr_6 - A_2TeI_6 (A = K, Rb, Cs, Tl(I)). *Inorgan. Mater.* 2005, 41, 298–302. Doi: 10.1007/s10789-005-0127-8.

23. Stercho I.P., Zubaka O.V., Barchiy I.E., Peresh E.Yu., Kokhan O.P., Pogodin A.I. Analysis of changes chemical bonding type and interaction in the system based on perovskites compounds $Cs_3Sb_2Br_9(I_9)$ and $Cs_2TeBr_6(I_6)$. *Sci. Bull. Uzhh. Univ. Ser. Chem.* 2017, 1(37), 48–54.

24. Stercho I., Pogodin A., Kokhan O., Barchiy I., Fedorchuk A., Kityk I., Piasecki M. Interaction in the

system based on the $Cs_3Sb_2Br_9(I_9)$ and $Cs_2TeBr_6(I_6)$ compounds. *Chem. Met. Alloys.* 2017, 10 (3/4), 113–119.

25. Holland T., Redfern S. Unit cell refinement from powder diffraction data: the use of regression diagnostics. *Mineral. Mag.* 1997, 61, 65–67. Doi: 10.1180/minmag.1997.061.404.07.

26. Kraus W.J., Nolze G. Powder Cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. *Appl. Crystallogr.* 1996, 29(3), 301– 303. Doi: 10.1107/S0021889895014920.

27. Momma K., Izumi F. VESTA 3 for threedimentional visualization of crystal and morphology data. *J. Appl. Cryst.* 2011, 44, 1272–1276. Doi: 10.1107/S0021889811038970.

28. Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. *J. Phys.: Condensed Matter.* 2017, 29(46), 465901–465912. Doi: 10.1088/1361-648X/aa8f79.

29. Dal Corso A. A Pseudopotential Plane Waves Program (PWSCF) and some Case Studies. *Springer, Berlin, Heidelberg.* 1996, 67, 155–178. Doi: 10.1007/978-3-642-61478-1_10.

30. Peresh E.Yu., Lazarev V.B., Kun S.V., Barchiy I.E., Kun A.V., Sidey V.I. Complex halogenides $A_3B_2C_9$ (A - Rb,Cs; B - Sb,Bi; C - Br,I) type and solid solutions based on they. *Inorgan. Mater.* 1997, 33(4), 431–435.

31. Stercho I.P., Barchii I.E., Malakhovskaya T.A., Pogodin A.I., Sidei V.I., Solomon A.M., Peresh E.Yu. Physicochemical interaction in the $Cs_3Sb_2Br_9$ – Cs_2TeBr_6 system: the state diagram and the nature of the interaction of components. *Rus. J. Inorg. Chem.* 2015, 60(2), 225–229. Doi: 10.1134/S0036023615020163.

32. Stercho I.P., Barchiy I.E., Peresh E.Yu., Sidey V.I., Malakhovska T.A. Phase diagrams of the $Cs_3Sb_2I_9-Cs_2TeI_6$ and $Rb_3Sb_2I_9-Rb_2TeI_6$ systems. *Chem. Met. Alloys.* 2013, 6, 192–195.

33. Barchiy I., Zubaka O., Peresh E., Sidey V., Kokhan O., Stercho I., Fedorchuk A., Piasecki M. Reciprocal K₂TeI₆ + Rb₂TeBr₆ \leftrightarrow K₂TeBr₆ + Rb₂TeI₆ system: phase relation, crystal and electronic structures. *Chem. Met. Alloys.* 2020, 13, 14–22.

34. Скопенко В.В., Савранський Л.І. Координаційна хімія. Київ: *Либідь*. 2004. С. 424.

35. Бацанов С.С. Экспериментальные основы структурной химии. Москва: Издательство стандартов, 1986. С. 240.

Стаття надійшла до редакції: 10.08.2020.

-16-

RECIPROCAL Cs₃Sb₂Br₉+Cs₂TeI₆ ↔ Cs₃Sb₂I₉+Cs₂TeBr₆ SYSTEM: PHASE EQUILIBRIA, ELECTRONIC STRUCTURE AND OPTICAL PROPERTIES OF INTERMEDIATES COMPOUNDS

¹Barchiy I., ¹Zubaka O., ¹Stercho I., ¹Kokhan A., ¹Pogodin A., ¹Peresh E., ²Fedorchuk A., ¹Shpenyk O., ¹Molnar O.

¹Uzhhorod National University, Pidgirna St., 46, 88000 Uzhgorod, Ukraine ²Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Pekarska St., 50, 79010 Lviv, Ukraine e-mail: igor.barchiy@uzhnu.edu.ua

Cs- and Rb-containing halide double perovskites of A_2B1B2X_6 type and vacant-ordered perovskites of $A_2B\square X_6$ type (where \square vacancy) are potential compounds for photovoltaic materials.

Phase equilibria in the reciprocal $Cs_3Sb_2Br_9-Cs_2TeI_6 \leftrightarrow Cs_3Sb_2I_9-Cs_2TeBr_6$ system were studied by methods of physicochemical analysis (DTA, X-ray, MSA) with the involvement of mathematical modeling.

The Cs₃Sb₂Br₉, Cs₃Sb₂I₉, Cs₂TeBr₆, Cs₂TeI₆ ternary compounds melts congruently at 864 K, 1019 K, 806 K, 876 K, respectively. The compound Cs₃Sb₂Br₉ has a polymorphic transformation at 791 K. Limited solid solutions are formed in the Cs₃Sb₂Br₉–Cs₂TeI₆ \leftrightarrow Cs₃Sb₂I₉–Cs₂TeBr₆ system: α based on Cs₂TeBr_{6-x}I_x, β and β ' based on the low- and high-temperature modification of Cs₃Sb₂Br₉, respectively, and γ based on Cs₃Sb₂I₉. Due to the formation an unlimited solid solution in the Cs₂TeB₆–Cs₂TeI₆ system (can be considered as one component Cs₂TeBr_{6-x}I_x) the investigated system may be presented as the Cs₃Sb₂Br₉–Cs₃Sb₂I₉–Cs₂TeBr_{6-x}I_x quasiternary system (characterized be eutectic invariant process L $\leftrightarrow \alpha+\beta'+\gamma$ at 737 K, 26 mol.% Cs₃Sb₂Br₉, 32 mol.% Cs₃Sb₂I₉, 19 mol.% Cs₂TeB₆, mol.% Cs₂TeI₆).

Consider the structure of octahedral $[SbX_6]^{3-}$ complex ions within ligand field theory (LFT) and the molecular orbital (MO) method are detected. The structure of octahedral $[SbX_6]^{3-}$ complex ions are characterized by sp^3d^2 hybridization. *Ab initio* quantum-mechanical calculations of the electronic structure by DFT method were showed that all investigated compounds (except Cs₃Sb₂Br₉) belongs to indirect type semiconductors with band gaps $E_g = 2.24$ eV (Cs₂TeBr₆), $E_g = 1.43$ eV (Cs₂TeI₆), $E_g = 2.18$ eV (direct type semiconductor Cs₃Sb₂Br₉), $E_g = 1.87$ eV (Cs₃Sb₂I₉) and $E_g = 1.35$ eV (Cs₂TeBr₃I₃).

Optical studies of the fluorescence spectra of perovskite compounds of the $Cs_3Sb_2X_9$ type indicate the possibility of their use as promising functional photovoltaic materials for solar cell elements.

Keywords: halide perovskite; phase diagram; Ab initio calculations; electronic structure; RF spectra.

References

1. Mysak Y. S., Ozarkiv I. M., Adamovskyi M. H., Maksymiv V. M., Tunytsia T. Yu. Netradytsiini dzherela enerhii: teoriia i praktyka. Lviv: *NVF «Ukr. tekhnolohii»*, 2013. S. 356 (in Ukr.).

2. Jeon N.J., Noh J.H., Yang W.S., Kim Y.C., Ryu S., Seo J., Seok S.I. Compositional engineering of perovskite materials for high-performance solar cells. *Nature*. 2015, 517(7535). 476–480. Doi: 10.1038/nature14133.

3. Vidyasagar C.C., Munoz Flores B.M., Jimenez Perez V.M. Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics. *Nano-Micro Lett.* 2018, 10, 68. Doi: 10.1007/s40820-018-0221-5.

4. Bohee Hwang, Chungwan Gu, Donghwa Lee, Jang-Sik Lee. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory. *Sci. Rep*, 2017, 7(1), 43794. Doi: 10.1038/srep43794. 5. Bi D., Xu B., Gao P., Sun L., Grätzel M., Hagfeldt A. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material. *Nano Energy*. 2016, 23, 138–144. Doi: 10.1038/srep42564.

6. Kulbak M., Cahen D., Hodes G. How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr₃ Cells. J. Phys. Chem. Lett. 2015, 6(13), 2452–2456. Doi: 10.1021/acs.jpclett.5b00968.

7. McMeekin D.P., Sadoughi G., Rehman W., Eperon G.E., Saliba M., Hörantner M.T., Haghighirad A., Sakai N., Korte L., Rech B., Johnston M.B. Herz L.M., Snaith H.J A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. *Science*. 2016, 351(6269), 151–155. Doi: 10.1126/science.aad5845.

8. Jacobsson T.J., Pazoki M., Hagfeldt, A., Edvinsson T. Goldschmidt's Rules and Strontium Replacement in Lead Halogen Perovskite Solar Cells: Theory and Preliminary Experiments on CH₃NH₃SrI₃. *J. Phys.Chem. C.* 2015, 119(46), 25673–25683. Doi: 10.1021/acs.jpcc.5b06436.

9 Mosconi E., Amat A. Nazeeruddin Md. K., Gratzel M., De Angelis F. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. *J. Phys. Chem. C.* 2013, 117(27), 13902–13913. Doi: 10.1021/jp4048659.

10. Niu G., Guo X., Wang L. Review of recent progress in chemical stability of perovskite solar cells. *J. Mater. Chem. A.* 2015, 3(17), 8970–8980. Doi: 10.1039/C4TA04994B.

11. Sutton R.J., Eperon G.E., Miranda L., Parrott E.S., Kamino B.A., Patel J.B., Hörantner M.T., Johnston M.B., Haghighirad A.A., Moore D.T., Snaith H.J. Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. *Adv. Energy Mater.* 2016, 6(8), 1502458. Doi: 10.1002/aenm.201502458.

12. Filip M.R., Giustino F. Computational Screening of Homovalent Lead Substitution in Organic-Inorganic Halide Perovskites. J. Phys. Chem. C. 2016, 120(1), 166–173. Doi: 10.1021/acs.jpcc.5b11845.

13. Körbel S., Marques M.A., Botti S. Stability and electronic properties of new inorganic perovskites from high-throughput *ab initio* calculations. *J. Mater. Chem. C.* 4 2016, (15), 3157–3167. Doi: 10.1039/C5TC04172D.

14. Li Z., Yang M., Park J.-S., Wei S.-H., Berry J.J. Zhu K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. *Chem. Mater.* 2016, 28(1), 284–292. Doi: 10.1021/acs.chemmater.5b04107.

15. Yi C., Luo J., Meloni S., Boziki A., Ashari-Astani N., Grätzel C., Zakeeruddin S. M., Röthlisberger U., Grätzel M. Entropic stabilization of mixed A-cation ABX₃ metal halide perovskites for high performance perovskite solar cells. *Energy Environ. Sci.* 2016, 9(2), 656–662. Doi: 10.1039/C5EE03255E.

16. A.E. Maughan A.E., Ganose A.M., Bordelon M.M., Miller E.M., Scanlon D.O., Neilson J.R. Defect Tolerance to Intolerance in the Vacancy-Ordered Double Perovskite Semiconductors Cs_2SnI_6 and Cs_2TeI_6 . J. Am. Chem. Soc. 2016, 138, 8453–8464. Doi: 10.1021/jacs.6b03207.

17. Volonakis G., Haghighirad A.A., Milot R.L., Sio W.H., Filip M.R., Wenger B., Johnston M.B., Herz L.M., Snaith H.J., Giustino F. Cs₂InAgCl₆: A New Lead-Free Halide Double Perovskite with Direct Band Gap. *J. Phys. Chem. Lett.* 2017, 8, 772–778. Doi: 10.1021/acs.jpclett.6b02682.

18. Saidaminov M.I., Abdelhady A.L., Murali B., Alarousu E., Burlakov V.M., Peng W., Dursun I., Wang L.F., He Y., Maculan G., Goriely A., Wu T., Mohammed O.F., Bakr O.M. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. *Nature Commun.* 2015, 6, 7586–7592. Doi: 10.1038/ncomms8586

19. Zyiryanov V.G., Petrov E.S. Diagrammyi sostoyaniya sistem CsI-SbI₃ и RbI-SbI₃. *Izv. AN SSSR. Ser. him. nauk.* 1974, B2(4), 109–111 (in Russ.).

20 Kun S.V., Peresh E.Yu., Lazarev V.B., Kun A.V. Fazovyie ravnovesiya v sistemah CsBr-Bi(Sb)Br₃, poluchenie i svoystva obrazuyuschihsya soedineniy. *Neorgan. mater.* 1991, 27(3), 611–615 (in Russ.).

21. Peresh E.Yu., Zubaka O.V., Sidei V.I., Barchii I.E., Kun S.V., Kun A.V. Preparation, Stability Regions, and Properties of M_2 TeI₆ (M = Rb, Cs, Tl) Crystals. *Inorgan. Mater.* 2002, 38, 859–863. Doi: 10.1023/A:1019747432003.

22. Peresh E.Yu., Sidei V.I., Zubaka O.V. Phase relations in the systems A_2TeI_6 - Tl_2TeI_6 (A = K, Rb, Cs) and A_2TeBr_6 - A_2TeI_6 (A = K, Rb, Cs, Tl(I)). *Inorgan. Mater.* 2005, 41, 298–302. Doi: 10.1007/s10789-005-0127-8.

23. Stercho I.P., Zubaka O.V., Barchiy I.E., Peresh E.Yu., Kokhan O.P., Pogodin A.I. Analysis of changes chemical bonding type and interaction in the system based on perovskites compounds $Cs_3Sb_2Br_9(I_9)$ and $Cs_2TeBr_6(I_6)$. *Sci. Bull. Uzhh. Univ. Ser. Chem.* 2017, 1(37), 48–54 (in Ukr.).

24. Stercho I., Pogodin A., Kokhan O., Barchiy I., Fedorchuk A., Kityk I., Piasecki M.. Interaction in the system based on the $Cs_3Sb_2Br_9(I_9)$ and $Cs_2TeBr_6(I_6)$ compounds. *Chem. Met. Alloys.* 2017, 10 (3/4), 113–119.

25. Holland T., Redfern S. Unit cell refinement from powder diffraction data: the use of regression diagnostics. *Mineral. Mag.* 1997, 61, 65–67. Doi: 10.1180/minmag.1997.061.404.07.

26. Kraus W.J., Nolze G. Powder Cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. *Appl. Crystallogr.* 1996, 29(3), 301–303. Doi: 10.1107/S0021889895014920.

27. Momma K., Izumi F. VESTA 3 for three-dimentional visualization of crystal and morphology data. *J. Appl. Cryst.* 2011, 44, 1272–1276. Doi: 10.1107/S0021889811038970.

28. Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condensed Matter. 2017, 29(46), 465901–465912. Doi: 10.1088/1361-648X/aa8f79.

29. Dal Corso A. A Pseudopotential Plane Waves Program (PWSCF) and some Case Studies. *Springer, Berlin, Heidelberg*. 1996, 67, 155–178. Doi: 10.1007/978-3-642-61478-1_10.

30. Peresh E.Yu., Lazarev V.B., Kun S.V., Barchiy I.E., Kun A.V., Sidey V.I. Complex halogenides A₃B₂C₉ (A - Rb,Cs; B - Sb,Bi; C - Br,I) type and solid solutions based on they. *Inorgan. Mater.* 1997, 33(4), 431–435.

31. Stercho I.P., Barchii I.E., Malakhovskaya T.A., Pogodin A.I., Sidei V.I., Solomon A.M., Peresh E.Yu. Physicochemical interaction in the $Cs_3Sb_2Br_9$ – Cs_2TeBr_6 system: the state diagram and the nature of the interaction of components. *Rus. J. Inorg. Chem.* 2015, 60(2), 225–229. Doi: 10.1134/S0036023615020163.

32. Stercho I.P., Barchiy I.E., Peresh E.Yu., Sidey V.I., Malakhovska T.A. Phase diagrams of the Cs₃Sb₂I₉–Cs₂TeI₆ and Rb₃Sb₂I₉–Rb₂TeI₆ systems. *Chem. Met. Alloys.* 2013, 6, 192–195.

33. Barchiy I., Zubaka O., Peresh E., Sidey V., Kokhan O., Stercho I., Fedorchuk A., Piasecki M. Reciprocal K_2 TeI₆ + Rb₂TeBr₆ \leftrightarrow K_2 TeBr₆ + Rb₂TeI₆ system: phase relation, crystal and electronic structures. *Chem. Met. Alloys.* 2020, 13, 14–22.

34. Skopenko V.V., Savranskyi L.I. Koordynatsiina khimiia. Kyiv: Lybid, 2004. S. 424 (in Ukr.).

35. Batsanov S.S. Eksperimentalnyie osnovyi strukturnoy himii. Moskva: *Izdatelstvo standartov*, 1986. S. 240 (in Russ.).