On Solution of Some Non-Linear Integral Boundary Value Problem

M. Rontó
Institute of Mathematics, University of Miskolc, Miskolc-Egyetemváros, Hungary
E-mail: matronto@uni-miskolc.hu

I. Varga

Faculty of Mathematics, Uzhhorod National University, Uzhhorod, Ukraine
E-mail: iana.varga@uzhnu.edu.ua

We study the non-linear integral boundary value problem

$$
\begin{align*}
& \frac{d x(t)}{d t}=f\left(t, x(t), \frac{d x(t)}{d t}\right), \quad t \in[a, b], \tag{1}\\
& g\left(x(a), x(b), \int_{a}^{b} h(s, x(s)) d s\right)=d . \tag{2}
\end{align*}
$$

We suppose that $f:[a, b] \times D \times D_{1} \rightarrow \mathbb{R}^{n}$ is continuous function defined on bounded sets $D \subset \mathbb{R}^{n}$, $D^{1} \subset \mathbb{R}^{n}$ (domain $D:=D_{\rho}$ will be concretized later, see (8), D^{1} is given) and $d \in \mathbb{R}^{n}$ is a given vector. Moreover, $f, g: D \times D \times D_{2} \rightarrow \mathbb{R}^{n}$ and $h:[a, b] \times D \rightarrow \mathbb{R}^{n}$ are Lipschitzian in the following form

$$
\begin{align*}
&|f(t, u, v)-f(t, \widetilde{u}, \widetilde{v})| \leq K_{1}|u-\widetilde{u}|+K_{2}|v-\widetilde{v}|, \tag{3}\\
&|g(u, w, p)-g(\widetilde{u}, \widetilde{w}, \widetilde{p})| \leq K_{3}|u-\widetilde{u}|+K_{4}|w-\widetilde{w}|+K_{5}|p-\widetilde{p}|, \tag{4}\\
& \mid h(t, u)-h(t, \widetilde{u})\left|\leq K_{6}\right| u-\widetilde{u} \mid \tag{5}
\end{align*}
$$

for any $t \in[a, b]$ fixed, all $\{u, \widetilde{u}\} \subset D,\{v, \widetilde{v}\} \subset D^{1},\{w, \widetilde{w}\} \subset D,\{p, \widetilde{p}\} \subset D_{2}$, where $D_{2}:=$ $\left\{\int_{a}^{b} h(t, x(t)) d t: t \in[a, b], x \in D\right\}$ and $K_{1}-K_{6}$ are non-negative square matrices of dimension n. The inequalities between vectors are understood componentwise. A similar convention is adopted for the operations "absolute value", "max", "min". The symbol I_{n} stands for the unit matrix of dimension $n, r(K)$ denotes a spectral radius of a square matrix K.

By the solution of the problem (1), (2) we understand a continuously differentiable function with property (2) satisfying (1) on $[a, b]$.

In the sequel, we will use an approach that was suggested in [1]. We fix certain bounded sets $D_{a} \subset \mathbb{R}^{n}$ and $D_{b} \subset \mathbb{R}^{n}$ and focus on the solutions x of the given problem with property $x(a) \in D_{a}$ and $x(b) \in D_{b}$. Instead of the non-local boundary value problem (1), (2), we consider the parameterized family of two-point "model-type" problems with simple separated conditions

$$
\begin{gather*}
\frac{d x(t)}{d t}=f\left(t, x(t), \frac{d x(t)}{d t}\right), \quad t \in[a, b], \tag{6}\\
x(a)=z, \quad x(b)=\eta, \tag{7}
\end{gather*}
$$

where $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right), \eta=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)$ are considered as parameters.
If $z \in \mathbb{R}^{n}$ and ρ is a vector with non-negative components, $B(z, \rho):=\left\{\xi \in \mathbb{R}^{n}:|\xi-z| \leq \rho\right\}$ stands for the componentwise ρ neighbourhood of z. For given two bounded connected sets $D_{a} \subset$
\mathbb{R}^{n} and $D_{b} \subset \mathbb{R}^{n}$, introduce the set $D_{a, b}:=(1-\theta) z+\theta \eta, z \in D_{a}, \eta \in D_{b}, \theta \in[0,1]$ and its componentwise ρ-neighbourhood by putting

$$
\begin{equation*}
D=D_{\rho}:=B\left(D_{a, b}, \rho\right):=\bigcup_{\xi \in D_{a, b}} B(\xi, \rho) . \tag{8}
\end{equation*}
$$

We suppose that

$$
\begin{equation*}
r\left(K_{2}\right)<1, \quad r(Q)<1, \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
Q:=\frac{3(b-a)}{10} K, \quad K=K_{1}+K_{2}\left[I_{n}-K_{2}\right]^{-1} K_{1} . \tag{10}
\end{equation*}
$$

On the base of function $f:[a, b] \times D \times D^{1} \rightarrow \mathbb{R}^{n}$ we introduce the vector

$$
\begin{equation*}
\delta_{[a, b], D, D^{1}}(f):=\frac{1}{2}\left[\max _{(t, x) \in[a, b] \times D \times D^{1}} f(t, x, y)-\min _{(t, x) \in[a, b] \times D \times D^{1}} f(t, x, y)\right] \tag{11}
\end{equation*}
$$

and suppose that the ρ-neighbourhood in (8) such that

$$
\begin{equation*}
\rho \geq \frac{b-a}{2} \delta_{[a, b], D, D^{1}}(f) . \tag{12}
\end{equation*}
$$

Investigation of solutions of parameterized problem (6) and (7) is connected with the properties of the following special sequence of functions well posed on the interval $t \in[a, b]$

$$
\begin{gather*}
x_{0}(t, z, \eta):=z+\frac{t-a}{b-a}[\eta-z]=\left[1-\frac{t-a}{b-a}\right] z+\frac{t-a}{b-a} \eta, \quad t \in[a, b], \tag{13}\\
x_{m+1}(t, z, \eta)=z+\int_{a}^{t} f\left(s, x_{m}(s, z, \eta), \frac{d x_{m}(s, z, \eta)}{d s}\right) d s \\
-\frac{t-a}{b-a} \int_{a}^{b} f\left(s, x_{m}(s, z, \eta), \frac{d x_{m}(s, z, \eta)}{d s}\right) d s+\frac{t-a}{b-a}[\eta-z], \quad t \in[a, b], \quad m=0,1,2, \ldots, \tag{14}
\end{gather*}
$$

Theorem 1. Let assumptions (3)-(5) and (9) hold. Then, for all fixed $(z, \eta) \in D_{a} \times D_{b}$:

1. The functions of the sequence (14) are continuously differentiable functions on the interval $t \in[a, b]$, have values in the domain $D=D_{\rho}$ and satisfy the two-point separated boundary conditions (7).
2. The sequence of functions (14) in $t \in[a, b]$ converges uniformly as $m \rightarrow \infty$ to the limit function

$$
\begin{equation*}
x_{\infty}(t, z, \eta)=\lim _{m \rightarrow \infty} x_{m}(t, z, \eta), \tag{15}
\end{equation*}
$$

satisfying the two-point separated boundary conditions (7).
3. The limit function $x_{\infty}(t, z, \eta)$ is a unique continuously differentiable solution of the integral equation

$$
\begin{equation*}
x(t)=z+\int_{a}^{t} f\left(s, x(s), \frac{d x(s)}{d s}\right) d s-\frac{t-a}{b-a} \int_{a}^{b} f\left(s, x(s), \frac{d x(s)}{d s}\right) d s+\frac{t-a}{b-a}[\eta-z], \tag{16}
\end{equation*}
$$

i.e. it is the solution of the Cauchy problem for the modified system of integro-differential equations:

$$
\begin{equation*}
\frac{d x}{d t}=f\left(t, x, \frac{d x(t)}{d t}\right)+\frac{1}{b-a} \Delta(z, \eta), \quad x(a)=z \tag{17}
\end{equation*}
$$

where $\Delta(z, \eta): D_{a} \times D_{b} \rightarrow \mathbb{R}^{n}$ is a mapping given by formula

$$
\begin{equation*}
\Delta(z, \eta):=[\eta-z]-\int_{a}^{b} f\left(s, x_{\infty}(s, z, \eta), \frac{d x_{\infty}(s, z, \eta)}{d s}\right) d s \tag{18}
\end{equation*}
$$

4. The following error estimate holds:

$$
\begin{equation*}
\left|x_{\infty}(t, z, \eta)-x_{m}(t, z, \eta)\right| \leqslant \frac{10}{9} \alpha_{1}(t, a, b-a) Q^{m}\left(1_{n}-Q\right)^{-1} \delta_{[a, b], D, D^{1}}(f) \tag{19}
\end{equation*}
$$

for any $t \in[a, b]$ and $m \geq 0$, where $\delta_{[a, b], D, D^{1}}(f)$ is given in (11) and

$$
\begin{equation*}
\alpha_{1}(t, a, b-a)=2(t-a)\left(1-\frac{t-a}{b-a}\right), \quad \alpha_{1}(t, a, b-a) \leq \frac{b-a}{2} \tag{20}
\end{equation*}
$$

Theorem 2. Under the assumption of Theorem 1, the limit function $x_{\infty}(t, z, \eta):[a, b] \times D_{a} \times D_{b} \rightarrow$ \mathbb{R}^{n} defined by (15) is a continuously differentiable solution of the original BVP (1), (2) if and only if the pair of vectors (z, η) satisfies the system of $2 n$ determining algebraic equations

$$
\left\{\begin{array}{l}
\Delta(z, \eta)=\eta-z-\int_{a}^{b} f\left(s, x_{\infty}(s, z, \eta), \frac{d x_{\infty}(s, z, \eta)}{d s}\right) d s=0 \tag{21}\\
g\left(x_{\infty}(a, z, \eta), x_{\infty}(b, z, \eta), \int_{a}^{b} h\left(s, x_{\infty}(s, z, \eta)\right) d s\right)-d=0
\end{array}\right.
$$

Note that similarly as in [2] the solvability of the determining system (21) on the base of (3)-(5) and (9) can be established by studying its m-th approximate versions:

$$
\left\{\begin{array}{l}
\Delta_{m}(z, \eta)=\eta-z-\int_{a}^{b} f\left(s, x_{m}(s, z, \eta), \frac{d x_{m}(s, z, \eta)}{d s}\right) d s=0 \tag{22}\\
g\left(x_{m}(a, z, \eta), x_{m}(b, z, \eta), \int_{a}^{b} h\left(s, x_{m}(s, z, \eta)\right) d s\right)-d=0
\end{array}\right.
$$

where m is fixed.
Let us apply the approach described above to the system of differential equations

$$
\left\{\begin{array}{l}
\frac{d x_{1}(t)}{d t}=\frac{1}{2} x_{2}^{2}(t)-t \frac{d x_{2}(t)}{d t} x_{1}(t)+\frac{1}{32} t^{3}-\frac{1}{32} t^{2}+\frac{9}{40} t \tag{23}\\
\frac{d x_{2}(t)}{d t}=\frac{1}{2} \frac{d x_{1}(t)}{d t} x_{1}(t)-t^{2} x_{2}(t)+\frac{15}{64} t^{3}+\frac{1}{8} t+\frac{1}{4}
\end{array} \quad t \in[a, b]=[0,1]\right.
$$

considered with non-linear two-point boundary conditions

$$
\left.\begin{array}{rl}
x_{1}(0) x_{2}(1)+\left[\int_{0}^{1} x_{1}(s) d s\right]^{2} & =-\frac{311}{14400} \tag{24}\\
x_{1}(1) x_{2}(0) & -\int_{0}^{1} x_{2}(s) d s
\end{array}\right)=-\frac{1}{8} .
$$

Introduce the vector of parameters $z=\operatorname{col}\left(z_{1}, z_{2}\right), \eta=\operatorname{col}\left(\eta_{1}, \eta_{2}\right)$. Let us consider the following choice of the subsets D_{a}, D_{b} and D^{1} :

$$
\begin{gather*}
D_{a}=D_{b}=\left\{\left(x_{1}, x_{2}\right):-0.1 \leq x_{1} \leq 0.2,-0.2 \leq x_{2} \leq 0.3\right\} \tag{25}\\
D^{1}=\left\{\left(\frac{d x_{1}}{d t}, \frac{d x_{2}}{d t}\right):-0.1 \leq \frac{d x_{1}}{d t} \leq 0.3,-0.1 \leq \frac{d x_{2}}{d t} \leq 0.3\right\} .
\end{gather*}
$$

In this case $D_{a, b}=D_{a}=D_{b}$. For $\rho=\operatorname{col}\left(\rho_{1}, \rho_{2}\right)$ involved in (12), we choose the vector $\rho=$ $\operatorname{col}(0.4 ; 0.4)$. Then, in view of (25) the set (8) takes the form

$$
\begin{equation*}
D=D_{\rho}=\left\{\left(x_{1}, x_{2}\right):-0.5 \leq x_{1} \leq 0.6,-0.6 \leq x_{2} \leq 0.7\right\} . \tag{26}
\end{equation*}
$$

A direct computations show that the conditions (3), (9), (10) hold with

$$
K_{1}=\left[\begin{array}{cc}
0.3 & 0.3 \\
0.15 & 1
\end{array}\right], \quad K_{2}=\left[\begin{array}{cc}
0 & 0.2 \\
0.1 & 0
\end{array}\right], \quad K=\left[\begin{array}{cc}
0.3367346939 & 0.5102040816 \\
0.1836734694 & 1.051020408
\end{array}\right]
$$

and, therefore,

$$
Q=\left[\begin{array}{cc}
0.1010204082 & 0.1530612245 \\
0.05510204082 & 0.3153061224
\end{array}\right], \quad r(Q)=0.349278<1
$$

Furthermore, in view of (11)

$$
\begin{gathered}
\delta_{[a, b], D, D^{1}}(f):=\frac{1}{2}\left[\max _{(t, x) \in[a, b] \times D \times D^{1}} f(t, x, y)-\min _{(t, x) \in[a, b] \times D \times D^{1}} f(t, x, y)\right]=\left[\begin{array}{c}
0.31 \\
0.7325
\end{array}\right], \\
\rho=\left[\begin{array}{l}
0.4 \\
0.4
\end{array}\right] \geq \frac{b-a}{2} \delta_{[a, b], D, D_{1}}(f)=\left[\begin{array}{c}
0.155 \\
0.36625
\end{array}\right] .
\end{gathered}
$$

We thus see that all the conditions of Theorem 1 are fulfilled, and the sequence of functions (14) for this example is uniformly convergent.

Applying Maple 14, we carried out the calculations.
It is easy to check that

$$
\begin{equation*}
x_{1}^{*}(t)=\frac{t^{2}}{8}-\frac{1}{10}, \quad x_{2}^{*}(t)=\frac{t}{4} \tag{27}
\end{equation*}
$$

is a continuously differentiable solution of the problem (1), (2). For a different number of approximations m, we obtain from (22) the following numerical values for the introduced parameters which are presented in Table 1:

Table 1.

m	z_{1}	z_{2}	η_{1}	η_{2}
0	-0.089643967	-0.0002812586	0.03176891	0.25026338
1	-0.0994489263	0.00051937347	0.0255001973	0.2504687527
4	-0.0999998827	$7.744981 \cdot 10^{-8}$	0.02499999973	0.3535533902
6	-0.1000000004	$-2.263731 \cdot 10^{-10}$	0.0249999996	0.2499999996
Exact	-0.1	0	0.025	0.25

On the Figure 1 one can see the graphs of the exact solution (solid line) and its zero (\diamond) and sixth approximation (\times) for the first and second coordinates.

The error of the sixth approximation $(m=6)$ for the first and second components:

$$
\max _{t \in[0,1]}\left|x_{1}^{*}(t)-x_{61}(t)\right| \leq 1 \cdot 10^{-9}, \quad \max _{t \in[0,1]}\left|x_{2}^{*}(t)-x_{62}(t)\right| \leq 5 \cdot 10^{-9} .
$$

Figure 1.

References

[1] A. Rontó, M. Rontó, J. Varha, A new approach to non-local boundary value problems for ordinary differential systems. Appl. Math. Comput. 250 (2015), 689-700.
[2] M. Rontó, Y. Varha, Constructive existence analysis of solutions of non-linear integral boundary value problems. Miskolc Math. Notes 15 (2014), no. 2, 725-742.

