УДК 539.213;535.21

ISSN 1729-4428

О.Б. Кондрат, Р.М.Голомб, Н.І. Попович, В.М. Міца, О.Є.Петраченков Раман-спектри і структура аморфних плівок Bi₂S₃ та As₂S₃

Інститут фізики і хімії твердого тіла, Ужгородський національний університет Підгірна, 46, Ужгород 88000, Україна

Методом дискретного термічного напилення одержані некристалічні плівки As_2S_3 та Bi_2S_3 різної товщини. При товщині плівки ~ 1000Å Раман спектр плівки Bi_2S_3 містить одну широку смугу з максимумом при ~238 см⁻¹, яка характерна для плівок у некристалічному стані. Раман-спектр некристалічної плівки As_2S_3 має багатомодову структуру; форма спектру для області товщин 1000-10000 Å є незмінною. Проведено першопринципні розрахунки коливних спектрів кластерів $As(Bi)_nS_m$ та одержано якісне узгодження розрахункових даних з експериментальними.

Ключові слова: халькогеніди, плівки, As₂S₃, Bi₂S₃, Раман спектри, квантово-механічні розрахунки, кластери.

Стаття поступила до редакції 15.09.2008; прийнята до друку 15.06.2009.

Вступ

Проблема розширення кількості плівкоутворюючих матеріалів є фундаментальною для плівкового матеріалознавства й оптики тонкоплівкових покрить [1-3]. Розробка ефективних технологічних методів одержання плівок пов'язує її практичний і науковий аспекти. Серія робіт [1,4-9], присвячених структурним та оптичним плівок а-As₂S₃, дослідженням свідчить про відмінність структури й оптичних характеристик плівок від таких в об'ємному склі. Утворення нерівноважних фаз в першу чергу залежить від механізму конденсації. Некристалічний стан утворюється при переохолодженні рідких фаз, якщо конденсація здійснюється по механізму пара – рідина - тверда фаза або пара - тверда (аморфна) фаза [2]. Структурні дані для розплавів значної частини халькогенілних склоподібних напівпровідників (ХСН) свідчать, що ці матеріали при плавленні дисоціюють і структура розплавів при температурах, нижчих за температуру випаровування, не відповідає структурі вихідного скла [10]. Отже, одержання плівок на основі ХСН потребує вирішення проблеми фракціонування, зміни складу і структури по профілю плівки, що призводить до її оптичної неоднорідності і відмінностей ïï фізичних властивостей від об'ємного скла.

Метою даної роботи є порівняльний аналіз Раман спектрів об'ємних матеріалів та плівок трисульфідів миш'яку і вісмуту з відповідними даними, отриманими шляхом моделювання та першопринципних розрахунків.

I. Методика експерименту та першопринципних розрахунків

По простоті та технологічності, можливості одержання в одному циклі напилення кількох оптично якісних шарів конденсату заданого складу, їх площі та конфігурації найоптимальнішим є метод дискретного термічного напилення. Нами цей метод був реалізований на базі вакуумного поста ВУП-5к, удосконаленого так, щоб легко змінювати в широких межах умови одержання плівок, а саме швидкість випаровування дрібнодисперсного порошку, температуру випаровувача, кількість зразків різної товщини за один цикл напилення.

вимірювання мікро-Раман Для спектрів використовувалась система Renishaw System 1000. Спектрометр був обладнаний мікроскопом з набором об'єктивів. Для збудження розсіювання використовувався діодний лазер з довжиною хвилі $\lambda_{30} = 785 \text{ HM}$ (енергія збуджуючих фотонів $E_{36} = 1,58 \text{ eB}$).

При побудові кластерів в якості вихідних даних використовувались в основному моделі фрагментів структури кристалів As_2S_3 та Bi_2S_3 [11,12]. Розрахунок цих структур є корисним для розуміння ступені відмінності вільних фрагментів від кристалів в оптимальній геометрії, енергетичних властивостях, а ще більше – в їх електронній структурі та коливних спектрах. Геометрична структура кластерів $As(Bi)_nS_m$ для розрахунків фізико-хімічних властивостей наведена на рис. 1.

 $As(Bi)_2S_{2+2/2}$

Рис. 1. Моделі структури кластерів $As(Bi)_n S_m$ (n = 1,2; m = 3-5) для першопринципних розрахунків методом ab initio (DFT/B3LYP/Stuttgart RLC ECP).

Розрахунки оптимальної геометрії та коливних властивостей кластерів злійснювалися 3 використанням пакету квантово-механічних програм GAMESS (US) [13]. Структури оптимізовувались у рамках методу самоузгодженого поля (СУП) з використанням методу функціоналу густини (DFT) з гібридним функціоналом B3LYP [14]. В якості базисного набору для важких атомів використовувався базис Stuttgart RLC ECP [15], для насичуючих атомів водню - стандартний поплівський базис 3-21G [16].

II. Результати та їх обговорення

На рис. 2 наведені спектри мікро-Раман трисульфіду миш'яку, одержаного осадженням парової фази і з розплаву відповідно, в аморфному (а)

Рис. 2. Спектри мікро-КРС плівки As_2S_3 (а), скла As_2S_3 (б) та неорієнтованого полікристалу As_2S_3 (в), виміряні при довжині хвилі лазерного збудження 785 нм.

склоподібному (б) та полікристалічному (в) станах. Спектри аморфного і склоподібного станів є досить подібними та відмінними від спектру кристалу.

Рис. 3. Розрахований (DFT/B3LYP/Stuttgart RLC ECP (nd1)) спектр валентних коливань кластерів As-S (за відсутності впливу коливань фіктивних насичуючих атомів водню).

Вважається, утворенні неперервної що при структури неперіодичної В некристалічних матеріалах геометричні параметри (довжини та кути зв'язків), що є складовими структурних елементів сітки, значно варіюють.. Дійсно, широка складна Раман-смуга з максимумом при 342 см⁻¹, характерна лля поліаморфних форм As₂S₃, може бути результатом накладання чотирьох "кристалічних смуг" з максимумами при 291, 309, 355, 382 см⁻¹, напівширина яких збільшується за рахунок значного розкиду геометричних параметрів кластерів на основі (рис. 3). піраміди AsS₃ 3 іншого боку. спостерігаються додаткові відмінності в спектрах мікро-КРС некристалічної та кристалічної фаз (рис.

Рис. 4. Спектри мікро-КРС плівки Bi_2S_3 (а,б) та неорієнтованого кристалічного Bi_2S_3 (в), виміряні при довжині хвилі лазерного збудження 785 нм.

Рис. 5. Розрахований (DFT/B3LYP/Stuttgart RLC ECP) спектр валентних коливань кластерів Bi-S.

2 а, б і 2 в).

відмінності спричинені Перш за все цi утворенням у матриці некристалічного матеріалу частки так званих "неправильних" невеликої гомополярних зв'язків, про що свідчать смуги при ~220-230 см⁻¹ (As-As) та ~492 см⁻¹ (S-S). Такі особливості некристалічного стану не узгоджуються з моделлю ідеальної хімічно упорядкованої сітки (ХУФ), яка не передбачає наявності гомополярних зв'язків у структурі [17]. Подальша структурна інтерпретація спектрів КРС плівок a-As₂S₃ дає підстави вважати, що матриця структури тонкого конденсованого на непідігріту підкладку шару суттєво відрізняється від такої в монолітному склі. Так, на відміну від склоподібного As₂S₃ у спектрі КРС аморфного трисульфіду миш'яку виявляються досить інтенсивні смуги при ~ 220-230 м⁻¹, а також чітко спостерігається смуга при 360 см⁻¹. Якщо перші дві можуть бути інтерпретовані як наявність значної кількості гомополярних зв'язків (As-As) у матриці структури плівки, то наявність смуги при 360 см⁻¹ однозначно свідчить про реалізацію в ній замкнутих молекул типу As₄S₄ [18,19]. Тобто кластерний опис

Рис. 6. Спектри ФТ-КРС стекол As_2S_3 (a), As_2S_3 з додаванням 4 mol.% (б) та 6 mol.% (в) Bi_2S_3 , виміряні при довжині хвилі лазерного збудження 1064 нм.

Рис. 7. Диференціальні спектри КРС стекол As_2S_3 з додаванням Bi_2S_3 по відношенню до чистого скла As_2S_3 : 6 mol.% Bi_2S_3 (a), 4 mol.% Bi_2S_3 (б).

структури некристалічної плівки а-As₂S₃ більше узгоджується з експериментальними даними.

Розглянемо спектри КРС трисульфідів вісмуту. З рис. 4 видно, що спектр комбінаційного розсіювання світла кристалічного Ві2S3 містить чотири основні смуги з максимумами при 186, 238, 257 і 367 см⁻¹. Відповідний спектр аморфної плівки трисульфіду вісмуту містить дві смуги при 238, 257 см⁻¹, частотне положення яких узгоджується з відповідними смугами кристалу Bi₂S₃. Крім того, в спектрі аморфного Bi₂S₃ з'являється смуга з максимумом при 310 см⁻¹, відсутня у спектрі кристалу. Аналогічна смуга була виявлена також авторами [20] при дослідженні Раман спектрів стекол системи Ge-Bi-S. На основі концентраційних залежностей Раман спектрів цих стекол в залежності від вмісту вісмуту припускається, що ця смуга пов'язана з коливаннями пірамідальних структурних одиниць BiS₃. Було також виявлено зростання інтенсивності та незначне

Раман-спектри і структура аморфних плівок...

Таблиця 1

Кластер	Δν	IKP	Віднесення	Кластер	Δν	I ^{KP}	Віднесення
AsS ₃	318	14.7	v _{asym} (S-As-S)	BiS ₃	287	26.0	v _{asym} (S-Bi-S)
	318	14.6	v_{asym} (S-As-S)		293 (294, скло ⁺)	27.8	v _{asym} (S-Bi-S)
	332	27.7	$\nu_{fullsym}As\text{-}S$		307 (310, плівка ⁻)	52.5	$\nu_{full\;sym}Bi\text{-}S$
As_2S_5	327	15.5	v (As-S)	Bi ₂ S ₅	267 (260, плівка ⁻),	21.5	v (Bi-S)
	346	10.5	v (As-S)		(~265, скло ⁺)	19.3	v (Bi-S)
	352	19.0	v (As-S)		276	32.2	v (Bi-S)
	358	14.7	v (As-S)		287	81.2	ν (Bi-S)
	365	27.6	v _{sym} (S-As-S)		295	52.6	v _{sym} (S-Bi-S)
	379	10.5	v_{asym} (S-As-S)		309 (294, скло ⁺)	5.0	v _{asym} (S-Bi-S)
					315 (310, плівка ⁻)		
As_2S_4	302	8.6	v (As-S)	Bi ₂ S ₄	259 (260, плівка ⁻),	12.4	ν (Bi-S)
	338	9.3	v (As-S)		~265 (скло ⁺)	16.1	v (Bi-S)
	350	27.0	v (As-S)		275	54.3	ν (Bi-S)
	360	20.1	v (As-S)		289	10.7	v (Bi-S)
	375	0.7	$\nu_{full\;sym}As\text{-}S$		293	5.8	$\nu_{full\;sym}Bi\text{-}S$
	385	39.0	v_{sym} (S-As-S)		306 (294, скло ⁺)	59.8	v _{sym} (S-Bi-S)
					323 (310, плівка ⁻)		

Частоти (Δv , см ⁻¹) та КР інтенсивності (I^{KP} , Å ⁴ /а.о.м.) валентних коливань кластерів As-S та Bi-S
(DFT/B3LYP/Stuttgart RLC ECP*)

* У випадку кластерів As-S до базису додавалась одна поляризаційна функція (p₁) для атомів As i S, аналогічна попівському базису 6-31G*;

⁺ Склоподібний (As₂S₃)_х-(Bi₂S₃)_{100-х}; ⁻ плівка Bi₂S₃.

низькочастотне зміщення положення цієї смуги із збільшенням вмісту вісмуту. При концентраціях в GeS_2 , більших за 2 мол.%, Bi₂S₃ v крилі смуги 310 см⁻¹ було низькочастотному виявлено додаткову смугу у вигляді плеча при ~280 см⁻¹, інтенсивність якої зростає із збільшенням вмісту трисульфіду вісмуту [20]. Іншими авторами [21] при ще більших концентраціях Ві в потрійних стеклах системи Ge-Bi-S було виявлено смугу при 274 см⁻¹, яка із збільшення вмісту вісмуту в Раман спектрі скла Ge_{15.8}Bi₂₁S_{63.2} зміщується до 266 см⁻¹.

Результати наших розрахунків показують, що в розрахованих частотних спектрах КРС кластерів BiS_3 , Bi_2S_5 спостерігаються Раман-активні смуги при 287, 293, 307 см⁻¹ і при 267, 276, 287, 295, 309 см⁻¹ (рис. 5, табл. 1) відповідно, що дуже добре узгоджується з експериментальними даними. Ці дані також можуть свідчити, що в процесі структуроутворення у плівці Bi_2S_3 утворюються мікрообласті з кластерів Bi_2S_5 , що містять

деформовані зв'язки Ві-S. Основний масив плівки сформований пірамідальними структурними одиницями BiS₃.

Спектри КРС з Фур'є трансформацією (ФТ-КРС) об'ємних стекол As₂S₃ із домішками Bi₂S₃ наведені на рис. 6. На рисунку бачимо, що при вмісті 4 mol.% (крива в) Bi_2S_3 в As_2S_3 (крива б) у спектрах см⁻¹, з'являється перегин при 294 який трансформується в смугу при концентрації 6 mol.% Bi₂S₃. Крім того, на високочастотному крилі основної смуги валентних коливань зв'язків As-S 3 максимумом при $\sim 341 \text{ см}^{-1}$ також з'являється незначна трансформація. Для детального аналізу цих особливостей досить зручною £ побудова диференціального спектру КРС сплавів As₂S₃-Bi₂S₃ по відношенню до відповідного спектру чистого скла As₂S₃. 3 рис. 7 видно, що при добавках Bi₂S₃ в As₂S₃ у КРС спектрах сплавів Bi₂S₃-As₂S₃ виникають дві смуги з максимумами при ~290 та ~ 370 см⁻¹. Асиметричність смуги при ~ 290 см-1 свідчить про

наявність ще одної смуги з максимумом поблизу ~260 см⁻¹. Коливні смуги з максимумами при ~260 і ~370 см⁻¹ узгоджуються з відповідними смугами при ~257 та ~367 см⁻¹, характерними для спектрів КРС кристалу та плівки Bi_2S_3 (рис. 4). Частотне положення смуги з максимумом при ~290 см⁻¹ добре узгоджується з найбільш інтенсивною смугою валентних коливань Bi-S при 295 см⁻¹, розрахованою для кластеру Bi_2S_5 (рис. 5, табл. 2).

Висновки

Методом Раман-спектроскопії здійснено дослідження структури аморфних і кристалічних As₂S₃ і Bi₂S₃, а також їх суміші – As₂S₃-Bi₂S₃. Шляхом

першопринципних розрахунків кластерів As(Bi)S₃ показано роль розмірів і типу з'єднання с. о. на поведінку Раман спектрів. У спектрах ФТ-КРС стекол As₂S₃ з добавкою Bi₂S₃ виявлено додаткову смугу при ~ 294 см⁻¹, пов'язану з коливаннями деформованих с. о. BiS₃. Диференціальні спектри КРС системи As₂S₃- Bi₂S₃ показують наявність двох нових смуг з максимумами при 290 і 370 см⁻¹. Виявлено, що смуга при 290 см⁻¹ містить низькочастотне крило при ~ 260 см⁻¹ і її інтенсивність є концентраційно залежною, в той час як значних змін інтенсивності смуги при 370 см⁻¹ при зміні концентрації домішки (Bi²S³) виявлено не було.

- V.I. Mikla. Photoinduced structural changes and related phenomena in amorphous chalcogenides // J. Phys. Condens. Matter., 8, pp.429-448 (1996).
- [2] Л.С. Палатник, В.К. Сорокин. Основы пленочного полупроводникового материаловедения. Энергия, Москва, 296 с. (1973).
- [3] Ш.А. Фурман. Тонкослойные оптические покрытия. Машиностроение, Ленинград, 264 с. (1974).
- [4] И.З. Индутный, С.А. Костюкевич, В.И. Минько, А.В. Стронский, П.Е. Шепелявый. Лазерная литография на слоях As₂S₃ // Оптоэлектроника и полупроводниковая техника, 25, сс. 52-59 (1993).
- [5] S.A. Solin, G.N. Papatheodorou. Irreversible thermostructural transformation in amorphous As₂S₃ films: A light scattering study // *Phys. Rev. B*, 15, pp. 2084-2090 (1977).
- [6] K. White, B. Kumar, K.Rai. Amarendra. Effect of deposition rate on structure and properties of As₂S₃ films // *Thin Solid Films*, 161, pp. 139-147 (1988).
- [7] А.С. Пашинкин, А.Д. Молодык, В.И. Белоусов и др. Состав пара As₂S₃ // Изв. АН ССС. Неорганические материалы, **16** (9), сс.1600-1602 (1974).
- [8] Д.Г. Семак, В.М. Різак, І.М. Різак. Фото-, термоструктурні перетворення халькогенідів, вид..Закарпаття, Ужгород, 392 с. (1999).
- [9] T.P. Martin. Arsenic sulfide clusters // Solid State Communication, 44 (2), pp. 111-114 (1984).
- [10] В.М. Мица. Колебательные спектры и структурные корреляции в бескислородных стеклообразных сплавах, УМК ВО, Киев, 56 с. (1992).
- [11] N. Morimoto. The crystal structure of orpiment (As₂S₃) refined // Mineralogical Journal, 1, pp. 160-169 (1954).
- [12] Y. Takeuchi, T. Ozawa. The structure of Cu₄Bi₄S₉ and its relation to the structures of covellite, CuS and bismuthinite, Bi₂S₃ // Zeitschrift für Kristallographie, 141, pp. 217-232 (1975).
- [13] M.W. Schmidt, K.K. Baldridge, J.A. Boatz and oth., General Atomic and Molecular Electronic Structure System J. Comput. Chem. 14, p. 1347 (1993).
- [14] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 98, 5648 (1993).
- [15] EMSL Basis Set Library (<u>http://www.emsl.pnl.gov/forms/basisform.html</u>).
- [16] V.A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, 6-31G^{*} basis set for atoms K through Zn // J. Chem. Phys. 109, p. 1223 (1998).
- [17] А.А. Айвазов, Б.Г. Будагян, С.П. Вихров, А.И. Попов. *Некристаллические полупроводники*, Высшая школа, Москва, 356 с. (1995).
- [18] R.M. Holomb. V.M. Mitsa. Simulation of Raman spectra of As_xS_{100-x} glasses by the results of ab initio calculations of As_nS_m clusters vibrations // *J.Optoel.Adv.Mat.*, *6* (4), pp. 1177-1184 (2004).
- [19] R. Holomb, V. Mitsa, P. Johansson and oth. Energy-dependence of light-induced changes in g-As₄₅S₅₅ during recording the micro-Raman spectra // *Chalcogenide Letters*, 2 (7), pp. 63-69 (2005).
- [20] Д.И. Блецкан, В.С. Герасименко. Колебательные спектры и структура стекол системы Ge-Bi-S // Физика и химия стекла, 13 (3), с. 359-363 (1987).
- [21] L. Koudelka, L. Tichy, M. Pisarcik. Structural study of Ge-Bi-S glasses by Raman spectroscopy // Journal of Materials science letters, 11, pp. 1060-1062 (1992).

A. Kondrat, R. Holomb, N. Popovich, V. Mitsa, A. Petrachenkov

Raman Spectra and Structure of Bi₂S₃ and As₂S₃ Amorphous Films

Institute of Physic and Chemistry Solid State, Uzhgorod State University Pidhirna Str., 46, Uzhgorod 88000, Ukraine

Non-crystalline As_2S_3 and Bi_2S_3 films with different thickness were obtained by methods of discrete thermal evaporation. The broad band with maximum at ~238 cm⁻¹, characteristic band for non-crystal films, was observed in the Raman spectra of Bi_2S_3 film with thickness of ~1000 Å. This band is characteristic for non-crystalline state. The Raman spectrum of non-crystalline As2S3 film has multimode structure and in thickness ranges 1000 – 10000 Å the spectra are nearly the same. The performed ab initio calculations of the vibration spectra of $As(Bi)_nS_m$ clusters are in good accordance with the experimental Raman spectra.

Key words: chalcogenides, films, As₂S₃, Bi₂S₃, Raman spectra, quantum-mechanical calculations, clusters.