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We study the problem

du(t)

dt
= f(t, u(t)), t ∈ [a, b], Φ(u) = d, (1)

where Φ : C([a, b],Rn) is a vector functional (possibly non-linear), f : [a, b]×Rn → Rn is a function
satisfying the Carathéeodory conditions in a certain bounded set, which will be specified below,
and d is a given vector.

Note that investigation of solutions of problem (1) in the paper [4] is based on reduction it to
a certain simpler parametrized “model-type” problem

du(t)

dt
= f(t, u(t)), t ∈ [a, b], u(a) = z, u(b) = η, (2)

where z := col(z1, . . . , zn), η := col(η1, . . . , ηn) are unknown parameters. Investigation of so-
lutions of problems (2) was connected with the properties of the special sequence of functions
{um(t, z, η)}∞m=0 well posed on the interval t ∈ [a, b]. We note that the sufficient condition for
the uniform convergence of sequence {um(t, z, η)}∞m=0 consists in the assumption that the max-

imal in modulus eigenvalue of the matrix Q = 3(b−a)
10 K is smaller than one, r(Q) < 1, where

|f(t, u1) − f(t, u2)| ≤ K|u1 − u2|, a.e. t ∈ [a, b], u1, u2 ∈ D, D is some closed bounded set.
To improve twice this sufficient convergence condition, in [1–3, 6] a special interval halving and
parametrization technique were suggested.

Following to the idea used in numerical methods for approximate solution of initial value prob-
lems for ordinary differential equations, let us fix a natural N and choose N +1 grid points

tk = tk−1 + hk, k = 1, . . . , N, t0 = a, tN = b, (3)

where hk, k = 1, . . . , N , are the corresponding step sizes. Thus, [a, b] is divided into N subintervals
[t0, t1], [t1, t2], [t2, t3], . . . , [tN−1, t1N ].

The aim of this note is to show that by using an N subintervals divisions of type (3) and
an appropriate parametrization technique one can N times improve the sufficient convergence
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condition. It seems that in the case of boundary value problems interval division for approximations
in analytic form was first used in [5].

Let us fix certain closed bounded sets Dk ⊂ Rn, k = 0, 1, 2, . . . , N , and focus on the absolutely
continuous solutions u of problem (1) whose values at the nodes (3) lie in the corresponding sets
Dk, i.e. u(tk) ∈ Dk, k = 0, 1, 2, . . . , N .

Based on Dk we introduce the sets

Dk−1,k := (1− θ)z(k−1) + θz(k), z(k−1) ∈ Dk−1, z(k) ∈ Dk, θ ∈ [0, 1], k = 1, 2, . . . , N,

and its some componentwise ρ(k)-vector neighbourhoods D[k] := B(Dk−1,k, ρ
(k)), k = 1, 2, . . . , N ,

where B(Dk−1,k, ρ
(k)) :=

∪
ξ∈Dk−1,k

B(ξ, ρ(k)) and B(ξ, ρ(k)) := {ν ∈ Rn : |ν− ξ| ≤ ρ(k)}. Recall that

Dk−1,k is the set of all possible straight line segments joining points of Dk−1 with points of Dk.
Let us “freeze” the values of u at the nodes (3) by formally putting

u(tk) = z(k) = col(z
(k)
1 , z

(k)
2 , . . . , z(k)n ), k = 0, 1, 2, . . . , N,

and consider the restrictions of equation (1) to each of the subintervals of the division (3).
Instead of (1) we introduce N “model-type” problems

dx(k)

dt
= f(t, x(k)), t ∈ [tk−1, tk], x(tk−1) = z(k−1), x(tk) = z(k), k = 1, 2, . . . , N, (4)

where the vectors z(0), z(1), . . . , z(N) ∈ Rn will be regarded as unknown parameters whose values
are to be determined. Note that the length of the intervals in problems (4), which will be studied
independently, are equal to step-size hk in opposition to b− a in the case of the original BVP (1).

To study the solutions of (4) we will use the special parametrized successive approximations

x
(k)
m (t, z(k−1), z(k)) constructed in analytic form and well defined on the intervals t ∈ [tk−1, tk],

k = 1, 2, . . . , N , respectively.

Assumption 1. There exist non-negative vectors ρ(1), ρ(2), . . . , ρ(N) such that

ρ(k) ≥ hk
2

δ[tk−1,tk],D[k](f) for all k = 1, 2, . . . , N,

where

δ[tk−1,tk],D[k](f) :=
1

2

[
ess sup

(t,x)∈[tk−1,tk]×D[k]

f(t, x)− ess inf
(t,x)∈[tk−1,tk]×D[k]

f(t, x)
]
. (5)

Assumption 2. There exist non-negative matrices K1,K2, . . . ,KN such that∣∣f(t, u1)− f(t, u2)
∣∣ ≤ Kk|u1 − u2|, a.e. t ∈ [tk−1, tk], u1, u2 ∈ D[k]. (6)

Assumption 3. The maximal in modulus eigenvalue of the matrix Qk = 3hk
10 Kk, k = 1, 2, . . . , N ,

is smaller than one, r(Qk) < 1.

Let us define for problems (4) the recurrence parametrized sequences of functions

x
(k)
0 (t, z(k−1), z(k)) := z(k−1) +

(t− tk−1)

hk

[
z(k) − z(k−1)

]
=

[
1− t− tk−1

hk

]
z +

t− tk−1

hk
z(k), (7)

t ∈ [tk−1, tk], k = 1, 2, . . . , N,

x(k)m (t, z(k−1), z(k)) := z(k−1) +

t∫
tk−1

f
(
s, x

(k)
m−1(s, z

(k−1), z(k))
)
ds

− t− tk−1

hk

tk∫
tk−1

f
(
s, x

(k)
m−1(s, z

(k−1), z(k))
)
ds+

t− tk−1

hk

[
z(k) − z(k−1)

]
, (8)



International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia 195

for all m = 1, 2, . . . , z(k−1) ∈ Rn, z(k) ∈ Rn and t ∈ [tk−1, tk], k = 1, 2, . . . , N .

Theorem 1. Let Assumptions 1–3 hold. Then, for any fixed vectors (z(0), z(1), . . . , z(N)) ∈ D0 ×
D1 × · · · ×DN and k = 1, 2, . . . , N :

1. The limit: lim
m→∞

x
(k)
m (t, z(k−1), z(k)) = x

(k)
∞ (t, z(k−1), z(k)), exists uniformly in t ∈ [tk−1, tk].

2. The limit function satisfies the conditions

x(k)∞ (tk−1, z
(k−1), z(k)) = z(k−1), x(k)∞ (tk, z

(k−1), z(k)) = z(k).

3. The function x
(k)
∞ (t, z(k−1), z(k)) is the unique absolutely continuous solution of the integral

equation

x(k)(t) = z(k−1) +

t∫
tk−1

f(s, x(k)(s)) ds− t− tk−1

hk

tk∫
tk−1

f(s, x(k)(s)) ds

+
t− tk−1

hk

[
z(k) − z(k−1)

]
, t ∈ [tk−1, tk],

in the domain D[k].

In other words, x
(k)
∞ (t, z(k−1), z(k)) is the unique solution of the following Cauchy problem for

the modified system of integro-differential equations:

dx(k)

dt
= f(t, x(k)) +

1

hk
∆(k)(z(k−1), z(k)), t ∈ [tk−1, tk], x(tk−1) = z(k−1),

where ∆(k)(z(k−1), z(k)) : Dk−1 ×Dk → Rn are the mapping given by formula

∆(k)(z(k−1), z(k)) = z(k) − z(k−1) −
tk∫

tk−1

f(s, x(k)(s)) ds.

4. The following estimates hold for m ≥ 0:∣∣x(k)∞ ( · , z(k−1), z(k))− x(k)m ( · , z(k−1), z(k))
∣∣

6 10

9
α1(t, tk−1, hk)Q

m
k (1n −Qk)

−1δ[tk−1,tk],D[k](f), t ∈ [tk−1, tk],

where δ[tk−1,tk],D[k](f)) is given in (5) and

|α1(t, tk−1, hk)| ≤
hk
2

, t ∈ [tk−1, tk].

Theorem 1 guarantees that under the assumed conditions, the functions x
(k)
∞ (t, z(k−1), z(k)) :

[tk−1, tk] → Rn, k = 1, 2, . . . , N , are well defined for all (z(k−1), z(k)) ∈ Dk−1 ×Dk. Therefore, by
putting

u∞(t, z(0), z(1), . . . , z(N)) :=


x
(1)
∞ (t, z(0), z(1)), if t ∈ [t0, t1],

x
(2)
∞ (t, z(1), z(2)), if t ∈ [t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
(N)
∞ (t, z(N−1), z(N)), if t ∈ [tN−1, tN ]

(9)
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we obtain a function u∞( · , z(0), z(1), . . . , z(N)) : [a, b] → Rn, which is well defined for the values
z(k) ∈ Dk, k = 0, 1, 2, . . . , N . This function is obviously continuous since at the points t = tk we
have

x(k)∞ (tk, z
(k−1), z(k)) = x(k)∞ (tk, z

(k), z(k+1)), k = 1, 2, . . . , N.

Theorem 2. Let the conditions of Theorem 1 hold. Then:

1. The function u∞(t, z(k−1), z(k)) : [a, b] → Rn defined by (9) is an absolutely continuous so-
lution of problem (1) if and only if the vectors z(k), k = 0, 1, 2, . . . , N , satisfy the system of
n(N + 1) numerical equations

∆(k)(z(k−1), z(k)) = z(k) − z(k−1) −
tk∫

tk−1

f
(
s, x(k)∞ (s, z(k−1), z(k))

)
ds = 0, k = 1, 2, . . . , N,

∆(N+1)(z(0), z(1), . . . , z(N)) = Φ
(
u∞( · , z(0), z(1), . . . , z(N))

)
− d = 0. (10)

2. For every solution U( · ) of problem (1) with U(tk) ∈ Dk, k = 0, 1, 2, . . . , N , there exist
vectors z(k), k = 0, 1, . . . , N , such that U( · ) = u∞( · , z(0), z(1), . . . , z(N)), where the function
u∞( · , z(0), z(1), . . . , z(N)) is given in (9).

Although Theorem 2 provides a theoretical answer to the question on the construction of a
solution of the BVP (1), its application faces difficulties due to the fact that the explicit form

of x
(j)
∞ (s, z(j−1), z(j)) and the functions ∆(k)(z(k−1), z(k)) : Dk−1 × Dk → Rn, k = 1, 2, . . . , N ,

∆(N+1)(z(0), z(1), . . . , z(N)) : D0×D1×· · ·×DN → Rn, appearing in (10) is usually unknown. This

complication can be overcome by using x
(k)
m (s, z(k−1), z(k)) of form (8) for a fixed m, which will lead

one to the so-called approximate determining equations:

∆(k)
m (z(k−1), z(k)) = z(k) − z(k−1) −

tk∫
tk−1

f
(
s, x(k)m (s, z(k−1), z(k))

)
ds = 0, k = 1, 2, . . . , N,

∆(N+1)
m (z(0), z(1), . . . , z(N)) = Φ

(
um( · , z(0), z(1), . . . , z(N))

)
− d = 0. (11)

Note that, unlike system (10), the m-th approximate determining system (11) contains only

terms involving the functions x
(j)
m ( · , z(j−1), z(j)) which are explicitly known.

It is natural to expect that approximations to the unknown solution of problem (1) can be
obtained by using the function

um(t, z̃(0), z̃(1), . . . , z̃(N)) :=


x
(1)
m (t, z̃(0), z̃(1)), if t ∈ [t0, t1],

x
(2)
m (t, z̃(1), z̃(2)), if t ∈ [t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
(N)
m (t, z̃(N−1), z̃(N)), if t ∈ [tN−1, tN ]

where z̃(k) ∈ Dk, k = 0, 1, 2, . . . , N , are solutions of the numerical system (11).

The constructivity of a suggested technique is shown on the following example with four absolute
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continuous solutions:

du1(t)

dt
=


u1u2 −

48

25
t3 +

44

25
t2 − 17

100
t− 7

10
, t ∈

[
0,

1

4

]
,

u1u2 +
48

25
t3 − 28

25
t2 − 131

20
t+

483

200
, t ∈

[1
4
,
1

2

]
,

du2(t)

dt
=


t(u1 − u2)−

16

5
t3 +

7

5
t2 − 131

20
t+

4

5
, t ∈

[
0,

1

4

]
,

t(u1 − u2) +
16

5
t3 − 9

5
t2 +

1

4
t+

3

5
, t ∈

[1
4
,
1

2

]
,

1
2∫

0

u21(s) ds =
47

1000
,

1
2∫

0

u22(s) ds =
47

1000
.

For N = 2, t0 = 0, t1 = 1
4 , t2 = 1

2 , m = 5 these four solutions are defined by the approximate

values of parameters z(0), z(1), z(2) given in table.

1-solution 2-solution 3-solution 4-solution

z̃
(0)
1 0.3999999998 0.4469892219 −0.1615332331 −0.2084976508

z̃
(0)
2 0.25 −0.3803603881 0.2769448823 −0.3583253898

z̃
(1)
1 0.2499999998 0.2446667248 −0.3540518758 −0.3583375962

z̃
(1)
2 0.2500000001 −0.3606725966 0.2579658912 −0.3583910008

z̃
(2)
1 0.2499999998 0.2046115983 −0.4035821965 −0.3584724797

z̃
(2)
2 0.4000000003 −0.1585615166 0.3508654384 −0.2082301147
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