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Abstract

In the framework of potential models for heavy quarkonium, the mass
spectrum for the system (b̄c) is considered. In particular, the spin-dependent
splittings of S and P energy levels caused by spin-spin, spin-orbital and ten-
sor interactions in the framework of the Breit-Fermi quasi-relativistic ap-
proximation with the screened quark interaction potential are calculated.
The dependence of the energy splitting on the parameters of the interaction
potential between the quarks is investigated. The calculated energy levels of
the system b̄c can be used for experimental search for Bc mesons.

1 Introduction
Among the heavy quarkonia, the b̄c (Bc-meson family) consisting of two heavy

quarks of different masses – a system with open flavors of quarks — occupies a spe-
cial position. Unlike experimentally [1] and theoretically [2, 3, 4, 5, 6] sufficiently
well-described the charmonium cc̄ and bottomonium bb̄ families with the hidden
flavors, the properties of heavy quarkonium b̄c due to the specific mechanisms of
formation and decay remain poorly understood [7].

From the point of spectroscopy view, the system b̄c occupies an intermediate
position between the charmonium cc̄ and bottomonium bb̄ in terms of the mass
of levels and average distances between heavy quarks. In contrast to cc̄ and bb̄,
Bc-mesons (because they carry flavor) cannot annihilate into gluons and are con-
sequently more stable with widths less than a hundred keV (see [8]). The excited
Bc states lying below BD (and BD∗ or B∗D) threshold can only undergo E1 or
M1 transitions or hadronic cascades to the 1S0 ground state Bc, which then de-
cays weakly. Therefore, the widths of the electromagnetic radiative and hadronic
transitions of the given excited state to other levels will be its total width. As a
result of this, the total widths of the excited levels of the b̄c system are two orders
of magnitude smaller than the total widths of the excited levels of charmonium
and bottomonium, for which annihilation channels are significant. This results in
the rich spectroscopy of narrow radial and orbital excitations below BD threshold
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which are more stable than their charmonium and bottomonium analogs: there
are two sets of S-wave states, as many as two P -wave multiplets (1P state and
some or all of the 2P one) and one D-wave multiplet below BD threshold. As well,
the F -wave multiplet is sufficiently close to threshold that they may also be rela-
tively narrow due to angular momentum barrier suppression of the Zweig allowed
strong decays. Therefore, the methods used to study charmonium and bottomo-
nium (non-relativistic potential models or QCD sum rules) can be extended to the
study of the properties of Bc-mesons. The description of their spectrum can be as
a test of self-consistency for potential models, the parameters of which (for exam-
ple, masses of quarks, values of the constant of the strong interaction, potential
parameters) were recorded by fitting the spectroscopic data of charmonium and
bottomonium.

Thus, on the one hand, the theoretical methods used in the physics of heavy
quarks can accurately determine the spectroscopic characteristics of the b̄c-system
to conduct a purposeful experimental search for this heavy quarkonium. On the
other hand, the measurement of spectroscopic data in the Bc-mesons family will
improve the methods and ways of finding the fundamental parameters of the Stan-
dard Model both in the physics of Bc-mesons and in other areas of heavy quark
physics.

However, it should be noted that despite the fact that experimental techniques
on existing detectors allow us to distinguish predicted events with the creation
and decay of Bc-mesons, only the existence of the lowest singlet state b̄c-system
has been reliably experimentally established – B+

s (0−) [1]: its massM(B+
s (0−)) =

6.2749±0.0008 GeV, and the lifetime is 0.507±0.009)·10−12 s. There is a contender
for the first excited state – M(Bc(2S)±) = 6.842 ± 0.004 GeV, but its quantum
numbers are not precisely established yet [1].

Preliminary theoretical estimates of the masses of bound states of the heavy
quarks system (b̄c) were made in the papers [6, 9], devoted to the description of
the properties of charmonium (cc̄) and bottomonium bb̄), as well as in [10]. In
the framework of the potential approach and QCD sum rules, the more thorough
analysis of the spectroscopy of Bc-mesons was carried out in [7, 8, 11, 12].

Thus, the aim of this work is to study the energy spectrum of the b̄c-system
within the framework of potential models of heavy quarkonium with a screened
quark interaction potential. In the quasi-relativistic Brait-Fermi approximation,
the spin-dependent splittings of energy S- and P -levels due to spin-spin, spin-
orbital, and tensor interactions are investigated. The dependence of the splitting
of energy levels on the parameters of the interaction potential between the quarks
is also analyzed.

2 Description of the splitting of the levels
of b̄c-quarkonium caused by spins of quarks

2.1 Potential quark-antiquark interaction

In order to describe the mass spectrum b̄c-system within the potential ap-
proach, it is better to use potentials that describe the mass spectra of both cc̄ and
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bb̄ systems well, that is, potentials whose parameters do not depend on the flavors
of quarks being a part of heavy quarkonium.

The complete effective quark-antiquark interaction following [5, 13] will be pre-
sented as a combination of the perturbative one-gluon exchange potential (Coul-
omb-like interaction) VCoul(r) = −ξ/r (where ξ = 4/3αs, αs is the running cou-
pling constant of QCD) with long-range scalar Sconf (r) = (1− λ)v(r) and vector
Vconf (r) = λv(r) confining potentials:

V (r) = VCoul(r) + Vconf (r) = −ξ/r + λv(r), (1)
S(r) = Sconf (r) = (1− λ)v(r). (2)

Here, λ is the coefficient of mixing between the vector and scalar confining po-
tentials (0 6 λ 6 1). The value of αs in the one-loop approximation on the
momentum scale p2 is determined by the expression

αs(p2) = 12π
(33− 2Nf ) ln(p2/Λ2) , (3)

where Nf is the number of quark flavors, and Λ = 360 MeV is the QCD parameter.
Using the expression for the kinetic energy 〈T 〉 = 〈p2〉/(2µ), where µ is the reduced
mass of heavy quarks c and b, we obtain

αs(p2) = 12π
(33− 2Nf ) ln (2〈T 〉µ/Λ2) . (4)

As it is shown in [7, 11, 12], the kinetic energy of heavy quarks is almost con-
stant, which does not depend on the flavors of heavy quarks and quantum numbers
of the excited level at which they are in the system of heavy quarkonium. There-
fore, the value of the effective constant αs is mainly determined by the reduced
mass of the heavy quarkonium and can be considered approximately constant in
each family of mesons and such that it changes only during the transition from
one family to another.

For practical calculations, it is necessary to specify the form of the confinement
part of the interquark potential v(r). The most commonly used within the poten-
tial models is the Cornell potential [6], which provides a satisfactory description
of the spectrum of masses of heavy quarkonia [6, 8, 12] and heavy-light mesons
[13, 14]. However, in [15] (in lattice QCD calculations) the transition of a static
quark-antiquark string into a static meson-antimeson system i.e. the breaking of
colored string between quarks was studied. It was shown that it can occur at
interquark distances of the order of 1.25 Fm and lead to polarization of the QCD
vacuum and screened by color forces. Observations of the nonlinear hadronic
Regge trajectory are also considered to confirm the screened interquark potential
[16]. In addition, quite rapid crossover from a linear rising to a flat potential is
well established in SU(2) Yang-Mills theories [17].

The screened potential was successfully applied to describe the spin-averaged
spectrum of masses of heavy mesons and baryons [18, 19]. In [20], a detailed
description of the nucleon-nucleon interaction is obtained using the screened po-
tential. In the papers [5, 21, 22, 23, 24], spin-spin splitting of energy levels, lepton
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widths and radiation decays of heavy quarkonium were calculated by means of
the screened potential. From the results of these works it follows that at the
same quality of the calculated spectrum of masses, between the models [21] with
screened potential and models [12, 14], which use nonscreened confinement, impor-
tant differences arise. The most characteristics are: the screened potential leads
to a limited spectrum of quark-antiquark bound states (a finite number of bound
states) and the pattern of energy differences between the highly excited states.
In particular, the predicted [22] number of states is in almost perfect agreement
with the experimentally observed states, a fact that might shed new light on the
so-called missing resonance problem (see Ref. [25]).

Given the above, in our calculations, we use the simple form of screened po-
tential, proposed in [5, 22]:

V (r) = −ξ
r

+ λ

(
g2

6π
(1− e−σr)

σ
+ V0

)
, (5)

S(r) = (1− λ)
(
g2

6π
(1− e−σr)

σ
+ V0

)
. (6)

The parameters of the screened potential are equal to: g2/(6π) = 0, 3 GeV2,
σ = 0, 054 GeV; V0 is the constant of the additive shift of the binding energy.

2.2 Generalized Breit-Fermi Hamiltonian

In order to take into account the spin-spin, spin-orbital and tensor interactions
which lead to the splitting of (nr 2S+1L)-levels (where nr is a radial quantum
number, L is the orbital moment and S – total spin moment of two quarks),
following [5, 26] we use the Breit-Fermi Hamiltonian (in the nuclear system of
units ~ = c = 1, 1GeV = 5.068Fm−1)

Ĥ = ~̂p 2

2µ + V (r) + S(r) + ĤLS + ĤSS + ĤT , (7)

where µ is the reduced mass of heavy quarks c and b. The spin-dependent terms
are of the form:

ĤLS = 1
4m2

cm
2
b

1
r

{[
((mc +mb)2 + 2mcmb) ~L~S+ + (m2

b −m2
c) ~L~S−

] dV (r)
dr

−

−
[
(m2

c +m2
b) ~L~S+ +(m2

b −m2
c) ~L~S−

] dS(r)
dr

}
(8)

is the spin-orbit interaction, where ~S+ ≡ ~Sc + ~Sb, ~S− ≡ ~Sc − ~Sb,

(~L~S) = 1
2 [j(j + 1)− l(l + 1)− S(S + 1)], (9)

ĤSS = 2
3mcmb

4V (r) · ~Sc~Sb (10)
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is the spin-spin interaction, where

~Sc~Sb = 1
2S(S + 1)− 3

4=


−3

4 , S = 0,

+1
4 , S = 1,

(11)

ĤT= 1
12mcmb

(
1
r

dV (r)
dr

− d2V (r)
dr2

)
S12, (12)

is the tensor interaction, where

S12 = 4
(2l + 3)(2l − 1)

[
~L2~S2 − 3

2
~L~S − 3(~L~S)2

]
. (13)

From the given formulas it follows that the spin-orbit interaction is the most sen-
sitive to the Lorentz nature of the potential of interquark interaction. Only it
contains additive contributions from both scalar (−S′(r)) and vector (V ′(r)) po-
tentials, and they come with opposite signs and partially compensate each other
(see (8)). Thus, information on both position and fine-splitting of levels can al-
ready reveal the role of each of the potentials S(r) and V (r) separately.

In the system of two interacting quarks, the spin-spin interaction leads (in the
LS coupling scheme) to the splitting of the level with L = 0 into two sublevels 3S1
and 1S0 which correspond to the total spin of two quarks being equal to 1 and 0.
For L = 1, similarly, we obtain the singlet 1P1 state corresponding to the total spin
0 and the triplet 3PJ state (J is the total moment of the quark-antiquark system)
with total spin 1. In turn, the 3PJ level splits into three sublevels due to the
spin-orbit interaction: 3P0, 3P1 and 3P2. The contribution to the splitting value
of the 3PJ level is also given by the tensor interaction, while contribution of states
with L = 0 or S = 0 is zero. In systems consisting of quarks of unequal masses
(mq 6= mq̄), an additional contribution to the magnitude of splitting between the
3PJ and 1P1 levels is defined by the term in the spin-orbit interaction (see (8)),
proportional to ~L~S−. In addition, it leads to mixing of states with the same
angular momentum L but different total spins of the quark-antiquark system S
(for example between 3P1 and 1P1 states or between 3D2 and 1D2 states) because
in this case, the charge conjugation parity is no longer a good quantum number.
Thus, the P state with total moment J = 1 is a linear combination of the states
3P1 and 1P1:

P ′ =1P1 cos θ +3 P1 sin θ,
P =−1 P1 sin θ +3 P1 cos θ,

(14)

where θ is the mixing angle. Some authors [7, 12] prefer to use the jj coupling
scheme, mixing states with different values of Jc ( ~Jc = ~L + ~Sc) for a given total
moment J ( ~J = ~Jc + ~Sb). But since the operators (8)-(13) are written in the LS
coupling, we use the notation of the equation (14). It turns out that the radiation
transitions E1 are particularly sensitive to the 3P1 −1 P1 mixing angle. Since the
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definition of the mixing angles is ambiguous, and sometimes different models give
radically different results, measurement of radiation transitions can be a criterion
for selecting models.

Thus, the Hamiltonian (7) we use to calculate the magnitude of the fine and
hyperfine splitting of S and P levels of Bc-mesons with potentials (5), (6) takes
the form:

Ĥ = Ĥ0 + Ŵ , (15)
where

Ĥ0 = − 1
2µ∆ +

(
−4

3
αs
r

+ g2

6π
(1− e−σr)

σ

)
, (16)

Ŵ = ĤLS + ĤSS + ĤT , (17)
and the operators ĤSS , ĤLS and ĤT have the form:

ĤLS = 1
4m2

cm
2
b

1
r

{[
((mc +mb)2 + 2mcmb) ~L~S+ + (m2

b −m2
c) ~L~S−

]
×

×
(

4
3
αs
r2 + λ

g2

6π e
−σr
)
−
[
(m2

c +m2
b) ~L~S+ + (m2

b −m2
c) ~L~S−

]
(1−λ) g

2

6π e
−σr
}
, (18)

ĤSS = 2
3mcmb

[
16
3 παsδ(~r) + λ

g2

6π

(
2
r
− σ

)
e−σr

]
~Sc~Sb, (19)

ĤT = 1
12mcmb

[
3αs
r3 + λ

(
1
r

+ σ

)
g2

6π e
−σr
]
S12. (20)

3 Calculation of splitting of S and P levels of b̄c
quarkonia

In order to calculate the spin splitting of the S and P levels of b̄c quarkonium,
let us consider the Schrödinger equation with the Hamiltonian (15)–(17):(

Ĥ0 + Ŵ
)

Ψ(~r) = EΨ(~r). (21)

Let us represent the wave function Ψ(~r) expanded in the complete orthonormal
set of eigenfunctions ϕn of the unperturbed Hamiltonian Ĥ0

Ψ(~r) =
∑
n

anϕn(~r), Ĥ0ϕn(~r) = E0
nϕn(~r). (22)

After substituting (22) into (21) and using the eigenvalue E0
n, we obtain the system

of linear algebraic equations for the coefficients of expansion an which have to be
truncated for a reasonably large n:

a1(E − E0
1 −W11)− a2W12 − ...− anW1n = 0

−a1W21 + a2(E − E0
2 −W22)− ...− anW2n = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−a1Wn1 − a2Wn2 − ...+ an(E − E0

n −Wnn) = 0

 (23)
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where
Wij = 〈ϕi|Ŵ |ϕj〉.

Nontrivial solutions are derived by diagonalizing the matrix for E only if the
determinant of this system is equal to zero∣∣∣∣∣∣∣∣∣

E + E0
1 +W11 W12 · · · W1n
W21 E + E0

2 +W22 · · · W2n
...

...
...

...
Wn1 Wn2 · · · E + E0

n +Wnn

∣∣∣∣∣∣∣∣∣ = 0. (24)

Both the basic functions ϕi and matrix elements Wij are calculated numerically.
The calculations take into account 6 configuration states in the expansion (22).

The preliminary results of calculations have shown (as well as results are pre-
sented in [12]) that the mixing angle θ between 3P1 and 1P1 states is small ∼ 2◦,
the P ′ state is almost pure 1P1 one, and P state is a almost pure 3P1 one (see for-
mula (14)). Therefore, in what follows, in the tables 2 and 2 for the mixed states
P ′ and P , we use the spectroscopic notation of the corresponding pure states 1P1
and 3P1.

When calculating the matrix elements of the spin-spin interaction, the integra-
tion of the first term in (19) originating from the Coulomb-like one-gluon exchange
potential and containing the δ(~r) function leads to |Ψ(0)|2. Since ΨnP (0) = 0, the
contribution from the Coulomb-like potential to the splitting of the P states is
zero. Thus, in the splitting 3PJ −1 P1, which is due to the spin-spin interaction,
only the vector part of the confinement screened potential is contributed. The
known experimental value of the splitting 3PJ −1 P1 would make it possible to
establish more accurately the relationship between the vector and scalar parts of
the confinement potential.

As already mentioned in the Introduction, at present, only the mass of the main
pseudoscalar 11S0(0−) state of the b̄c system has been experimentally established
(see [1]), so in this paper, we have obtained the masses of other states being
predictable and compared with the results on lattice calculations [27] as well as
calculated in other approaches [8].

It is important be noted that the main parameters of potentials (5) (6) and
of b and c quarks mass are taken from [5, 18] where the excellent description
of bottomonium and charmonium spectra was obtained: g2/(6π) = 0.3 GeV2,
σ = 0.054 GeV, mb = 5.05 GeV, mc = 1.675 GeV.

The results of calculations of the splitting of S and P states of the Bc-mesons
family due to spin-spin, spin-orbital and tensor interactions are presented in table
2 (masses are given in GeV, and αs = 0.343, V0 = −0.770 GeV, λ = 0.3).

The calculations of the Bc mass spectrum were performed with the coupling
constant αs both running during the transition from the ground state to the highly
excited states and constant one equal to αs = 0.343 (see (4)) for all states. It was
found that the difference between the obtained spectra is insignificant. Thus,
we can conclude that the coupling constant αs within the Bc-mesons family is
varying very weakly and can be considered approximately constant. This, in turn,
indicates that, as in the case of bottomonium and charmonium [7, 11, 12], the
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Table 1: The Bc mass spectrum (∗ – our results).

State ∗ [8] [27]
11S0 6.200 6.271 6.280±190
13S1 6.329 6.338 6.321±20
21S0 6.918 6.855 6.960±80
23S1 6.989 6.887 6.990±80
31S0 7.389 7.250
33S1 7.444 7.272
13P0 6.713 6.706 6.727±30
13P1 6.775 6.741 6.743±30
13P2 6.814 6.768 6.783±30
11P1 6.793 6.750 6.765±30
23P0 7.216 7.122
23P1 7.265 7.145
23P2 7.299 7.164
21P1 7.282 7.150
33P0 7.612
33P1 7.655
33P2 7.686
31P1 7.607

kinetic energy of heavy quarks in the Bc-mesons family is practically constant and
does not depend on the quantum numbers of the their excited states.

Table 2 shows that our results, within the accuracy of potential models, are
consistent with the results of [8] and [27]. However, there are some differences.
In particular, as follows from the table 2, the splitting of states due to spin-
spin interaction (between 3S1 and 1S0) in our model is approximately 2 times
greater than the corresponding splitting obtained in [8, 27]. Our predictions of
the value of the splitting of the states in the triplet 3PJ due to spin-orbital and
tensor interactions are 1.7 times greater than the corresponding results of [8]. This
can be explained as follows: in our model, the spin-orbital (18), spin-spin (19),
and tensor (20) interactions contain contributions from both the vector Coulomb-
like potential and the vector confinement potential (see (5)), while the model [8]
considers a purely scalar confinement. These additional contributions from the
vector confinement potential lead also to an increase in the splitting of the states.

Summary

In the framework of potential models of heavy quarkonium, b̄c mass spectrum (Bc-
mesons family) is investigated. In particular, in the quasi-relativistic Breit-Fermi
approximation, the spin splittings of the S and P energy levels caused by the spin-
spin, spin-orbital, and tensor interactions with a screened interaction potential are
calculated.
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Table 2: The splitting 4E (in GeV) S and P states of the Bc-mesons family (∗ –
our results).

nrLJ − nrLJ′ 4E nrLJ − nrLJ′ 4E
∗ [8] [27] ∗ [8] [27]

13S1 − 11S0 0.128 0.067 0.041 13P2 − 13P1 0.040 0.027 0.040
23S1 − 21S0 0.071 0.032 0.030 13P2 − 13P0 0.101 0.062 0.056
33S1 − 31S0 0.055 0.022 13P1 − 13P0 0.061 0.035 0.016

11P1 − 13P1 0.019 0.009 0.022
nrLJ − nrLJ′ 4E nrLJ − nrLJ′ 4E

∗ [8] ∗
23P2 − 23P1 0.034 0.019 33P2 − 33P1 0.031
23P2 − 23P0 0.083 0.042 33P2 − 33P0 0.074
23P1 − 23P0 0.049 0.023 33P1 − 33P0 0.042
21P1 − 23P1 0.018 0.005 31P1 − 33P1 0.017

It is established that the energy states and their fine and hyperfine structure
significantly depend on the coefficient λ of mixing of the long-range scalar and
vector screened potentials. An increase in the contribution of the Lorentz vector
potential to the spin-orbital (18), spin-spin (19), and tensor (20) interactions leads
to an increase in the value of the splitting energy states. The value of strong-
coupling constant αs within Bc-mesons family can be considered constant.

The obtained value of λ = 0.3 indicates that the confinement screened potential
are predominantly Lorentz-scalar (∼ 70%), and the one-gluon exchange potential
is purely a Lorentz-vector.
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