-22-

УДК: 546.544.016+546.56+ 546.811 +546.23

Чорба О.Й., асп.; Філеп М.Й., к.х.н, с.н.с.; Погодін А.І., к.х.н, с.н.с.; Малаховська Т.О., к.х.н., с.н.с.; Сабов М.Ю., к.х.н., доц.

ТРІАНГУЛЯЦІЯ СИСТЕМИ Cu-Sn-Se

ДВНЗ «Ужгородський національний університет», кафедра неорганічної хімії, вул. Підгірна,46, м. Ужгород, 88000 e-mail: onika164604@gmail.com

Вступ

Купрум-вмісні сполуки проявляють різноманітні властивості, серед яких термоелектричні, фотоелектричні, оптичні магнітні, суперіонні, налпровідні та ін. [1-5]. визначає область шо ïχ практичного застосування. Останні роки активно проводяться дослідження складних селенідів купруму [1, 2]як перспективних термоелектричних (TE) матеріалів, шо зумовлено їх перевагою над традиційними ТЕ матеріалами. Подібно до бінарного Cu₂Se [6,7] тернарні селеніди володіють низькою фононною теплопровідністю та високою електропровідністю i термоелектричною добротністю. Зазвичай дані купрум-вмісні сполуки відносяться до провідників р-типу та кристалізуються чотирьох основних V структурних типах. серед яких варто виокремити алмазоподібною фази 3 структурою [1, 2]. Тетраедрична координація є характерною не лише для атому купруму але і для інших елементів, що зумовлює значну варіативність можливих складів [8]. Літературні дані вказують на існування у потрійній системі Cu-Sn-Se двох сполук з алмазоподібною структурою - Cu₂SnSe₃ та Cu_2SnSe_4 [9-13]. Однак, однозначно підтверджено існування лише сполуки Cu₂SnSe₃. Даних щодо дослідження фізикохімічної взаємодії у системі Cu-Sn-Se у концентраційному інтервалі всьому не Автори [9, 10] вказують знайдено. на квазібінарність перерізів Cu₂Se-SnSe, Cu₂Se-SnSe₂, Cu₂SnSe₃-SnSe та Cu₂SnSe₃-Se. У роботі [14], якій обмежилися В концентраційним інтервалом Cu-Sn-SnSe- $Cu_2SnSe_3-Cu_2Se-Cu_1$ підтверджено квазібінарність перерізів Cu₂Se-SnSe(SnSe₂), Cu₂SnSe₃-SnSe та встановлено часткову квазіподвійність Cu₂Se-Cu₃Sn, SnSe-Cu₃Sn та SnSe-Cu₆Sn₅. Область системи Cu-Sn-Se збагачена селеном є слабо вивченою, а обмежені літературні дані суперечливі. Так згідно [12, 13] у селеновому куту системи наявна сполука Cu₂SnSe₄ із перспективними властивостями, у [10] вказується на простий евтектичний тип взаємодії у системі Cu₂SnSe₃-Se, що виключає існування фази Cu₂SnSe₄. Таким чином, за результатом аналізу літературних даних однозначним можна вважати квазібінарність перерізів Cu₂Se-SnSe, Cu₂Se-SnSe₂ та існування фази Cu₂SnSe₃. Зважаючи на вишенавелене. детальне дослідження системи Cu-Sn-Se є актуальним.

Експериментальна частина

Досліджувані сплави одержували елементарних сплавлянням компонентів високої чистоти (99.99 мас.%) у вакуумованих (10⁻² Па) кварцових ампулах. Максимальна температура синтезу становила 1160°С, гомогенізуючий відпал проводили при 170°С протягом 168 годин. Одержані сплави допомогою рентгенівського вивчали за аналізу (PΦA, фазового порошковий ДРОН-4-07, дифрактометр СиКа-випромінювання, Ni-фільтр, $\Delta 2\theta = 0.02^\circ$, експозиція 0.5 с) та диференційного термічного аналізу (ДТА, термопара типу К, еталон Al₂O₃). Фазовий аналіз проводили шляхом порівняння експериментальних та розрахованих за літературними даними дифрактограм фаз наявних у системі Cu-Sn-Se.

Результати та їх обговорення

Бінарні перерізи Cu–Sn, Cu–Se та Sn–Se характеризуються утворенням великої

© Чорба О.Й., Філеп М.Й., Погодін А.І., Малаховська Т.О., Сабов М.Ю. DOI: 10.24144/2414-0260.2021.2.22-27

-23-

кількості подвійних сполук [15], однак лише три з них – Cu₂Se, SnSe та SnSe₂ володіють конгруентним характером плавлення, а у системі Cu–Sn всі шість інтерметалідів плавляться інконгруентно. Фаза Cu₂SnSe₃, що утворюється на перерізі Cu₂Se–SnSe₂ [9, 10] плавиться конгруентно при 695°С. Значна кількість існуючих фаз у системі Cu–Sn–Se ускладнює її тріангуляцію (рис. 1). Тому, для спрощення процесу тріангуляції здійснено аналіз та порівняння температурних та концентраційних інтервалів існування фаз з інконгруентним характером плавлення.

Подвійні системи Cu–Sn, Cu–Se характеризуються наявністю фаз, що існують у вузькому температурному інтервалі або зазнають твердофазного розкладу. В той же час інконгруентні селеніди (CuSe, CuSe₂) та інтерметаліди $(Cu_6Sn_5,$ Cu_3Sn) купруму існують V широкому температурному інтервалі (є стабільними нижче відповідних перитектичних температур розкладу). Внаслідок цього, нижче температур перитектичного розкладу, перерізи за участю інконгруентних можуть фаз бути квазібінарними. Тому при проведенні тріангуляції вони були враховані. Таким чином, температура гомогенізуючого відпалу, шо повинна перешкоджати формуванню термічно нестабільних фаз була нами обмежена 170°С. Дана температура є нижче температур плавлення як найбільш легкоплавкого компоненту (Se) так i відповідних твердофазних процесів.

За даних умов у досліджуваній потрійній системі Cu–Sn–Se існують сім бінарних фаз: Cu₂Se, CuSe, CuSe₂, Cu₆Sn₅, Cu₃Sn, SnSe та SnSe₂. Дані щодо фази Cu₂SnSe₄ є суперечливими, у зв'язку із чим для підтвердження або спростування існування фази Cu₂SnSe₄ здійснено його синтез та дослідження одержаного зразку методом РФА. Фазовий склад одержаного зразку відповідає суміші Cu₂SnSe₃ та Se (рис. 2).

Додатково здійснено дослідження методом ДТА сплавів, шо відповідає складу Cu_2SnSe_4 (4) та двох точок (3, 5), які знаходяться на можливому перерізі Cu_2SnSe_3 —Se (рис. 3). Криві нагріву сплавів 3-5 містять ендотермічний ефект при 217°С, що співпадають з температурою моноваріантної горизонталі у системі Cu₂SnSe₃–Se наведеній у роботі [17].

Отже, існування тернарної фази Cu_2SnSe_4 не підтверджено. В той же час результати ДТА та РФА вказують на квазібінарність перерізу Cu_2SnSe_3 —Se, про що вказувалось у роботі [17].

Враховуючи вище сказане, при тріангуляції враховувалась 7 бінарних фаз, тернарна фаза Cu_2SnSe_3 та квазібінарність перерізів $Cu_2Se-SnSe$, $Cu_2Se-SnSe_2$, Cu_2SnSe_3-Se . Таким чином, загальна система Cu-Sn-Se поділяється на 2 підсистеми: $Cu-Sn-SnSe-Cu_2Se$ та $Cu_2Se-SnSe-Se$ (рис. 4), тріангуляція яких здійснювалася окремо та незалежно один від одного.

Рис. 1. Можливі квазібінарні перерізи та вибір експериментальних точок у системі Cu–Sn–Se.

Рис. 2. Експериментальна дифрактограма Cu₂SnSe₄ та розраховані за літературними даними дифрактограми Cu₂SnSe₃ [11] та Se [16].

Оскільки квазіпотрійна система Cu_2Se -SnSe-SnSe₂ містить лише один переріз (Cu₂SnSe₃-SnSe), що не перетинається іншими, тому він однозначно є квазібінарним.

Квазіпотрійна система Cu₂Se-Cu₂SnSe₃-Se містить два перерізи, які при врахуванні квазібінарності системи Cu₂SnSe₃-Se, не перетинаються іншими, а квазібінарними. вілтак є також Для підтвердження даного факту нами досліджено фазовий склад сплавів 6 та 7. Дифрактограми зразків 6 та 7 є двофазними (рис. 5) та містять рефлекси Cu₂SnSe₃ та CuSe (6) і CuSe₂ (7) відповідно. Одержані результати підтверджують квазібінарність перерізів Cu₂SnSe₃-CuSe та Cu₂SnSe₃-CuSe₂ (рис. 4).

Рис. 3. Криві нагріву сплавів, що відповідають експериментальним точкам 3-5.

Рис. 4. Квазібінарні перерізи системи Cu–Sn–Se з врахуванням квазібінарності перерізів Cu₂Se–SnSe, Cu₂Se–SnSe₂ та Cu₂SnSe₃–Se.

Для встановлення квазібінарних перерізів Cu-Sn-SnSe-Cu₂Se підсистеми зійснювали синтез та фазовий аналіз лише значущих точок, що знаходяться в областях найбільшої інформативності [18]. ∐е забезпечує встановлення характеру максимальної кількості перетинаючих перерізів при мінімальній кількості синтезів.

У підсистемі Cu–Sn–SnSe–Cu₂Se здійснено синтез та фазовий аналіз двох точок: Cu₆Sn₅+SnSe \leftrightarrow Sn+Cu₂Se (1) та Cu₆Sn₅+Cu₂Se \leftrightarrow Cu+SnSe (2). Дифрактограми зразків 1 та 2 є багатофазними (рис. 6).

та 7 у системі Си–Sn–Se.

Так дифрактограма зразу 1 містить рефлекси нтм-SnSe та інтерметаліду Cu_6Sn_5 . Дифрактограма зразку 2 характеризується наявністю трьох систем рефлексів, що належать селенідам нтм-Cu₂Se і нтм-SnSe та інтерметаліду Cu₃Sn. Таким чином встановлено, що у підсистемі Cu–Sn–SnSe–Cu₂Se квазібінарними є перерізи Cu₆Sn₅–SnSe, Cu₃Sn–SnSe та Cu₃Sn–Cu₂Se (рис. 7).

Рис. 6. Експериментальні дифрактограми точок 1 та 2 у системі Cu–Sn–Se.

-25-

Рис. 7. Квазібінарні перерізи системи Cu–Sn–Se.

Квазіподвійність перерізів Cu₆Sn₅– SnSe, Cu₃Sn–SnSe та Cu₃Sn–Cu₂Se підтверджує результати представлені у роботі [14].

Висновки

Методами РФА та ДТА встановлено, що у системі Cu-Sn-Se формується лише одна тернарна сполука – Cu₂SnSe₃. Утворення фази Cu₂SnSe₄ не підтверджено, а сплав, що відповідає її стехіометричному складу є сумішшю Cu₂SnSe₃ та Se. За результатами фазового аналізу комбінації У літературними проведено даними тріангуляцію системи Си-Sn-Se при 170°С. Підтверджено квазібінарність перерізів Cu₂Se–SnSe, Cu₂Se–SnSe₂, Cu₂SnSe₃–Se, Cu₂SnSe₃-SnSe, Cu₆Sn₅-SnSe, Cu₃Sn-SnSe i Cu₃Sn-Cu₂Se вперше встановлено та квазібінарність перерізів Cu₂SnSe₃-CuSe та Cu₂SnSe₃-CuSe₂.

Список використаних джерел

1. Qiu P., Shi X., Chen L. Cu-based thermoelectric materials. *Energy Storage* Mater. 2016, 3, 85–97. Doi: 10.1016/j.ensm.2016.01.009.

2. Wei T.R., Wu C.F., Li F., Li, J.F. Low-cost and environmentally benign selenides as promising thermoelectric materials. *J. Materiomics.* 2018, 4(4), 304–320. Doi: 10.1016/j.jmat.2018.07.001.

3. Schlachter A., Harvey P.D. Properties and applications of copper halide-chalcogenoether and - chalcogenone networks and functional materials. *J. Mater. Chem. C.* 2021, 9, 6648–6685. Doi: 10.1039/D1TC00585E.

4. Thirumavalavan S., Mani K., Sagadevan S. Investigation of the structural, optical and electrical properties of copper selenide thin films. *Materials*

Research. 2015, 18(5), 1000–1007. Doi: 10.1590/1516-1439.039215.

5. Boltaev G.S., Ganeev R.A., Krishnendu P.S. Zhang K., Guo C. Nonlinear optical characterization of copper oxide nanoellipsoids. *Sci. Rep.* 2019, 9, 11414. Doi: 10.1038/s41598-019-47941-8.

6. Byeon D., Sobota R., Delime-Codrin K., Choi S., Hirata K., Adachi M., Takeuchi T. Discovery of colossal Seebeck effect in metallic Cu₂Se. *Nat. Commun.* 2019, 10(1), 1–7. Doi: 10.1038/s41467-018-07877-5.

7. Peng P., Gong Z.N., Liu F.S., Huang M.J., Ao W.Q., LiY., Li J.Q. Structure and thermoelectric performance of β -Cu₂Se doped with Fe, Ni, Mn, In, Zn or Sm. *Intermetallics*. 2016, 75, 72–78. Doi: 10.1016/j.intermet.2016.05.012.

8. Shay J.L, Wernick J.H Ternary chalcopyrite semiconductors: growth, electronic properties and applications. Oxford: *Pergamon Press*, 1975. P. 254.

9. Rivet J., Laruelle P., Flahaut, J. Phase Diagrams of the SnSe-Cu₂Se and SnSe₂-Cu₂Se Systems. Order-Disorder Phenomena and Thermoconductivity of Cu₂SnSe₃ Compound. *Bull. Soc. Chim. Fr.* 1970, 5, 1667–1670.

10. Berger L.I., Kotina E.K. Phase Diagrams of the Cu₂Se-SnSe₂, Cu₂SnSe₃-SnSe and Cu₂Se-SnSe Systems. *Inorg. Mater.* 1973, 9 (3), 330–322.

11. Delgado G.E., Mora A.J., Marcano G., Rincón C. Crystal structure refinement of the semiconducting compound Cu_2SnSe_3 from X-ray powder diffraction data. *Mat. Res. Bull.* 2003, 38(15), 1949–1955. Doi: 10.1016/j.materresbull.2003.09.017.

12. Marcano G., Rincón C., Marín G., Tovar R. Crystal growth and characterization of the cubic semiconductor Cu_2SnSe_4 . *J. Appl. Phys.* 2002, 92, 1811–1815. Doi:10.1063/1.1492018.

13. Ge Z., Salvador J.R., Nolas G.S. Selective Synthesis of Cu_2SnSe_3 and Cu_2SnSe_4 Nanocrystals. *Inorg. Chem.* 2014, 53, 4445–4449. Doi: 10.1021/ic500100e.

14. Мороз В.М., Щурок А.І., Олексин Д.І., Мороз М.В. Т-х простір Cu-Sn-SnSe-Cu₂SnSe₃-Cu₂Se-Cu системи Cu-Sn-Se. *Фізика і хімія твердого тіла*. 2002, 3 (4), 654–658.

15. ASM International Handbook Committees. ASM handbook. Vol.3, Alloy phase diagrams (8th Edition). Materials Park. Ohio: *ASM International*, 1992. P. 1741.

16. Cherin P., Unger P. The crystal structure of trigonal selenium. *Inorg. Chem.* 1967, 6(8), 1589–1591. Doi:10.1021/ic50054a037.

17. Berger L.I., Kotina E.G., Oboznenko Yu.V., Obodovskaya A.E. Cross Sections of the System Cu-Sn-Se. *Inorg. Mater.* 1973, 9(2), 203–207.

18. Niepel L, Malinovský M. Triangulation of phase diagrams. *Chem. Pap.* 1978, 32(6), 810–820.

-26-

Стаття надійшла до редакції: 12.11.2021 р.

TRIANGULATION OF THE Cu-Sn-Se SYSTEM

Chorba O.J., Filep M.J., Pogodin A.I., Malakhovska T.O., Sabov M.Yu.

Uzhhorod National University, Pidgirna St. 46, 88000, Uzhhorod; Ukraine, onika164604@gmail.com

Copper-containing compounds exhibit a wide range of properties, including thermoelectric, photoelectric, optical magnetic, superionic, superconducting, etc., which determines the areas of their practical use. In recent years, studies of complex copper selenides as promising thermoelectric (TE) materials have been actively carried out due to their advantages over traditional TE materials. Like binary Cu_2Se , ternary selenides have low phonon thermal conductivity and high electrical conductivity and thermoelectric quality factor. Typically, copper-containing compounds belong to the p-type conductors and crystallize in four main structural types, among which phases with a diamond-like structure should be distinguished. Data on the nature of physicochemical interaction in the Cu - Sn - Se system are limited and contradictory. In view of this, it is important to carry out the triangulation of the ternary system Cu-Sn-Se, which is the first stage of the study of multicomponent systems.

The investigated alloys of the Cu – Sn – Se system were obtained by fusing elementary components of high purity in vacuum quartz ampoules. The obtained alloys were investigated using X-ray powder diffraction (XRD) and differential thermal (DTA) analyzes. At the temperature of homogenizing annealing (170 ° C) there are seven binary Cu₂Se, CuSe, CuSe₂, Cu₆Sn₅, Cu₃Sn, SnSe₂ and one ternary phase Cu₂SnSe₃ stable in the Cu – Sn – Se ternary system. The existence of the ternary phase of Cu₂SnSe₄ has not been confirmed, because the alloy corresponding to its stoichiometric composition is a mixture of Cu₂SnSe₃ and Se. To establish quasibinary sections of the Cu – Sn – Se system were performed the synthesis and phase analysis of only the significant points in the most informative areas. This ensures the establishment of the nature of the maximum number of quasibinary sections with a minimum number of syntheses. According to the results of phase analysis in combination with the literature data the triangulation of the Cu – Sn – Se system was carried out at 170 ° C. The quasibinarity of the Cu₂Se – SnSe, Cu₂Se – SnSe₂, Cu₂SnSe₃ – Se, Cu₂SnSe₃ – SnSe, Cu₂SnSe₃ – SnSe, Cu₂Sn – SnSe, Cu₂Se sections was confirmed, and the quasibinarity of the Cu₃Sn – Cu₂Se was established at first.

Keywords: triangulation; quasibinary section; phase analysis.

References

1. Qiu P., Shi X., Chen L. Cu-based thermoelectric materials. *Energy Storage* Mater. 2016, 3, 85–97. Doi: 10.1016/j.ensm.2016.01.009.

2. Wei T.R., Wu C.F., Li F., Li, J.F. Low-cost and environmentally benign selenides as promising thermoelectric materials. *J. Materiomics*. 2018, 4(4), 304–320. Doi: 10.1016/j.jmat.2018.07.001.

3. Schlachter A., Harvey P.D. Properties and applications of copper halide-chalcogenoether and -chalcogenone networks and functional materials. *J. Mater. Chem. C.* 2021, 9, 6648–6685. Doi: 10.1039/D1TC00585E.

4. Thirumavalavan S., Mani K., Sagadevan S. Investigation of the structural, optical and electrical properties of copper selenide thin films. *Materials Research*. 2015, 18(5), 1000–1007. Doi: 10.1590/1516-1439.039215.

5. Boltaev G.S., Ganeev R.A., Krishnendu P.S. Zhang K., Guo C. Nonlinear optical characterization of copper oxide nanoellipsoids. *Sci. Rep.* 2019, 9, 11414. Doi: 10.1038/s41598-019-47941-8.

6. Byeon D., Sobota R., Delime-Codrin K., Choi S., Hirata K., Adachi M., Takeuchi T. Discovery of colossal Seebeck effect in metallic Cu₂Se. *Nat. Commun.* 2019, 10(1), 1–7. Doi: 10.1038/s41467-018-07877-5.

7. Peng P., Gong Z.N., Liu F.S., Huang M.J., Ao W.Q., LiY., Li J.Q. Structure and thermoelectric performance of β -Cu₂Se doped with Fe, Ni, Mn, In, Zn or Sm. *Intermetallics*. 2016, 75, 72–78. Doi: 10.1016/j.intermet.2016.05.012.

8. Shay J.L, Wernick J.H Ternary chalcopyrite semiconductors: growth, electronic properties and applications. Oxford: *Pergamon Press*, 1975. P. 254.

-27-

9. Rivet J., Laruelle P., Flahaut, J. Phase Diagrams of the SnSe-Cu₂Se and SnSe₂-Cu₂Se Systems. Order-Disorder Phenomena and Thermoconductivity of Cu₂SnSe₃ Compound. *Bull. Soc. Chim. Fr.* 1970, 5, 1667– 1670.

10. Berger L.I., Kotina E.K. Phase Diagrams of the Cu₂Se-SnSe₂, Cu₂SnSe₃-SnSe and Cu₂Se-SnSe Systems. *Inorg. Mater.* 1973, 9 (3), 330–322.

11. Delgado G.E., Mora A.J., Marcano G., Rincón C. Crystal structure refinement of the semiconducting compound Cu₂SnSe₃ from X-ray powder diffraction data. *Mat. Res. Bull.* 2003, 38(15), 1949–1955. Doi: 10.1016/j.materresbull.2003.09.017.

12. Marcano G., Rincón C., Marín G., Tovar R. Crystal growth and characterization of the cubic semiconductor Cu₂SnSe₄. *J. Appl. Phys.* 2002, 92, 1811–1815. Doi:10.1063/1.1492018.

13. Ge Z., Salvador J.R., Nolas G.S. Selective Synthesis of Cu_2SnSe_3 and Cu_2SnSe_4 Nanocrystals. *Inorg. Chem.* 2014, 53, 4445–4449. Doi: 10.1021/ic500100e.

14. Moroz V.M., Shchurok A.I., Oleksyn D.I., Moroz M.V. T-x Space Cu-Sn-SnSe-Cu₂SnSe₃-Cu₂Se-Cu of Systems Cu-Sn-Se. *Physics and chemistry of solid state*. 2002, 3 (4), 654–658 (in Ukr).

15. ASM International Handbook Committees. ASM handbook. Vol.3, Alloy phase diagrams (8th Edition). Materials Park. Ohio: *ASM International*, 1992. P. 1741.

16. Cherin P., Unger P. The crystal structure of trigonal selenium. *Inorg. Chem.* 1967, 6(8), 1589–1591. Doi:10.1021/ic50054a037.

17. Berger L.I., Kotina E.G., Oboznenko Yu.V., Obodovskaya A.E. Cross Sections of the System Cu-Sn-Se. *Inorg. Mater.* 1973, 9(2), 203–207.

18. Niepel L, Malinovský M. Triangulation of phase diagrams. Chem. Pap. 1978, 32(6), 810-820.