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The paper considers machine learning algorithms. The focus is on semi-controlled
learning, which seems to be the balance between teaching accuracy with a teacher and the
cost of teaching methods without a teacher. Examples of careful processing of labelled data
sets for which supervised learning can be very effective are considered. The semi-supervised
and supervised approaches are compared, and the effectiveness of each is analyzed. The
paper considers S3VM and TSVM approach. The work aimed to investigate whether semi-
controlled methods can compete with controlled or even surpass them. Applying these
approaches to the proposed dataset to determine a more accurate classification of data,
namely at the reference limit, is described.
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1. Introduction. The work is performed by studying semi-supervised learning,
which is learning with a teacher. Supervised learning is a learning paradigm related
to studying how computers and natural systems, such as humans, remember in the
presence of both labelled and unlabeled data. Traditionally, learning is studied either
in an uncontrolled paradigm (e.g., clustering, external shape detection), where all
data is unlabeled, or in a controlled paradigm (e.g., classi�cation, regression), where
all information is labelled [1].

The purpose of semi-controlled learning is to understand how a combination of
labelled and unlabeled data can change learning behaviour and develop algorithms
that use such a combination [2, 6].

Supervised learning is of great interest in machine learning and data exchange,
as it can use readily available unlabeled data to improve tasks when labelled data is
scarce or expensive. Supervised learning also shows potential as a quantitative tool
for understanding human categories of knowledge where much of the contribution is
not apparent [3, 8].

The object of study of this work is semi-supervised learning is an extension of
supervised and supervised learning. SSL algorithms, as a rule, provide a way to
learn about the structure of data from unlabeled examples Reducing the need for
labels. Most problems in the real world have a lot of data, and labelling them is a
cumbersome or even impossible task. Supervised learning is one of the approaches to
overcoming these types of problems. For training, he uses only a small set, marked
by substantial unlabeled data. In semi-controlled training, it is essential what data
are labelled and, depending on the position of the data, its e�ectiveness changes [4,
10].

The semi-supervised learning paradigm attracts much attention in many di�erent
areas, from bioinformatics to web mining. It is easier to get unlabeled than labelled
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data because it requires less e�ort, experience and time [5, 12]. In this context,
traditional supervised learning is limited to using labelled data to build a model.

However, SSL is a learning paradigm for designing models with both labelled
and unlabeled data.In essence, SSL methods use unspeci�ed samples to change or
rethink a hypothesis derived only from labelled samples.

2. Review of methods. Before de�ning the approaches and bene�ts of SSL
and supervised learning algorithms, you should �rst learn what supervised learning
is in everyday use:

– Classi�cation of web pages;

– Detection of fraud;

– Face recognition;

– Language recognition;

– Genetic sequencing.

There is no doubt about the potential and growth of machine learning, and semi-
controlled education often seems to be a balance between the accuracy of teaching
with a teacher and the cost of teaching methods without a teacher [9, 13, 16].

Due to the careful processing of labelled data sets, supervised learning can be
very e�ective.

Imagine the following situation (See Figure 1):

Figure 1. Finding a solution.

In Figure 1, you have only two data points that fall into two di�erent categories,
and the drawn line is the limit of any controlled model [16, 17].

Now, let's say we add some unde�ned data to this data, as shown in the image
below:

Figure 2. Adding unlabeled instances.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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In Figure 2 you can see the di�erence between the two images listed above, the
same can be said that after adding data without labeling, the decision limit of our
model has become more accurate.

Thus, among the advantages of using unlabeled data are:
– Labeled data is expensive and di�cult to obtain, while unlabeled data is plen-
tiful and cheap.

– This improves the stability of the model through a more precise decision bound-
ary.
Typically, the purpose of categorizing images is to classify whether the image

belongs to the category or not. In this work, not only images are used for modelling,
but keywords related to labelled and unlabeled images and unlabeled images are used
to improve the classi�er through semi-control training.

Semi-supervised SVM is an SVM with variable 𝜉𝑖. This model is based
on the assumption that y𝑖 can be either −1 or 1.

Variables 𝜉𝑖 are variables, one for each sample, introduced to reduce the strength
imposed by the initial condition (min ‖𝑤‖), which is based on a hard stock that
incorrectly classi�es all samples that are on the wrong side. They are determined
by the loss of the hinge as follows [12]:

max
(︀
0.1− 𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏)
)︀

(1)

With these variables, we allow some points to cross the boundary without classi-
fying them if they remain at a distance controlled by the corresponding weak variable
(which is also minimized during the training phase to avoid uncontrolled growth).
The following diagram shows a schematic representation of this process:

The last elements of each high-density region are reference vectors. Between
them is a low-density region (it can also be zero density), where lies our separate
hyperplane [13].

Theoretically, each function, which is always bounded by two hyperplanes con-
taining reference vectors, is a good classi�er, but we need to minimize the empirical
risk (and, yes, the expected risk). Therefore, we are looking for the maximum mar-
gin between areas of high density. This model can separate two dense regions with
irregular boundaries. By adopting the kernel function, it can also work in nonlinear
scenarios. The main issue at the moment is the question of the best strategy for
the integration of labelled and unlabeled samples when we need to solve a similar
problem in a semi-supervised scenario [6, 9].

The �rst element to consider is the relationship. If we have a low percentage of
marked scores, the problem is mainly controlled, and the generalization skills learned
through the training kit should be su�cient to correctly classify all unmarked scores.
On the other hand, if the number of unlabeled samples is much larger, we return
to the almost pure clustering scenario (as discussed in the section on generative
Gaussian mixtures). This means that to use the power of semi-control methods in
low-density separation problems, we must consider situations where the labelled /
unlabeled ratio is approximately 1.0 [1, 8].
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Figure 3. Hyperlines SVM and S3VM.

Figure 3 shows two hyperlines - one SVM method, the other - S3VM. Blue dots
- unlabeled data, red - class 1, green - class 2.

We can see that SVM has a large gap from the hyperline, but there is a reasonably
high density. Although in S3VM, this interval is smaller, it is more accurate, and we
see that the boundaries of the reference vectors are located just on the last elements.
Then the gap is empty, i.e. the hyperline correctly classi�es the classes [5, 10].

Figure 4. Comparison of the accuracy of linear SVM and S3VM.

Figure 4 shows that the linear S3VM works much better than SVM at a relatively
small amount of labeled data (101, 102). As the amount of labeled data increases,
the accuracy of these two methods converges to one value [13].

Transductive Support Vector Machines. Another approach to the same
problem is o�ered by Transductive Support Vector Machines, which are especially
suitable when the unlabeled sample is not very noisy. The overall structure of
the data set is robust. Everyday use of TSVM is a classi�cation on a data set
that contains data points obtained from the same data generation process (e.g.,
medical photographs collected using the same tool) but only partially labelled for,
for example, economic reasons. Because all images can be trusted, the TSVM can
use a dataset structure to achieve accuracy more signi�cantly than the controlled
classi�er.

The idea is to keep the original goal with two sets of variables - the �rst for
labelled samples and the second for unlabeled:

min

[︃
| |𝑤| |+ 𝐶𝐿

𝑁∑︁
𝑖=1

𝜂𝑖 + 𝐶𝑈

𝑁+𝑀∑︁
𝑖=𝑁+1

𝜉𝑗

]︃
(2)

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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Formula (2) describes minimization of the objective function of the TSVMmethod.
Because this is a transductive approach, we need to treat unlabeled samples as
variable-labelled (depending on the learning process), imposing a constraint similar
to controlled items. From a certain point of view, this is equivalent to introducing
a preliminary idea of the �nal classi�cation, �rmly based on the cluster and the
assumption of smoothness.

In other words, the TSVM can trust the structure of the data set more than
the S3VM, and the data scientist has more �exibility in choosing behaviour. Dif-
ferent combinations of CL and CU give results from the complete trust given to
the labelled points to the opposite condition. As explained in the introduction, the
purpose of transductive learning is only to classify unlabeled samples using both
labelled and data set structures. However, contrary to inductive methods, the limi-
tations imposed by labelled samples can be relaxed in favour of a more geometrically
consistent solution.

Comparison of modified SVM methods. An alternative to S3VM is TSVM,
which tries to minimize the target with a condition based on variable labels. Thus,
the problem is divided into two parts: controlled, which is precisely the same as
the standard SVM, and partially controlled, which has a similar structure but does
not have �xed y labels. This problem is also not convex, and various optimization
strategies need to be evaluated to �nd the best trade-o� between accuracy and
computational complexity. TSVM's transductive approach relies heavily on the
data set structure; this is only a reasonably reasonable choice when both labelled
and labelled samples are known to be taken from the same data generation process.

Also, the TSVM can trust the data structure more than the S3VM. However,
S3VM is particularly suitable when the design of the unlabeled sample is partially
(or even wholly) unknown, and the primary responsibility for labelling should lie
with the labelled examples.

Formulation of the problem. It is necessary to solve the classi�cation prob-
lem, namely, to �nd the best strategies for semi-managed classi�cation, which could
compete with the approaches of controlled learning. The idea is to minimize costs
with unlabeled data, thus proving the need for semi-controlled systems.

You need to select a dataset for this task. Make Classi�cation is often used to
compare methods and solve various classi�cation problems because we can manually
set many parameters, thus creating our dataset.

This dataset is generated to solve n-class classi�cation problems.
First, clusters of points are created, usually distributed (std = 1, std is a tensor

with a standard deviation of the normal distribution of each source element) with
vertices of n_informative-sized hypercube with sides of length 2 * class_sep and each
class is assigned an equal number of clusters. This introduces an interdependence
between these features and adds data of di�erent types of noise.

The main idea is to generate centroids by some randomness for di�erent clusters
by their number. How accurately each centroid of the cluster can be controlled is set
by the value of the classes' parameter. Because data will be generated in a Gaussian
distribution with a deviation of 1, this argument contains how each cluster overlaps
with other clusters and adding correlations for informative features by multiplying
the matrix of functions by a randomly generated covariance matrix.

For each data point, the function changes its target to some random class (actu-
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ally, it can be adjusted to an actual type) with a speed of �ip_y, a number between
0 and 1. This makes some noise in the data set.

There are two things to control noise (or how di�erent classes of data overlap)
class_sep: determines how clusters are divided. A large value will cause the data
sets to intersect less.

�ip_y: determines how many data points are marked randomly (noise).
We will generate the following dataset with the following parameters:
Number of signs = 2,
Number of points = 1000,
Number of classes = 3.
As a result, we will receive such dataset:

Figure 5. Dataset visualization.

Create the worst data set by setting �ip_y = 0.3:

Figure 6. Dataset visualization.

In comparisons I use the following dataset:
Number of signs = 2,
Number of points = 200,
Number of classes = 2,
Randomness score = 1000.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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Figure 7. Visualization of the dataset for further work.

Figure 7 shows two classes. Blue dots - class 1, red - class 2. In the future we
will divide these dots into the third class - unlabeled data.

The next step is to implement the best strategies for conducting a semi-supervisory
classi�cation that could compete with the supervised approach.

To implement the calculations, you must additionally download the following
libraries:
– Sklearn;
– Scikit-learn;
– Matplotlib;
– Numpy;
– SVC.
Add a two-dimensional dataset, with labeled and unlabeled data (50% each).

There will be 200 marked, 150 unmarked.
Number of marked (Marked) - 200,
Number of unmarked labels (notMarked) - 150.
Classi�ed dataset:
[0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0
. . .
0 0 0 0 1 0 0 1 1 0 0 0 1 1 0]
In this array we contain the notation of two classes - class 1 (notation 0), and

class 2 (notation 1).
Add unlabeled data and change the structure of the dataset:
[-1 -1 -1 1 1 1 -1 1 1 1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 1 1
1 1 -1 1 1 1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 1 -1 -1 -1 -1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
Now the marked data is marked as -1 (class 1) and 1 (class 2), the unmarked

data is 0.
We also have the meaning of signs:
[[-1.05545237e+00 -9.32716065e-01]
[-1.09043812e+00 -1.50493373e+00]
[ 1.22265567e+00 -1.67332726e+00]
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[-8.89284086e-01 -6.713955478e-01]
[-3.42811427e-01 2.156535159e+00]
[ 4.19337679e-01 -1.156065519e+00]
[-1.74121223e+00 7.535533374e-01]
[ 1.02333526e+00 -3.215662196e-01]
[ 2.55739074e+00 -2.381244523e+00]
[-1.68630379e+00 2.599753855e+00]
[-9.12360330e-01-1.860154292e+00]
[-1.07341058e+00 -1.866005323e+00]
[-7.41616980e-01 2.6384354742e-01]
[ 1.40819086e-01 8.4433174723e-01]
[-2.186617475e+00 1.65834393e+00]
[ 7.62332115e-01 -1.9242596277e+00]
[-9.30308962e-01 -4.6841778176e-01]
[-8.69596340e-01 -1.9678237778e-01]
[ 1.259574172e+00 1.037730881e-01]
[-4.745967011e-01 6.549572729e-01]
. . . .
[-1.19220109e+00 -2.076067172e+00]]
We visualize this data.
Initial data:

Figure 8. Visualization of the initial dataset.

Let's mark 150 points as not marked we will receive the following schedule:

Figure 9. Visualization of the dataset after adding unlabeled data.

Figure 9 shows class 1 - blue dots, class 2 - red dots, and unmarked dots, which
are shown in gray.

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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Initialize our constant C with a value of 0.1.
We also need to specify the initial variables w (normal vector), b (o�set along

the y axis) and weak variables 𝜂𝑖, 𝜉𝑖, z𝑖.
For the values of w and b the sample will be [-0.1, 0.1], for the rest - [0.0, 0.1].
w - [-0.01975875 0.02131162] size= 2,
𝜂i - [0.04901986 0.02258875 0.01560311 0.04587382 0.0352636 0.00871087
0.08424851 0.0857313 0.0733342 0.09528408 0.05455903 0.06449431
0.05901452 0.04758597 0.01772247 0.07832201 0.07269677 0.09613403
0.02368684 0.06946833] - size = (Marked � notMarked) = 50,
𝜉i - [0.09799687 0.08343227 0.00994421 0.09511786 0.03769766 0.04774885
0.03169544 0.03145913 0.07661224 0.04653426 0.0142706 0.09941006
0.00069853 0.03098653 0.00093538 0.08666854 0.09679364 0.03014508
0.07180447 0.00543835 0.05054611 0.09301137 0.0755189 0.03497578
. . . .
0.0983856 0.09866195 0.08204016 0.09872704 0.06635472 0.07370298]
� size = notMarked = 150,
zi - [0.07221 0.09092026 0.03663539 0.07945663 0.0902111 0.05445606
0.01707353 0.01452738 0.08280087 0.08758461 0.09761866 0.07808664
0.04225707 0.07620617 0.06079858 0.02328625 0.05549894 0.07257086
. . .
0.08668178 0.08250609 0.03545815 0.01125552 0.06446315 0.01788753
0.03401358 0.05677734 0.09136062 0.08023616 0.08339306 0.0975363 ]
- size = notMarked = 150,
b - [0.0529] � size = 1.
Next we need to minimize the following expression:

min

[︃
| |𝑤| |+ 𝐶

(︃
𝑁∑︁
𝑖=1

𝜂𝑖 +
𝑁+𝑀∑︁
𝑖=𝑁+1

min(𝜉𝑗, 𝑧𝑗)

)︃]︃
. (3)

Formula 3 describes minimization of the objective function of the S3VM method.
The �rst term of the formula shown in Figure 3.3 imposes the standard SVM condi-
tion on the maximum separation distance, and the second block is divided into two
parts:
– We need to add N weak variables to ensure a soft gap for the labelled samples.
– At the same time, we need to consider unmarked points classi�ed as +1 or -1.
Thus, we have two corresponding sets of variables 𝜉𝑖 and 𝑧𝑖. However, we want
to �nd the minor variable for each possible pair to ensure that the unlabeled
sample is placed in a subspace where maximum accuracy is achieved.
Therefore, we need to impose the following restrictions:

𝑦𝑖
(︀
𝑤𝑇𝑥𝑖 + 𝑏

)︀
≥ 1− 𝜂𝑖 , 𝜂𝑖 ≥ 0 ∀ 𝑖 ∈ (1, 𝑁)(︀

𝑤𝑇𝑥𝑖 − 𝑏
)︀
≥ 1− 𝜉𝑗 , 𝜉𝑗 ≥ 0 ∀ 𝑗 ∈ (𝑁 + 1, 𝑁 +𝑀)

−
(︀
𝑤𝑇𝑥𝑖 − 𝑏

)︀
≥ 1− z𝑗 , z𝑗 ≥ 0 ∀ 𝑗 ∈ (𝑁 + 1, 𝑁 +𝑀)

(4)

Formula 4 describes conditions for the objective function.
The �rst constraint in Figure 3.4 is limited to the marked points, it is the same

as in the controlled SVM. The next two instead consider the possibility that an
unspeci�ed label can be classi�ed as +1 or -1.

We minimize the function with the above restrictions:
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Table 1. Minimize the target function S3VM.

Step
𝑛∑︀

i=0

𝜂i
𝑛∑︀

i=0

min(𝜉i, zj) Vector W Target func-
tion

0 2.410 5.182 [-0.022 0.042] 7.594
100 2.410 5.182 [-0.022 0.042] 7.594
200 2.410 5.182 [-0.022 0.042] 7.594
300 2.410 5.182 [-0.022 0.042] 7.594
400 -47.590 -144.818 [-0.000 -0.000] -192.408
500 -47.590 -144.818 [-0.000 -0.000] -192.408
600 -47.590 -144.818 [-0.000 -0.000] -192.408
700 -47.590 -144.818 [-0.000 -0.000] -192.408
800 -297.601 -894.851 [ 0.000 -0.000] -1192.452
900 -297.601 -894.851 [ 0.000 -0.000] -1192.452
1000 -297.601 -894.851 [ 0.000 -0.000] -1192.452
1100 -1547.657 -4645.019 [-0.000 -0.000] -6192.676
1200 -1547.657 -4645.019 [-0.000 -0.000] -6192.676
1300 -1547.657 -4645.019 [-0.000 -0.000] -6192.676
1400 -1547.657 -4645.019 [-0.000 -0.000] -6192.676
1500 -7797.937 -23395.859 [ 0.000 0.000] -31193.797
1600 -7797.937 -23395.859 [ 0.000 0.000] -31193.797
1700 -7797.937 -23395.859 [ 0.000 0.000] -31193.797
1800 -39049.337 -117150.060 [ 0.000 0.000] -156199.397
1900 -39049.337 -117150.060 [ 0.000 0.000] -156199.397
2000 -39049.337 -117150.060 [ 0.000 0.000] -156199.397
2100 -39049.337 -117150.060 [ 0.000 0.000] -156199.397
2200 -195306.338 -585921.062 [ 0.002 0.000] -781227.400
2300 -195306.338 -585921.062 [ 0.002 0.000] -781227.400
2400 -195306.338 -585921.062 [ 0.002 0.000] -781227.400
2500 -976591.342 -2929776.073 [ 0.009 0.001] -3906367.415
2600 -976591.342 -2929776.073 [ 0.009 0.001] -3906367.415
2700 -976591.342 -2929776.073 [ 0.009 0.001] -3906367.415
2800 -976591.342 -2929776.073 [ 0.009 0.001] -3906367.415
2900 -4883016.361 -14649051.131 [ 0.047 0.007] -19532067.491
3000 -4883016.361 -14649051.131 [ 0.047 0.007] -19532067.491
3100 -4883016.361 -14649051.131 [ 0.047 0.007] -19532067.491
3200 -24415141.456 -73245426.416 [ 0.236 0.033] -97660567.844
3900 -195321158.304 -585964226.958 [-3.108 0.268] -781285380.396
4000 -195321164.767 -585964246.348 [4.892 0.268] -781285399.114
4100 -195321164.767 -585964246.348 [ 4.892 0.268] -781285399.114
4200 -195321164.767 -585964246.348 [ 4.892 0.268] -781285399.114

Роздiл 2: Iнформатика, комп’ютернi науки та прикладна математика
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Table 1 contains 4200 iterations of minimization. Column
∑︀n

i=0 𝜂i contains the
value of the loss on the labeled data, Column

∑︀n
i=0min (𝜉i, zj) contains the value

of losses on unlabeled data. The vector 𝑊 contains the value of the normal vector.
This is our maximum distance.

Therefore, our target function has been minimized successfully and contains the
following values:

Vector of normal w � [ 4.892 0.268],
b (o�set along the y axis) � 0.0529.
Then we calculate the equation to obtain the classes of our points:

𝑌 = 𝑋 * 𝑤𝑇 + 𝑏 (5)

Formula 5 � equation of the line.
Having obtained the value of 𝑌 , we impose the following condition, which �nal-

izes our calculations and determines to which class our data belong:
If 𝑥 ≤ 0, then class −1,
If 𝑥 > 0, then class 1.
And we get the following result:
[ 1. 1. 1. 1. 1. -1. 1. -1. 1. 1. 1. -1. -1. -1. 1. -1. 1. -1.
-1. -1. -1. -1. -1. -1. 1. -1. -1. 1. 1. 1. 1. 1. 1. 1. 1. -1.
1. -1. -1. -1. 1. 1. 1. 1. -1. 1. 1. 1. -1. -1. 1. -1. 1. 1.
-1. 1. -1. 1. 1. -1. 1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. 1.
1. -1. 1. -1. 1. 1. -1. -1. 1. 1. 1. -1. 1. -1. -1. 1. -1. -1.
1. 1. 1. 1. -1. -1. 1. -1. 1. 1. 1. -1. 1. 1. -1. -1. -1. 1.
-1. 1. 1. 1. -1. 1. 1. -1. -1. -1. -1. 1. -1. 1. -1. -1. 1. 1.
-1. -1. -1. 1. -1. 1. -1. 1. 1. 1. 1. 1. -1. 1. 1. 1. 1. -1.
-1. -1. 1. -1. 1. 1.]
This array contains data after classi�cation. Two classes - class 1 (designation

1) and class 2 (designation -1).
Visualize the result: Graph showing labeled and unlabeled data (See Figure 10):

Figure 10. Visualization of the dataset after adding unlabeled data.

Figure 10 shows class 1 in blue, class 2 in yellow, and unlabeled data in gray.
Schedule after classi�cation (See Figure 11):
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Figure 11. Dataset visualization after classi�cation.

As you can see from Figure 11, the classi�cation was quite successful.
Almost all data are separated, so the hyperline is successful, but contains points

that have the wrong class. This applies to areas of low density.
TSVM approach calculations. Visualization of input data and addition of

unlabeled data is already described in the previous section, so let's start with the
initialization of the initial values of the variables w (normal vector), b (o�set along
the y-axis), 𝑦𝑢(variable for the second constraint condition, this condition must
occur as the �rst, but for unlabeled points) and weak variables 𝜂𝑖, 𝜉𝑖.

For values of w and b the sample will be [-0.1, 0.1], for 𝜂𝑖, 𝜉𝑖 � [0.0 0.1], and for
𝑦𝑢 � [-1.0, 0.1].

𝑤 � [-0.01975875 0.02131162] size= 2,
𝜂𝑖 � [0.04901986 0.02258875 0.01560311 0.04587382 0.0352636 0.00871087
0.08424851 0.0857313 0.0733342 0.09528408 0.05455903 0.06449431
0.07807958 0.05834814 0.07014477 0.0219474 0.06762864 0.02508063
0.05901452 0.04758597 0.01772247 0.07832201 0.07269677 0.09613403
0.08828265 0.09579222 0.00191197 0.0985599 0.08494134 0.00936994
. . .
0.02368684 0.06946833] - size = (Marked � notMarked) = 50,
𝜉𝑖 � [0.09799687 0.08343227 0.00994421 0.09511786 0.03769766 0.04774885
0.04659362 0.09062985 0.03513581 0.05616333 0.02952544 0.0812517
0.0750658 0.02050575 0.089315 0.06914368 0.01608069 0.00452057
0.069853 0.03098653 0.00093538 0.086660854 0.09679364 0.03014508
. . .
0.0983856 0.09866195 0.08204016 0.09872704 0.06635472 0.07370298]
� size = notMarked = 150,
𝑦𝑢 �
[ 0.04063871 0.24102629 0.64432042 -0.71708787 -0.07513165 -0.98990635
-0.2922075 0.00560538 -0.14231635 0.18206645 0.55786814 0.89377577
0.54712419 0.70159914 0.77993996 -0.46725851 -0.84731204 0.37656981
-0.03340037 -0.21165283 0.71084185 -0.40639437 0.44571452 0.01685231
. . .
0.7710943 0.29409488 -0.08909666 -0.31046288 -0.97264293 0.0147352 ] - size=

notMarked = 150,
𝑏 � [0.04816553] � size = 1.
Next you need to de�ne the constants CL and CU, thanks to which we can
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determine which data should be relied on more, if CL is a large value and SU is
a small one, it means that we trust more labeled data, if on the contrary, we look
more at the structure of unlabeled data.

So, let's set CL = 2.0 and SU = 0.1, which will mean that we will rely more on
the labeled data.

Basically, the idea is to preserve the objective function with two sets of lysis
variables (The lysis variable is a variable that is added to the constraint to convert
it from inequality to equality) - the �rst for labeled samples and the second for
unlabeled samples:

min

[︃
| |𝑤| |+ 𝐶𝐿

𝑁∑︁
𝑖=1

𝜂𝑖 + 𝐶𝑈

𝑁+𝑀∑︁
𝑖=𝑁+1

𝜉𝑗

]︃
. (6)

As in the previous algorithm, we assume that we have N labeled samples and M
unlabeled, and therefore the conditions are as follows:

𝑦𝑖
(︀
𝑤𝑇𝑥𝑖+𝑏

)︀
≥1−𝜂𝑖 , 𝜂𝑖≥0 ∀ 𝑖∈(1,𝑁)

𝑦
(𝑢)
𝑗 (𝑤𝑇𝑥𝑗+𝑏)≥1−𝜉𝑗 , 𝜉𝑗≥0 ∀ 𝑗∈(𝑁+1,𝑁+𝑀)

𝑦
(𝑢)
𝑗 ∈ {−1, 1}

(7)

The �rst limitation is the classic SVM, and it only works on labeled samples.
The second uses a variable 𝑦𝑢𝑗 with corresponding weak variables 𝜉𝑗, to impose

a similar condition on the labeled samples, while the third is needed to limit the
labels to -1 and 1.

We minimize the function with the above restrictions:

Table 2. Minimize the target TSVM function.

Step (
∑︀𝑁

𝑖 𝜂𝑖 )*CL (
∑︀𝑁

𝑖 𝜉𝑖 )*CU Vector W Target func-
tion

0 2.501 8.116 [-0.097 -0.092] 5.822
100 2.501 8.116 [-0.097 -0.092] 5.822
200 2.501 8.116 [-0.097 -0.092] 5.822
300 2.501 8.116 [-0.097 -0.092] 5.822
400 -97.499 -6.884 [-0.000 0.000] -195.687
500 -97.499 -6.884 [-0.000 0.000] -195.687
600 -97.499 -6.884 [-0.000 0.000] -195.687
700 -97.499 -6.884 [-0.000 0.000] -195.687
800 -597.677 -81.911 [ 0.000 0.000] -1203.545
900 -597.677 -81.911 [ 0.000 0.000] -1203.545
1000 -597.677 -81.911 [ 0.000 0.000] -1203.545
1100 -3098.566 -457.050 [ 0.000 0.000] -6242.837
1200 -3098.566 -457.050 [ 0.000 0.000] -6242.837
1300 -3098.566 -457.050 [ 0.000 0.000] -6242.837
1400 -3098.566 -457.050 [ 0.000 0.000] -6242.837
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Step (
∑︀𝑁

𝑖 𝜂𝑖 )*CL (
∑︀𝑁

𝑖 𝜉𝑖 )*CU Vector W Target func-
tion

1500 -15603.040 -2332.772 [ 0.000 0.000] -31439.356
1600 -15603.040 -2332.772 [ 0.000 0.000] -31439.356
1700 -15603.040 -2332.772 [ 0.000 0.000] -31439.356
1800 -78125.688 -11711.473 [-0.000 0.000] -157422.523
1900 -78125.688 -11711.473 [-0.000 0.000] -157422.523
2000 -78125.688 -11711.473 [-0.000 0.000] -157422.523
2100 -78125.688 -11711.473 [-0.000 0.000] -157422.523
2200 -390772.967 -58611.180 [-0.001 -0.008] -787407.052
2300 -390772.967 -58611.180 [-0.001 -0.008] -787407.052
2400 -390772.967 -58611.180 [-0.001 -0.008] -787407.052
2500 -1953100.666 -292967.544 [-0.005 -0.002] -3935498.087
2600 -1953100.666 -292967.544 [-0.005 -0.002] -3935498.087
2700 -1953100.666 -292967.544 [-0.005 -0.002] -3935498.087
2800 -1953100.666 -292967.544 [-0.005 -0.002] -3935498.087
2900 -9764739.162 -1464749.366 [-0.024 -0.011] -19675953.261
3000 -9764739.162 -1464749.366 [-0.024 -0.011] -19675953.261
3100 -9764739.162 -1464749.366 [-0.024 -0.011] -19675953.261
3200 -49277493.151 -7391962.039 [-0.120 -0.054] -99294182.496
3300 -49277493.151 -7391962.039 [-0.120 -0.054] -99294182.496
. . . . . . . . . . . . . . .
4900 -10834827210.337 -1625327305.35 [-26.31 -11.82] -21832186735

Table 2 contains 4900 iterations of minimization. Column (
∑︀𝑁

𝑖 𝜂𝑖)*𝐶𝐿 contains
the value of the loss on the tagged data, taking into account the constant 𝐶𝐿, by
which we determine how much we will rely on the tagged data. Column (

∑︀𝑁
𝑖 𝜉𝑖)*𝐶𝑈

contains the value of losses on unlabeled data, which also takes into account the
constant 𝐶𝑈 , contains the value of losses on unlabeled data, which also takes into
account the constant 𝐶𝑈 , by which we determine how much we will rely more on
the structure of the dataset than on the labeled data. The vector W contains the
value of the normal vector. This is our maximum distance.

Therefore, our target function has been minimized successfully and contains the
following values:

Vector of normal w � [-26.317 -11.823],
b (o�set along the y axis) � 0.04816553,
Then we calculate the equation to obtain the classes of our points:

𝑌 = 𝑋 * 𝑤𝑇 + 𝑏 (8)

Having obtained the value of 𝑌 , we impose the following condition, which �nal-
izes our calculations and determines to which class our data belong:

If 𝑥 ≤ 0, then class −1,
If 𝑥 > 0, then class 1.
And we get the following result:
[-1. -1. -1. 1. -1. 1. -1. 1. -1. -1. -1. 1. 1. 1. -1. 1. -1. 1.
1. 1. -1. 1. 1. 1. -1. 1. 1. -1. -1. 1. -1. -1. -1. -1. -1. 1.
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-1. 1. 1. 1. -1. -1. -1. -1. 1. -1. -1. -1. 1. 1. -1. 1. -1. -1.
1. -1. 1. -1. 1. -1. -1. 1. 1. -1. 1. -1. -1. -1. 1. -1. -1. -1.
-1. 1. 1. 1. -1. -1. 1. -1. -1. 1. -1. 1. -1. 1. 1. -1. 1. 1.
-1. -1. -1. -1. 1. 1. -1. 1. -1. -1. -1. 1. 1. -1. 1. 1. 1. -1.
1. -1. -1. -1. 1. -1. -1. 1. 1. 1. 1. -1. 1. -1. 1. 1. -1. -1.
1. 1. 1. -1. 1. -1. 1. -1. -1. -1. -1. -1. 1. -1. -1. -1. -1. 1.
1. -1. -1. 1. -1. -1.]
This array contains data after classi�cation. Two classes - class 1 (designation

1) and class 2 (designation -1).
Graph showing labeled and unlabeled data (Figure 12):

Figure 12. Visualization of the dataset after adding unlabeled data.

Class 1 is shown in blue, class 2 - in yellow, unlabeled data are marked in gray.
Schedule after classi�cation:

Figure 13. Dataset visualization after classi�cation.

Analyzing Figure 13, we see that TSVM also showed a pretty good result, divid-
ing the data into two classes. Further from the boundary of the section, all points
are classi�ed perfectly, but it is on the hyperline in areas of low density that you
can see points with erroneous classi�cation. Given the cost, we can assume that this
method has coped with the task.

SVM approach calculations. For comparison, use the semi-supervised SVM
approach and compare its results (which are quite expensive to obtain) with the
results of the semi-supervised approach.
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We use the dataset that we used in the two previous methods.
Number of marked labels - 200,
Number of unlabeled labels - 150.
Let us set the constant C = 1.
We use a trained SVM model with a linear function, and get the following results:
[-1 -1 1 1 -1 1 1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 1 -1 1 1 -1
-1 -1 1 -1 1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 1 -1 -1 1 1 1 -1
-1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1
1 -1 1 1 1 1 1 -1 1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 1 1 1
1 -1 1 -1 -1 1 1 1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 1 1 1
1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 1
-1 -1 -1 1 1 -1]
This array contains data after classi�cation. Two classes - class 1 (designation

1) and class 2 (designation -1).
Graph showing labeled and unlabeled data (Figure 14):

Figure 14. Visualization of the dataset after adding unlabeled data.

Class 1 is shown in blue, class 2 - in yellow, unlabeled data are marked in gray.
Schedule after classi�cation:

Figure 15. Dataset visualization after classi�cation.

As we can see in Figure 15, the classi�cation was better than in the two previous
methods. Almost all points are classi�ed correctly. The hyperline was successful
because the data was correctly separated both at the dividing line and in the high
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and low density zones. The protégé is also important for how costly these results
are. Semi-supervised approaches can also compete with controlled, because they
show close to the controlled approach.

3. Conclusions and prospects for further research. Modern semi-super-
vised approaches require serious assumptions and work poorly if assumptions are
violated (e.g., clustering assumptions). In some cases, they may perform worse
than a controlled classi�er trained only on labelled instances. In addition, the vast
majority need memory. However, my goal was to investigate whether semi-controlled
approaches can compete with controlled ones or outperform them.

Having gathered all the necessary material, I learned about S3VM and TSVM.
Applying these approaches to my dataset, I determined that the TSVM algorithm

more accurately classi�ed the data at the reference limit, but the result of S3VM
was not too bad.

The next step was to compare these algorithms with a method supervised ap-
proach, such as SVM. This algorithm showed the best results, but S3VM and TSVM
have very close results to SVM. And as mentioned above, you need to choose between
accuracy and cost.

You can also consider the case where the TSVM method will work better than
supervised SVM. This is the case when we have a minimal amount of labelled data
and a large number of unlabeled; consider this case:

Suppose we have 100 records, 90 of which are not macros.
Figures 16-18 show two graphs each. The �rst is the data for classi�cation;

blue is class 0, orange is class 1, green is unlabeled. The second is the data after
classi�cation. The red dots are divided into unlabeled squares of class 0 and labelled
circles of class 0. The blue dots are divided into unlabeled triangles (inverted down)
of class 1 and labelled triangles (upwards) of class 1.

SVM will work as follows:

Figure 16. Comparison of data before and after classi�cation (data before category
on the left, after - on the right)

In Figure 16, we see a good result, but this line is not entirely stable, so consider
how the TSVM will work.

We get a similar result by putting the following parameters in TSVM: CL = 1.0
and SU = 10.0 (the set parameters mean that we rely more on the structure of the
dataset than on the labelled data).
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Figure 17. Comparison of data before classi�cation and after (left data before
classi�cation, right - after).

However, by inverting the parameters, we get the following result: CL= 10.0 and
CU= 0.1 (the parameters set mean that we rely more on the tagged data than on
the dataset structure).

Figure 18. Comparison of data before and after classi�cation (before classi�cation
on the left, after - on the right).

In this case, in Figure 18, labelled data can use more �exible boundaries, while
unlabeled data is only allowed to be rigid.

We see that the hyperline runs entirely di�erently and better classi�es our data
at the dividing line and in the high and low-density zones. Also, this result is less
expensive because most of the unlabeled data is used.

As a result, we can assume that semi-supervised approaches solve the classi�ca-
tion problem no worse and sometimes better than supervised approaches.
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Бойко Н. Аналiз парадигми Semi-supervised learning для класифiкацiї мульти-
модальних даних.

У роботi розглядаються алгоритми машинного навчання. Увага зосереджена на
напiвконтрольному навчаннi, яке здається балансом мiж точнiстю навчання з учите-
лем та витратами методiв навчання без учителя. Розглядаються приклади ретельно-
го опрацювання мiчених наборiв даних, для яких навчання пiд наглядом може бути
дуже ефективним. Порiвнюються пiдходи semi-supervised та supervised та проаналiзо-
вана ефективнiсть кожного. В роботi розглядаються пiдходи S3VM та TSVM. Метою
роботи було дослiдити чи можуть напiвконтрольованi пiдходи конкурувати з контро-
льованими або навiть їх перевершити. Описується застосування даних пiдходiв до
запропонованого датасету для визначення бiльш точної класифiкацiї даних, а саме на
опорнiй межi.

Ключовi слова: навчання пiд наглядом, метод опорних векторiв, трандуктивний ме-
тод опорних векторiв, метод опорних векторiв для часткового навчання, прикладний
програмний iнтерфейс.
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