Mikhailo Slivka, Yurii Farinuk, Ruslan Mariychuk

ORGANIC CHEMISTRY

Organic chemistry for students of ecological specialities

Handbook

Prešov – 2021

This handbook contains material that is useful for students to prepare for workshops, modul control and exams – it contains summarized schemes and theoretical issues of program material of Organic Chemistry.

Handbook is intended for students of ecological specialties of universities.

Authors:	Mikhailo Slivka
	Yurii Farinuk
	Ruslan Mariychuk

Reviewers:Assoc. Prof. Michajlo Onysko, DrSc.Prof. Sergii Sukharev, DrSc.

Edition:FirstPublisher:University of Presov, Presov, 2021

© Text - Mikhailo Slivka, Yurii Farinuk, Ruslan Mariychuk, 2021 © Figures - Mikhailo Slivka, Yurii Farinuk, Ruslan Mariychuk, 2021 © University of Presov, 2021

ISBN 978-80-555-2842-7 contents **Preface**

Introduction to Organic Chemistry	8
A History of Organic Chemistry	8
The Subject of Organic Chemistry	10
Distribution of Organic Compounds in Nature and the Main Natural	11
Sources of Organic Compounds	
<u>Chapter 1</u> . General Organic Chemistry	13
The Structural Theory in Organic Chemistry	
Hybridization of Carbon atoms; σ - and π -bonds	
Conjugated systems. Aromaticity	18
Electronic effects	20
Types of chemical reactions	22
The nomenclature of organic compounds according to IUPAC	24
<u>Chapter 2</u> . Hydrocarbons	27
Alkanes (Saturated Hydrocarbons, Paraffin)	27
Homologous series. The general formula.	27
Nomenclature. Isomerism	28
Production of saturated hydrocarbons	
Physical properties of Alkanes	31
Chemical properties of alkanes	33
Alkenes (Ethylene Hydrocarbons, Olefins)	35
The general formula. Nomenclature. Isomerism	35
Production of Olefines	36
Physical properties of Alkenes	
Chemical properties of alkenes	38
Alkadienes	44
The general formula. Nomenclature. Isomerism	
Production of Alkadienes	
Physical properties of diene hydrocarbons	
Chemical properties of diene hydrocarbons	45
Alkynes (acetylene hydrocarbons)	
The general formula. Nomenclature. Isomerism	46
Production of Acetylenic Hydrocarbons	47
Physical properties of Alkynes	48
Chemical properties of Alkynes	48
Aromatic Hydrocarbons (Arenes).	
The reasons for the release of aromatic compounds in a special series.	51
Kekule formula	
Electrophilic substitution in the aromatic ring. The concept of π - and σ -	53
complexes	
Homologous series. The general formula. Nomenclature. Isomerism	55

Production of Aromatic Hydrocarbons of benzene row	55
Physical properties of Arenes	58
Chemical properties of Arenes	59
Environmental aspects of Hydrocarbons	64
<u>Chapter 3</u> . Alcohols. Phenols	66
Monofunctional alcohols. Homologous series.	66
The general formula. Nomenclature. Isomerism	66
Production of Alcohols	67
Physical properties of Alcohols. Hydrogen bond	69
Chemical properties of Alcohols	70
Phenols. Homologous series	74
The general formula. Nomenclature. Isomerism	74
Production of Phenols	75
Physical properties of Phenols	77
Chemical properties of Phenols	77
Environmental aspects of Alcohols and Phenols	81
<u>Chapter 4</u> . Aldehydes and Ketones	82
Carbonyl compounds	82
Homologous series. The general formula. Nomenclature. Isomerism	82
Production of Aldehydes and Ketones	84
Physical properties of carbonyl compounds	85
Chemical properties of Aldehydes and Ketones	86
Some representatives and their application	91
Peculiarities of aromatic Aldehydes and Ketones. Quinones	92
Isomerism. Nomenclature	92
Production of aromatic carbonyl compounds	93
Production of quinones	95
Physical properties of aromatic carbonyl compounds	96
Chemical properties of aromatic carbonyl compounds	96
Chemical properties of quinones	100
Environmental aspects of Aldehydes and Ketones	101
<u>Chapter 5.</u> Carboxylic Acids	102
Carboxylic Acids	102
Homologous series. The general formula. Nomenclature. Isomerism	102
Production of Carboxylic Acids	103
Physical properties of Carboxylic Acids; Hydrogen bond	105
Chemical properties of Carboxylic Acids	106
Features of the structure and chemical properties of formic acid	109
Peculiarities of aromatic Carboxylic Acids	111
Nomenclature. Isomerism. Classification	111

Production of aromatic Carboxylic Acids	111
Physical properties of aromatic carboxylic acids	
Chemical properties of aromatic carboxylic acids	112
Environmental aspects of Carboxylic Acids	
<u>Chapter 6.</u> Halogen-substituted Hydrocarbons. Peculiarities of Aromatic	116
Halogen-, Sulfo-, and Nitro-substituted Hydrocarbons	
Aliphatic halogen-substituted hydrocarbons	116
Classification. Nomenclature. Isomerism	117
Production of aliphatic halogen-substituted hydrocarbons	118
Physical properties of aliphatic halogen-substituted hydrocarbons	
Chemical properties of aliphatic halogen-substituted hydrocarbons	119
Peculiarities of aromatic halogen-substituted hydrocarbons	120
Classification. Nomenclature. Isomerism	120
Production of aromatic halogen-substituted hydrocarbons	121
Chemical properties of aromatic halogen-substituted hydrocarbons	123
Peculiarities of aromatic Sulfo-substituted Hydrocarbons	125
Classification. Nomenclature. Isomerism	125
Production of aromatic sulfonic substituted hydrocarbons	125
Chemical Properties of aromatic Sulfo-substituted Hydrocarbons	126
Some Functional derivatives of aromatic Sulfo-substituted Hydrocarb ons.	127
Saccharin	
Peculiarities of aromatic Nitro-substituted Hydrocarbons	128
Classification. Nomenclature. Isomerism	128
Production of aromatic Nitro-substituted Hydrocarbons	129
Chemical properties of aromatic Nitro-substituted Hydrocarbons	130
Environmental aspects of halogen-substituted hydrocarbons, aromatic	
halogen-, sulfo-, and nitro-substituted hydrocarbons	
<u>Chapter 7.</u> Amines	133
Amines.	133
Classification. Nomenclature. Isomerism	133
Production of Amines	133
Physical properties of Amines	135
Chemical properties of Amines	135
Peculiarities of aromatic Amines	137
Classification. Nomenclature. Isomerism	137
Production of aromatic amines	137
Chemical properties of aromatic amines	139
Diazo compounds. Diazonium salts	
The structure of diazo compounds. Physical properties	142
Chemical properties of diazo compounds	143

Environmental aspects of Amines and their derivatives	147
<u>Chapter 8.</u> Carbohydrates	148
Carbohydrates	148
Classification. Nomenclature. Isomerism	148
Fisher's formulas, Haworth's. Distribution of carbohydrates in nature and	140
	150
their importance in life processes	151
<i>Glycoside hydroxyl (cyclo-, oxo-tautomerism);</i> α <i>-,</i> β <i>-forms</i>	151
Production of monosaccharides	152
Chemical properties of monosaccharides	152
Featheres of disaccharides	156
Featheres of polysaccharides	159
Environmental aspects of Carbohydrates	162
<u>Chapter 9.</u> Amino acids and Proteins	163
Amino acids	163
Classification. Nomenclature. Isomerism	163
Production of Amino acids	166
Physical and Chemical properties of Amino acids	167
Featers of Proteins	169
Environmental aspects of Amino acids and Proteins	
Chapter 10. Organic Chemistry of Terpenes and related compounds	
<u>Chapter 11.</u> Organic Chemistry of Herbicides	183
General	183
History	183
Classification and Application	184
<u>Chapter 12.</u> Green organic chemistry	218
Principles of green chemistry	218
Green chemistry metrics	219
Application in organic chemistry	221

PREFACE

Organic chemistry in higher educational institutions is a basic discipline of teaching, necessary for the thorough mastering of fundamental disciplines of chemical profile – general and inorganic chemistry, analytical chemistry, physical chemistry. Organic chemistry is a "molecular tool" in the study of components of living matter and is a necessary basis for the study of chemistry of natural compounds, bioorganic chemistry, medical and pharmaceutical chemistry, green chemistry. At the present stage of development of science, there is a deep interpenetration of these sciences, which leads to the emergence of new scientific areas that study the surrounding world of wildlife.

The purpose of the publication: to provide students with basic knowledge, skills and abilities in the field of theoretical and applied organic chemistry, which are necessary for the development of scientific and methodological worldview, mastering general chemical disciplines and training at the modern level, mastering the most important methods of scientific experiment, skills, their use in the synthesis, isolation, purification and identification of organic compounds. The handbook is primarily aimed at students majoring in "Ecology and Environmental Protection" and is based on the principle of initial teaching of fundamental theoretical principles of organic chemistry, followed by a description of methods of obtaining and chemical properties of important classes of organic substances involved in natural processes and those that may be potential contaminants. The handbook presents the main theoretical principles of organic chemistry: classification and isomerism of organic substances, the nature of chemical bonds, the mutual influence of atoms in organic molecules, spatial structure and geometry of molecules, acid-base properties of organic substances, and mechanisms of organic reactions.

When considering the most important classes of organic compounds by functional groups, attention is paid to the methods of their production, chemical properties and practical application because organic substances have become dominant in human activities. Considerable attention is paid to hetero-functional and aromatic compounds, as most of the materials that accompany human life and its impact on the environment, in their structure contain the above compounds. Separate sections provide information on some important classes of organic compounds, the use, production and properties of which are often associated with the emergence of environmental problems. The presentation of the material is illustrated with the necessary drawings, diagrams and tables.

The handbook is recommended both for students majoring in "Ecological and Environmental Sciences" and non-chemical specialties.

INTRODUCTION TO ORGANIC CHEMISTRY

A History of Organic Chemistry

Conscious acquaintance of man with organic compounds began about 4000 years ago, when there is information about the first recipes for making alcoholic beverages (wine, beer), about dyeing fabrics with natural dyes (indigo, purple), about the extraction of various oils, perfumes, fats, and later and drugs.

Formaly, the development of organic chemistry in historical perspective can be divided into five periods:

- Empirical (4000 years ago early eighth century)
- Alchemy (early eighth end of the eighteenth century)
- Analytical (end of eighteenth the middle of the nineteenth century)
- Structural (second half of the nineteenth early of the twentieth century)
- Modern (early twentieth to these days).

The phase of long accumulation of factual material in the process of practical human activity was preceded by <u>Empirical period</u>. For example, in Egypt and India the art of dyeing cloth with natural dyes have been developed long ago. The ancient Romans and Egyptians were able to make the soap. Since ancient times people used the fermentation process to produce alcoholic beverages. Many natural substances were applied in ancient medicine.

The next epoch of organic chemistry, known as the Alchemy Period, was characterized by the empirical study of organic matter, and later by the isolation and purification of individual organic substances (for example, ethyl alcohol was obtained individually by English monks from fermentation products in the 10th century AD). During the Alchemy Period – the knowledge of organic matter was evolving very slowly. In this period the researchers have not noticed the difference between substances, isolated from inanimate nature, and substances, derived from plants and animals. However, later they began to pay attention to different stability and chemical behavior of substances of animate and inanimate nature, resulting division of chemistry (second half of XVII century) on mineral chemistry and chemistry of plants and animals. By the end of the eighteenth century the notable success in obtaining individual organic compounds, isolated from plants have been achieved: tartaric, citric, malic, lactic, mucous acids (Scheele, 1769-1785) and other substances. A number of organic compounds of animal origin were received – urea (Rouelle, 1773), uric acid (Scheele) and others. However, in the Empirical Period all studies were carried out lacking clear theoretical knowledge but through trial and error.

At the end of XVII – early XIX century the main attention of chemists was focused on studying the qualitative and quantitative composition of received

REFERENCES

1. CHERNIKH, V.P., B.S. ZIMENKOVS'KII and I.S. GRISCHENKO, CHERNIKH, V.P., ed. *Organic Chemistry: Handbook for Pharmacological Universities*. In 3 books. Kharkiv, Ukraine: Osnova, 1996, B. 1.- 145 p.; B. 2.- 479 p.; B. 3.- 256 p.

2. GUBSKII, Yu.I., Yu.V. KHMELEVS'KII, L.G. SUDARIKOVA and O.K. USATENKO, GUBSKII, Yu.I., ed. *Bioorganic Chemistry: Handbook*. Kyiv, Ukraine: HI, 1997, 285 s.

3. LASTUKHIN, U.O. and S.A. VORONOV. *Organic Chemistry: Textbook*. 3rd. Lviv, Ukraine: CE, 2009, 868 p.

4. LENDEL, V.G., I.M. BALOH, N.P. KHRIPAK, M.Yu. ONYSKO, M.V. SLIVKA and I.F. RUSIN. *Bioorganic Chemistry: Textbook*. 3rd. Uzhhorod, Ukraine: SAR "Patent", 2014, 360 p.

5. ONYSKO, M.Yu., Mar.V. SLIVKA, M.V. SLIVKA, P.P. ONYSKO a V.G. LENDEL. *Organic Chemistry: Textbook*. Uzhhorod, Ukraine: OAS "Patent", 2008, 200 p.

6. DALEY, Richard F. and Sally DALEY. *Organic chemistry*. Dubuque: Wm. C. Brown Publishers, 1996. ISBN 0697350908.

7. SOLOMONS, Graham T.W and Craig B. FRYHLE. *Organic chemistry*. 7th ed. New York: John Wiley and Sons, 2000. ISBN 0471190950.

8. Elemental Composition of the Human Body. *17 June 2016* [online]. -: The Wayback Machine, 2016, 17 June 2016 [cit. 2021-11-26]. Available from: https://www.scribd.com/document/387307102/elemental-composition-of-the-human-body

9. FRAÚSTO DA SILVA, J.J.R. and R.J.P. WILLIAMS. *The Biological Chemistry of the Elements: The Inorganic Chemistry of Life*. Oxford: Oxford University Press, 2001. ISBN 9780198508489.

10. ZUMDAHL, Steven S. and Suzan A. ZUMDAHL. *Chemistry*. 5th ed. Boston: Houghton Mifflin Company, 2000. ISBN 978-0-395-98581-6.

11. MCKENZIE, Lallie C., Lauren M. HUFFMAN and James E. HUTCHISON. The Evolution of a Green Chemistry Laboratory Experiment: Greener Brominations of Stilbene. *Journal of Chemical Education* [online]. 2005, **82**(2). ISSN 0021-9584. Available from: doi:10.1021/ed082p306

12. CLARK, James H. a Duncan J. MACQUARRIE. *Handbook of green chemistry and technology*. Malden, MA: Blackwell Science, 2002. ISBN 0-632-05715-7.

13. AMETA, Suresh C. and Rakshit AMETA. *GREEN CHEMISTRY: Fundamentals and Applications*. New Yokr: CRC Press Taylor & Francis Group, 2013. ISBN 978-1-4665-7826-5.

14. MARIYCHUK, R., D. GRULOVA, L.M. GRISHCHENKO, R.P. LINNIK and V.V. LISNYAK. Green synthesis of non-spherical gold nanoparticles using *Solidago canadensis* L. extract. *Applied Nanoscience* [online]. 2020, **10**(12), 4817-4826. ISSN 2190-5509. Available from: doi:10.1007/s13204-020-01406-x

ORGANIC CHEMISTRY Organic chemistry for students of ecological specialities

Handbook

Authors:	doc. Mikhailo Slivka, DrSc. doc. Yurii Farinuk, CSc. doc. Ruslan Mariychuk, CSc.	
Reviewers:	Assoc. Prof. Michajlo Onysko, DrSc. Prof. Sergii Sukharev, DrSc.	
Number of Pages: Circulation	231 pages 110	
Edition:	First	
Publisher:	University of Presov, Presov, 2021	
ISDN 070 00 EEE 2042 7		

ISBN 978-80-555-2842-7 EAN 9788055528427