ЕФЕКТИВНИЙ ПЕРЕРІЗ ЗБУДЖЕННЯ ІЗОМЕРНОГО СТАНУ ЯДРА ¹¹⁵In В РЕАКЦІЇ (ү,ү) В.С. Бохінюк, А.І. Гутій, О.М. Парлаг, М.Т. Саболчій, І.В. Соколюк, І.В. Хіміч

Ужгородський національний університет, кафедра ядерної фізики88000, м. Ужгород, вул. Капітульна, 9а, Україна E-mail: <u>nphys@univ.uzhgorod.ua</u>

> На гальмівному пучку бетатрона та мікротрона кафедри ядерної фізики Ужгородського національного університету одержано криву виходу реакції ¹¹⁵In(γ , γ)^{115m}In в інтервалі енергій 7-25 MeB з кроком 0,5-1 MeB. З одержаної кривої виходу розрахований ефективний переріз реакції. Виявлено, що при енергії 22 MeB спостерігається другий максимум в ефективному перерізі реакції ¹¹⁵In(γ , γ)^{115m}In.

Вступ

Реакції непружного розсіяння гаммаквантів на ядрах є найбільш ефективним засобом збудження ізомерних станів ядер. Дослідження енергетичної залежності ефективних перерізів збудження ізомерних станів в реакції (γ , γ') дає важливу інформацію стосовно механізму заселення ізомерів при дезбудженні ядер, а також про основні властивості збуджених станів та радіаційних переходів між ними.

В області гігантського резонансу при поглинанні гамма-квантів ядром, його розрядка супроводжується випромінюванням різного типу частинок. Вище порогу випромінювання нейтронів найбільш імовірною є реакція (γ ,n) і ефективний переріз утворення ізомеру за рахунок реа-кції (γ , γ), повинен здавалось би спадати.

Однак, в роботах [1-5] експериментально зафіксовано зростання перерізів збудження ізомерних станів для ряду ядер в реакції (ү,ү) вище порогу вильоту нейтро-нів. Зокрема, в області енергій 5-25 MeB на різних експериментальних були проведені установках виміри ефективних пере-різів реакцій $(\gamma, \gamma')^m$ на ядрах ⁸⁹Y [2], ¹⁰³Rh [3], ¹¹⁵In [1], ¹⁰⁹Ag [4], ¹⁹⁷Au [5]. Отримані результати вказують на те, що ефективні перерізи $(\gamma, \gamma)^m$ реакції для цих ядер ма-ють два максимуми: один – нижче порога реакції (γ ,n), а другий - в районі 14-20 МеВ. Зауважимо, що процитовані вище праці [1-5] були виконані в 60-х роках, а тому точність визначення величини і положення другого максимуму в реакції (γ , γ)^m бажає істотного уточнення.

У роботі [6], яка була опублікована в 2001 р., показано також зростання перерізу реакції ¹¹⁵ In(γ , γ)^{115m}In в інтервалі 9-30 МеВ, що вказує, мабуть, на існування другого максимуму в перерізі цієї реакції.

Виміри ефективного перерізу реакції ¹¹⁵In (γ, γ) ^{115m}In [7, 8], проведені в 1986-1987 роках показали, що при енергії 8-9 МеВ спостерігається максимум у ході залежності перерізу від енергії у-квантів, величина перерізу у максимумі складає 1-2 мбн. Вище порогу (у,п)-реакції переріз різко спадає і більше не зростає до енергії 30 МеВ, тобто дані робіт [7, 8] свідчать про відсутність другого максимуму. Отже, видається актуальним подальше експериментальне і теоретичне дослідження енергетичної залежності ефективних перерізів збудження ізомерних станів для приведених вище ядер в реакції (у, у) в широкому енергетичному інтервалі, який охоплює область гігантського дипольного резонансу.

У зв'язку з суперечливими результатами, приведеними в роботах [1-8], ми мали за мету провести вимір виходу та оцінити величину ефективного перерізу реакції ¹¹⁵ In(γ , γ)^{115m}In в області енергій 7-25MeB.

Методика вимірювань

Виміри виходу реакції проводились активаційною методикою. Джерелами гальмівного випромінювання були: мікротрон (7-8,5 МеВ) та бетатрон (8-25 МеВ) кафедри ядерної фізики УжНУ. Вимірювання гамма-випромінювання зразків після опромінення проводилось Ge(Li) детектором об'ємом 80 см³ з роздільною здатністю 6 кеВ для лінії 1332 кеВ. Для вимірювань використано зразки індію з природної суміші ізотопів у вигляді металевих дисків діаметром 3 см та товщиною 1-1,2 мм. Нижче в табл. 1 приведено дані про ядерно-фізичні характеристики ізотопів індію, радіоактивні ізотопи та ізомерні стани, які утворюються при опроміненні стабільних ізотопів індію гамма-квантами та нейтронами за рахунок реакцій (γ, γ') , (γ, n) і (n, γ) . Вказано також, тип випромінювання, енергія випромінювання та інтенсивність деяких гамма-ліній і порогові енергії реакцій.

Як бачимо з табл. 1, при опроміненні зразків індію гамма-квантами з енергією більше 10 МеВ за рахунок (γ , γ'), (γ ,n) реакцій утворюється 6 радіоактивних ізотопів, в тому числі, і ізомерів індію: ¹¹²In, ^{112m}In, ^{113m}In, ¹¹⁴In, ^{114m}In, ^{115m}In, періоди напіврозпаду яких лежать в межах від 72 секунд до 50 діб і випромінюють вони гамма-кванти, бета-частинки та позитрони. Гамма-кванти, що випромінюються ізомером ^{115m}In мають енергію 336 кеВ, а енергія гамма-квантів ізомеру ^{113m}In – 392 кеВ.

Враховуючи великий період напіврозпаду ізомеру ^{115т}In, для вимірів було виготовлено 10 зразків. Під час опромінення зразки знаходились на віддалі 25 см від гальмівної мішені бетатрона.

Пошир.	T _{1/2}	Ε _γ ,	Ε _β ,	Реакція - енергія
%		KeB	KeB	порогу, МеВ
-	14,4 хв.	511,	β + 1500,	113 In(γ ,n) 112 In
		119	β ⁻ 650	-9,58
-	20,9 хв.	157	-	113 In(γ ,n) 112m In
				-9,58
4,3	1015 p.			
-	99,4 хв.	392		113 In(γ,γ') 113m In
				-0,39
-	71,9 сек.	1299 (0,14)	β ⁻ 1988,	115 In(γ ,n) 114 In
		588	β+ 395	-9,23
-	49,5 діб	190	-	115 In(γ ,n) 114m In
				-9,23
95,7	5,1014 p.		495(46%)	
-	4,486 год	336 (45,9%)	β ⁻ 830	115 In(γ,γ^{*}) 115m In
		497	-	-0,33
	54,1 хв.	138 (3,3%)	1000	115 In(n, γ) 116m In
		417		
	14,1 сек.	1293	3290	115 In(n, γ) 114 In
	Пошир. % - 4,3 - - 95,7 - 95,7	Пошир. % 7-14,4 хв. -20,9 хв. 20,9 хв. 20,9 хв. -99,4 хв. -99,4 хв. -71,9 сек. -49,5 діб 95,75,1014 р. -4,486 год 54,1 хв. 14,1 сек.	Пошир. % $T_{1/2}$ E_{γ} , KeB - 14,4 хв. 511, 119 - 20,9 хв. 157 4,3 1015 р. - - 99,4 хв. 392 - 71,9 сек. 1299 (0,14) 588 - 49,5 діб - 49,5 діб 190 95,7 5,1014 р. - - 4,486 год 336 (45,9%) 497 138 (3,3%) 417 14,1 сек. 1293 -	Ποшир. % $T_{1/2}$ E_{γ} , KeB E_{β} , KeB - 14,4 xb. 511, 119 β + 1500, β 650 - 20,9 xb. 119 β 650 - 20,9 xb. 157 - 4,3 1015 p. - - - 99,4 xb. 392 - - 71,9 ceк. 1299 (0,14) β 1988, β + 395 - 49,5 діб 190 - 95,7 5,1014 p. 495(46%) - - 4486 год 336 (45,9%) β 830 497 138 (3,3%) 1000 417 14,1 ceк. 1293 3290

Табл. 1. Ядерно-фізичні характеристики ізотопів індію.

На рис. 1 приведено для прикладу апаратурний спектр гамма-випромінювання зразка після його опромінення при енергії 22 МеВ. На рисунку ми бачимо три максимуми, обумовлені ізомерними переходами для ізотопів ^{116т} In, ^{113т}In та ^{116т}In

Для перевірки правильності методики на бетатроні було проведено вимірювання абсолютного виходу реакції 63 Cu(γ ,n) 62 Cu, на основі якого розраховано диференціальний переріз цієї реакції. Одержані дані добре узгоджуються з результатами роботи [9], автори якої вимірювали переріз реакції з допомогою квазі-монохроматичних гамма-квантів, що є певним свідченням про відсутність систематичних похибок у методиці наших вимірів.

Рис. 1. Апаратурний спектр гамма-випромінювання зразка In при енергії 22 MeB.

Ізотоп ^{115т}In може утворюватись також за рахунок реакції (n,n'). i Фонові нейтрони (фотонейтрони швидкі i повільні) можуть утворюватись y гальмівній мішені бетатрона та інших конструктивних деталях бетатрона. нейтронів Просторовий розподіл цих ізотропний. оцінки Для впливу нейтронного фону і відповідно реакції ¹¹⁵In(n,n')^{115т}In проводилось опромінення зразка індію в положенні поза пучком гальмівного випромінювання, але в цьому випадку на апаратурному спектрі спостерігалось тільки гамма-випромінювання з енергією 417 кеВ, тобто за рахунок реак $uii^{115}In(n.\gamma)^{116m}In.$

Переріз реакції 115 In(γ,γ^{ϵ}) 115m In

Згідно даних вимірів наведеної активності, будувалися частини апаратурного спектру, які були використані для знаходження площі під фотопіком гаммаквантів з енергією 336 кеВ.

Вихід реакції *Y*(*E_m*) розраховувався по формулі

$$Y(E_m) = \frac{S(E_m) \cdot \lambda}{n \cdot \varepsilon \cdot \eta \cdot D \cdot (1 - e^{-\lambda t_{on}}) \cdot e^{-\lambda t_{ox}} \cdot (1 - e^{-\lambda t_s})}, (1)$$

де: λ - стала розпаду ізомера; $S(E_m)$ площа під фотопіком 336 кеВ в апаратурному спектрі гамма-випромінювання досліджуваного ізомеру після опромінення зразка при енергії E_m ; ε - ефективність реєстрації гамма-випромінювання ізомеру; η - коефіцієнт, що враховує квантовий вихід лінії ізомеру та коефіцієнт внутрішньої конверсії; D - доза гальмівного випромінювання в одиницях струму товстостінної іонізаційної камери; t_{on} - час опромінення; t_{ox} - час охолодження зразка; t_{e} - час вимірювання.

У зв'язку з тим, що інтенсивність гальмівного випромінювання не залишалась стабільною під час опромінення зразків, вимір дози з допомогою абсолютної іонізаційної камери проводився приладом, до вимірювальної ємності якого підключалися резистори. Величина їх підбиралася таким чином, щоб напруга на виході зростала не лінійно, а по експоненті, з показником рівним сталій розпаду для ізомеру ^{115т}In. Таким чином, було автоматично враховано коливання інтенсивності гамма-випромінювання бетатрона під час опромінення зразків.

На рис. 2 приведено залежність абсолютного виходу реакції від максимальної енергії гальмівного випромінювання на графіку вказано середньоквадратичні статистичні похибки 3-4 серій вимірів.

З одержаної таким чином кривої виходу реакції розраховано ефективний переріз реакції в області енергій 7-25 МеВ. Розрахунок перерізу проводився методом оберненої матриці (метод Пенфольда-Лейса) з використанням програми розробленої в ХФТІ та адаптованої до наших умов. На рис. З приведено результати розрахунків.

Бачимо, що В області 20 MeB спостерігається максимум у перерізі. Дані вимірів виходу одержані з статистичною похибкою 3%. Як бачимо, дані про переріз одержані нами підтверджують результати робіт [1 5] про те, що переріз реакції непружного розсіювання гамма-квантів на ядрах після 15 МеВ зростає й існує другий максимум. Саме це твердження суперечить результатам робіт [7, 8], де стверджується, після шо першого максимуму спостерігається падіння перерізу i, починаючи з енергії 12 МеВ, переріз в межах похибок стає рівним нулю.

Рис. 2. Залежність абсолютного виходу реакції ¹¹⁵In(ү,ү^{*})^{115m}In від максимальної енергії гальмівного випромінювання.

Заключні міркування

У теоретичних працях [10-13], які стосуються дослідження фотозбудження ізомерних станів в реакції непружного розсіювання гамма-квантів на ядрах, відмічається можливість існування двох максимумів в перерізі $(\gamma, \gamma')^m$ -реакції, а саме, в області до порогу випромінювання області 14-20 МеВ. нейт-ронів і в Одержані в даній роботі експериментальні результати вказують на існування другого макси-муму в перерізі реакції 115 In(γ,γ) 115m In при енергії 22 MeB.

Література:

- 1. Богданкевич О.В., Лазарева Л.Е., Николаев Ф.А. ЖЭТФ 31, 405 (1956).
- 2. Silva E. and Goldemberg J. Phys. Rev. 110, 1102 (1958).
- Богданкевич О.В., Лазарева Л.Е., Николаев Ф.А. ЖЭТФ 39, 1224 (1960).
- Богданкевич О.В., Долбилкин Б.С., Лазарева Л.Е., Николаев Ф.А. ЖЭТФ 45, 882 (1983).
- 5. Meyer-Schutzmeister L., Telegdi V.L. Phys. Rev. 104, 185 (1956).
- Демехина Н.А., Данагулян А.С., Карапетян Г.С. ЯФ 64, 1879 (2001).
- 7. Джилавян Л.З., Кучер Н.П., Мазур В.М., Рыжих Г.Г., Теке А.А., Чуприков А.Ю. Препринт ИЯИ АН

Рис. 3. Залежність ефективного перерізу реакції ¹¹⁵In(ү,ү')^{115т}In від енергії гаммаквантів.

Подальший розвиток в експериментальному плані дослідження гігантського E1-резонансу в значній мірі пов'язаний з вивченням різноманітних каналів його розпаду і, в першу чергу, таких, в результаті котрих відбувається заселення ізомерних станів ядер. Представляється тому актуальним проведення аналогічних досліджень енергетичної залежності функцій збудження (перерізів) заселення ізомерних станів в реакції (γ , γ')^m для ряду інших ядер.

СССР, П-0473. - М.: ИЯИ АН СССР, 1986.

- Джилавян Л.З., Кучер Н.П., Рыжих Г.Г., Чуприков А.Ю. Препринт ИЯИ АН СССР, П-0515. - М.: ИЯИ АН СССР, 1987.
- 9. Dietrich S.S., Berman B.L. Nuclear Date Table 38, 119 (1998).
- 10. Левиджер Д.С. Фотоядерные реакции. М., 1962.
- 11. Балашов В.В. ЖЭТФ 43, 2199 (1962).
- 12. Балашов В.В. Труды междунар. конф. по электромагн. взаимод. при низких и средних энергиях.- М., 1967.
- 13. Джилавян Л.З., Каруц В.Л., Фурман В.И. и др. ЯФ 51, 336 (1990).

EFFICIENT CROSS-SECTION OF EXCITEMENT OF ISOMERIC STATE OF THE ¹¹⁵In NUCLEUS IN THE (γ, γ') REACTION

V.S. Bohinyuk, A.I. Guthy, A.M. Parlag, M.T. Sabolchy, I.V. Sokolyuk, I.V. Khimich

Uzhgorod National University, Department of Nuclear Physics9a, Kapitulna str., Uzhgorod 88000, UkraineE-mail: nphys@univ.uzhgorod.ua

On brake bunch of the betatron and the microtron of Department of Nuclear Physics of Uzhgorod National University is received curve of output to $^{115}\text{In}(\gamma,\gamma)^{115m}\text{In}$ reaction in interval of energy 7-25 MeV with at a walk 0,5-1 MeV. On got crooked output is calculated the efficient section of reaction. It is revealled that the second maximum exists at energy 22 MeV in efficient section of $^{115}\text{In}(\gamma,\gamma)^{115m}\text{In}$ reaction.