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DYNAMICS OF A TWO-LAYER HALF-SPACE WITH INITIAL
STRESSES UNDER THE IMPACT OF A MOVING LOAD

In this article, within the framework of the linearized theory of elasticity for bodies with
initial stresses, we consider a plane steady-state problem of perturbation of a two-layer half-
space with an arbitrary form of elastic potential by a surface load moving at a constant
speed with initial stresses. The solution is obtained in a general form for a compressible
and incompressible half-space and various contact conditions. Numerical results are given
for half-spaces of compressible and incompressible materials, respectively, with an elastic
potential of a harmonic type and an elastic potential of the Bartenev-Khazanovich type
under rigid and sliding contact conditions.

Keywords: layered half-space, initial stresses, moving load.

1. Introduction. Currently, in the dynamics of elastic bodies with initial (resi-
dual) stresses, a number of scientific areas are being developed, of which the following
can be noted: studies of the laws of wave propagation in bodies of various shapes
(monographs [1,2]); study of the mechanics of moving cracks inhomogeneous materi-
als (for example, [3-6] and a number of other publications) and in the interfaces of
materials [7-10]; study of the dynamics of materials under moving loads (for example,
[2,11-13] and a number of other publications). A modern analysis of the constructi-
on of the main relations of the linearized mechanics of deformed bodies (statics,
dynamics, and stability) is presented in publications [14-16] and in a number of
others; in this case, in [16], the main attention is paid to the analysis of the features
of the construction of constitutive equations for elastic and elastic-plastic materials
in the linearized mechanics of deformable bodies. An analysis of the construction
of exact solutions to mixed plane problems of linearized mechanics of deformable
bodies is presented in [17]; exact solutions are constructed using the apparatus of the
theory of functions of complex variables, which are introduced in such a way that
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the initial (residual) stresses enter into the complex variables. A number of related
results in nonlinear and linearized mechanics of deformable bodies are presented in
publications [18-20].

In this article, within the framework of formulations [11,12], using the integral
Fourier transform, we obtain a solution to the problem in a general form for compressi
ble and incompressible materials and for rigid and sliding contacts between the layer
and the base.

2. Statement of the problem. Consider a layer of thickness 2h, lying on
a half-space, the initial stress-strain state of which is determined by the following
components of the displacement vector and the generalized stress tensor:

uj =0 N+ a0 £0 (i, j=1,23), (1)

where \; — elongations ()\; = const) along Lagrangian axes coordinate system x;,
which is overlapping in the natural condition of the Cartesian coordinate system.
Along with the Lagrangian coordinates let us bring Cartesian coordinates &; of initial
deform condition, connected with coordinates x; by & = \;x;.

To a free boundary layer moving with a constant speed v load, independent of
the coordinates &3, is attached. Such a load causes plain deformed condition in this
layered medium.

For the solution of the task let’s seize relations in linearized theory of elasticity
for compressible bodies with initial stresses [16]. Assuming that the picture of the
deformations is invariant about the time of moving along with a load system (y1, y2),
where y; = & — vt; yo = &9, the equation of the established moving of the semispace
by the function x (y1, y2) can be written as

0? 0? ) ( 0? 0? ) ,
2 2 U —0 =
< Yoyi o 0y3) \P0yi - Oys
Equation roots n; and 7y are formed from the next equation:
4 240° + A =0, (3)

2 Adz99Wn112 = Waa22 (@1111 - ﬁV2) + Wa112 (@1221 - ﬁV2> — (@122 + @1212)2; (4)
2A1Wa99900112 = (@1111 - ﬁVQ) (@1221 - ,5V2) ;o PALIAA = p;
and in the case of an incompressible material from the relations

2AG55Ro112 = iy Ro2ae + @ (R — pv?) — 2G11Goz (Rai2e + Ri212) ;
=2 = 2 ~02y. =~ .5 . (5)
2A1GpRone = G1y (Riz21 — pv°) 5 Gij = OijNigis P = p;

In formulas (4) and (5) p is the density of the material of the half-space in its
natural state.

Let us assume that the motion of the layer can be described by a system of equati-
ons from the theory of plates, taking into account the influence of rotational inertia
and transverse shear. For a plate under the influence of transverse and tangenti-
al surface forces, the corresponding equations are given in [22]. In the coordinate
system (y1,y2), the equations of plate theory can be written as

2G1 2\ 9%u _ - _ p.
2h <_1—V1 p1V ) o T = P

21U
Gy~ B2l 0= Py .
2 2
22 <_12,G,,11 - P1V250> ?97? + 2kGy (g—;"l — ) — 7 =0
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In equations (4) Gy, vy, and p; are, respectively, the shear modulus, Poisson’s
ratio, and the density of the plate material; © w and are displacements of the middle
surface of the plate (yo = 0), Jp is a constant that takes the value 1 or 0 dependi-
ng on whether the plate rotation inertia is taken into account or neglected when
deriving equations (6); ¢ is the angle of rotation of the plate cross-section; & is the
Timoshenko shift coefficient; ¢ and 7 are, respectively, the normal and shear stresses
acting on the interface between the plate and the half-space; P, and P, are the
tangential and normal components of the load on the free surface of the plate. The
magnitude of the bending moment in the plate is determined by the formula

3
M:éGlh d_(p
31—V1dy1

(7)

Let us consider two cases of contact between the plate and the half-space at
Yo = —h: ~ _
Qu =1, Qu=q¢ u=w, u =u-+th; (8)
soft contact 3 )
RQu=0; 7=0 @nu=¢ u=uw. (9)
Thus, the problem is reduced to solving the equations of motion (2) and (6)
under boundary conditions (8) or (9).

Using the equations of motion of the plate (6) and conditions (8) and (9), the
boundary conditions can be written in the general form

d?u d? ~
5.0, <—1 - h—¢> — Qo = 6,1,

dyi  dyi
d*uy dp  ~
93 dy% - zlihGld—yl — 22 = PQ, (10)
d%p dus ~
egd—y% + 2/€G1 (d_yl — ) — 51@21 = 0.

Here we have introduced the following notation

2 2h% [ 2
0, = 2h ( Gy - p1V2> i Oy = i < Gy — 50p1v2) ;O3 =2h (HGl — p1V2) )

The parameter d; is 1 for hard contact and 0 for soft contact.

The values of the functions n? (v) and 72 (v) determine the form of the equations
of motion (2) and, accordingly, the choice of the form for solving the considered
equations. The effect of the load movement speed on the value of the roots of equation
(3) for a compressible and incompressible half-space is studied in detail in [11,12].
Let us write the solution of the problem in general form for equal and unequal roots
of equation (3).

The stresses, displacements, and velocities of displacements in the half-space
through functions ) are determined by the formulas [1]

~ 0? (22 07\ Ox? (1) 0 ey 02\ oxW
Qi,:<a§12)—+ai. - + oy =— +a; = Py =12
J Tooyr T 9y2 ) Oyas, 7oy Y Oy
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(3) : 2 :
o XY +(5(a)5 + 89 ‘9) Y9 =12 i+ (12)

Uy = — zl 8y 8@/ il B 2 72 a

93y 52 v
_ (i X X =19 g 1
u’L v |:/811 ay 8y2 (/81]_ ay /812 ayz ) ayl :| ) 27 j 17 9 ? # .]7 ( 3)

where in the case of a compressible material

(1 _ ~ ~ P ~ ~ ~ .
Oy~ = Wii22 (w1111 —pv ) — Qi1 (Dr212 + @o211) ;
(12) _ ~ ~ ~ 2\ . (1) _ ~ o~ .
Qi ~ = Wii11 \W1221 — PV ) Qg = Wii22W2112;5
(22) _
Q; = Wi11Wa222 — Wii22 (w1122 + w2121)

ol =& (w — pv ) Al = @i 1009990
i = Wija1 (Wi — p ij  — WijlaW2222;
(12) _ ~ ~ ~ 2 ~ ~ ~ .

Q- = Wij12 (W1221 - pv ) — Wij21 (w1122 + w2121) )
(21) _ ~ ~ ~ ~ ~ .
Qyy ) = Wijoa1Wa112 — Wij12 (W1212 + @e211) ;

2 - -
58) = 551) = 8 = w212 + Waz11;
BY =y BY =@ — vt =12 i
and in the case of an incompressible material

agz) = (—1)i (jj_jlfiulz — 6]'2;5\72(11_11;

(”) = G (Raiii — 02PV°) + Rjjjsls; — G (2Rn22 + Fa212) ;

045]12) — (o Fijot; C¥§]2-2) = Gy Fiji; 04%1) = (o Rijot;
o) = —Gi' R 1,5 =12 Q£
04922) = oy (f~i1221 - 5V2) ; 04(112) = q~11q~2_21a§122),
i} = qa—fﬁem; oy = it o}

o o 1
11 = ﬁ12 =p= Q1117 21 = ﬁ21 = %217 ﬁn = Béz) = 0;

Taking into account (11) and (12), boundary conditions (10) can be written as

02 0? 0? 0 ( an® | o0 \] o
o (W57 = 37) s (4 3+ ) -

o? 11 0? 21 9? aX(l) 82@
[5191511 By2ys + (0451 )8_g/f + 0451 )8_3/5)] o - 5191h3_yf = 0, Py;

Oy 2 o 12 0? 22 0? 8X(Q)
—2kh( _p.pH_Z 12~ @Y7 )| Zx
" 18 i { 02 Iy;0y» * (a” Y3 T O Y3

oy
(14)
82 82 o 82 82
{ 8y <521 By? ﬁéé)a—y%) - 8_3/2 (Oéélzl)ﬁ Oégzzl)a—g)} Y = Py;
00%0 e —(2G6 L b 12))8+5 (22)5_2 O
28y1 Rlrip K191 1091 0y 100 52| o,
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2 2 (1)

(oot —set) o (st -00it) 5

Thus, the problem of the steady motion of a two-layer compressible half-space

under the action of a moving load is reduced to finding the functions x) and ¢
from the boundary conditions (14).

3. Solution of the problem in the field of images.. We find the solution

of the problem using the integral Fourier transform with respect to the variable and

the corresponding inversion formula. Applying the Fourier transform to equations

(2), we obtain
d? d? .
(d—yQ - kz?ﬁ) (@ —k 772) =0 =12 (15)
2 2

Let us define the solution of the problem in a general form for the cases of unequal
and equal roots, for various conditions of conjugation of the layer and half-space,
and for any speed of the load (subsonic, transonic, and supersonic).

Boundary conditions (14) in the space of Fourier images have the form

(22 @, T
« k: 5191612 D) + k

d
— Qg dy2 + k6,0 1511) AF_

21d
Y2

d2
—ik (ag? W /f?alelﬁﬁ)d— — KotV ) xVF + k26,0, h" = 6, PF;
&2
—2ikkhGre” + ik ( sy~ e k20585 — d k2a;§2>> XOF -
21 d3 2 1 (16)
- (agz )d 3 203622 s — k2 o37) dus k4935§1)> X(l)F = P2F§
Y2 2

d? dX(2)F
(k292 + 2/€G1) (pF — |:]{72 (2/€G16g) + 610(21 ) (51 2212 d :| dy2

. d2
+ik [k2 (25(;165}) ~ 810 Qg1 )> <2f‘0G1522 — d 21)) —} XM =0;

dy3

The solution of the transformed equation (15), taking into account damping at
infinity, will be sought in the form

XF(j) = [1 - 5]'2(1 - 5771772)] X

% {C{j)eklkm(y2+h) + [5771772 (y2 + h) +1— 5771772] Cé )6k2k172(y2+h)} : (17)
where C (j,m = 1,2) are constants of integration,
. O? T # 2 07 .] =1
/yj: jT/j; ]:1’2’ 6771772:{17 T = T2 . 5j2: 17 j:2 .
Let us introduce constants of integration
oV =icy; OV =i0y;, P =0 OF =0y (18)
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Substituting (17) and (18) into (16), we obtain a system of algebraic equations
for the unknowns C;, Cy and ¢*

k (agll) + k‘aﬁ) C+ (a%) + kag) + k%ﬁ?) Cy + (113(,0F = k:_251P1F;
2 ( (1) (2) 2(3) F _ _.—-1pF.

kag Cy + k° (aglz) + ka:%)) Gy + (a;%) + k%é?) o' =0;

where

1 11 21 2 (21
ag1) = _7§1 ) + 677177271751 )a agl) = 010, (5771772 ) 511 71>

1 22 21 22
a§2) = Oy [751 ) + 27 (a;l - a§1 )'72>] ;

(Ig) = - [51577177291 <6ﬁ) + 26g)72> + (1 - (5771772) 7&2)] ;
3) = —519158)72 (1 - 5771172) ;o a1z = 0101 h;

21 11) 2
agl) = 71722 + 5771772’752 )a agl =03 (9( + 5771172551)71)

1 12 22 21
agz) = Onino [”752 ) — 2% (OégQ )+ aéQ )’72>] ;

2 2 1 12
agz) = 57]17}263 (551) - 2552%) + (1 - ‘5771772) 72752 )§
aéQ = 939(12 (1 —06pymp); a2z = —2khGh;
az1 = 26Gy ( 65" + 577177271521 ) + 01 (577177271V§1) - 75?) ;

a:(’)22) =(1- 5771772) (2“G19ém) - 517;2)> ;

21 22
a32 5771772 {2’43G1 (6&? - 2%55?) + 01 ['721 + 272 (aél - O‘él )72” } ;

a%) = —2kG1; a§,3 = —0bs;

00D = Bl — Bt v = ab —aliah kom =1,2;

The solution of system (19) can be written as follows
5 PFUY +ipFUl » 6 PFU +iPFU,

C; = NG ; J=12; o NG

; (20)

where

A(k) = k* (bo + kby + k*by + Kby + k'by + K°bs5) ;

J

v® = g (bm kDD 4 k28 1 kpY) k4b§]4>
U = = (080 + ko + 26+ k08 ) s 0 = k2 (00 + ko) + k20 ) s G =12,
bo = afy (aﬁl’a%) a%)aé?) :

Hayk. Bicauk Y2kropog. yu-Ty, 2022, Tom 40, Ne 1 ISSN 2616-7700 (print), 2708-9568 (online)



100 S. Yu. BABICH, Yu. P. GLUKHOV, V. F. LAZAR, Yu. Yu. ZHIGUTS
1 2 2) (1 1 2) (1 1 1) (1
by = a§3) (agl)a’g; + a( ) (11) - agQ) 51) - (12)agl)> + Qo3 <a31a§2) - a(n) §2))

by = oV (ag)agl) +a®al) _ o@ <>_a<3>a(1>> n

a1y — G122 12 421
oy (s = s — o)+ (o0aty — ) vors (ooly — )
by = oy (afaly) + o) — ool — aal)) +
s (98 + a0l — o)+ (e — o2082) o) (o0l - o)
b= 2 (002 + o) — ol — oo + oy (o) )
by = o) (o0l - )

(1) (1), bgl) _ 2 1) (1), b(l) ®3) 1)

bgo) = Qg9 Q33’5 1 — Qg9 Q33 — (23039 ; o asy o

= (39 Q33 + Q33 Ay — (23039 ;
b( 2),@. Q) _ @) 3.

13 = (33 0oy, D1q = 33097 ;
2 1 (1 2 2) (1 3) (1 1
bgo) = gz)a:(a?))a b§1) = a( )ag?,)? ng) a(12)a:(33) + az(’,a)agz) - a13a:(32)7
2 2 2 2 3
0 = oo — e 0 = oo

pY = D). b _ (@0 C D a0, g ),

21 @333 Dy1 = Qg1 @33 — A23A31; D9y = Qg1 Q335 Ug3 = Q91 Ug33;
2 D 2 2 2 2 2) (2
bgo) = a( )a:(ag)3 bgl) = a'gl)ai(’ﬁ); b22 = (1)aé3) — 13031} bgg) = a( )a:(as)3
1 1 1 1) (2 2) (1 2 2) (2 3
0 = oty — s o = oD+ o) ot 0y = oy~

2 — 1,0 D p2 = 0,2

30 — @11 039 — Q12 a31 (1) (2) (2 _ (2) (2 (3)

(2) )
31 = Q17 03y + Q17 39 — Q15 a31;  bgy = ajyasgy — ajy asy;

We apply the Fourier transform to formulas (7), (11) and (13)

9 _( k:2 (12— égm)_i_a(m&jm)d_z) dy @ 0m)F

= - +
J J dy% dy2 (21)
. o d?
ik (—k%ﬁi”ﬂm) + aﬁi”ﬂm)d—?ﬁ) XUHomFim = 1,2
2
2 ¥
- F . 2 o(m) (m) d 2. () dX . .
w; = —ikv | —k*67 + B —) — kB ———  Jm=12 i#m
! ( i 72 d?/% dyo
31— 1%}

Taking into account (17), (18), and (20), expressions (21) can be represented as
~ . 5m] _ 1 . 2 .
Q= (=) K2AT () (8PP T + P TR))

il = P IvE A (k) <(51P1FF§1) + inPQ”) com,j=1,2; (22)

= kAT (k) (z'(slpfrg> - P;“rg?) ;
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where

), =k (150 30) U 0249 — (6 (23 (a0l + 022 —2f52] -

j Vmm

—k {5mnz Yo + h) (’Yz%,mz + %(er) + (1 = 6y '72’Ymm}} U Pl y2+h
D0, = k (10 = Sin20) UV R0 4 5, (29 (12022 - a;%”) —2] +

+k [(5771772 (y2 + h) (an 2 77(732)) + (1 (5771,72 ’ymn } } U k"/2 y2+h)

4 GihU;
3 (1 - V1) .

Thus, the solution of the problem of the steady motion of a two-layer elastic
half-space with initial stresses under the influence of a moving load in the region of
Fourier images has the form (22).

From (22) it follows that the value of the quantities characterizing the stress-
strain state of a two-layer elastic half-space increases without limit at A(k) — 0.
Under the condition that real positive multiple roots of the equation A(k) = 0 exist,
resonance is possible [22].

The results of studying the function A(k) for a compressible and incompressible
half-space and various cases of conjugation of a plate and a half-space are given in
[11,12].

It follows from the results obtained in [11,12] that the number of critical velocities
of the load movement significantly depends on the initial stresses in the half-space,
the mechanical characteristics of the plate and the half-space, and the conditions
of their contact. The effect of initial stresses on the values of critical velocities is
more significant for relatively soft plates and for non-rigid contacts. The value of
the lowest critical speed for a non-rigid contact is always less than for a hard one.

4. Numerical studies. In order to pass in formulas (22) to the originals, one
should use the inverse Fourier transform.

It follows from the results obtained in [11,12| that the calculation of the inversion
integrals essentially depends on the speed of the load. Depending on the velocity v,
the denominator A(k) in the inversion integrals may or may not have real positive
roots. If no root lies on the real axis, then the inversion integrals have no singularities
and can be calculated directly using tables. In the presence of unequal real positive
roots of the denominator A(k), the integrals along the integration contour from
to can be replaced by the sum of the principal value of the integral —oco + iy and
+00+i7y the sum of all residues multiplied by (—im) [21]. In the case of the existence
of a double positive root, the inversion integrals do not exist even in the Cauchy
sense, i.e. resonance appears.

Since it was assumed in the formulation of the problem that the perturbations
caused by the moving load are very small, the resonant region was excluded from
consideration.

Figures 1-4 show how the initial stresses in the base affect the characteristics
of the stress-strain state in a two-layer half-space at different speeds of the load
(subsonic, transonic, and supersonic) and the conditions of contact between the
plate and the half-space.

() —
) =
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The following designations are used in the figures: ¢;; and ¢4 are the velocities
of propagation in the direction of the axis Oy, respectively, of longitudinal and
transverse polarized waves in an unlimited compressible body with initial stresses,
c1 and ¢y are the velocities of propagation of transverse waves in the direction of
the axes Oy; and Oy, in an unlimited incompressible body with initial stresses, ¢,
is the speed of movement of shear waves in the layer, v* is the critical speed of the
load [11,12].

As an example, a compressible half-space with an elastic potential of harmonic
type and an incompressible half-space with the Bartenev-Khazanovich potential are
considered [1]. Tt was assumed that the initial deformed state is flat and there is no
surface load.

The calculation results are given for a concentrated linear load, the normal and
tangential components of which are determined by the formulas

P, = Po(y1)cosa; Py = Pi(y1)sina; P =Gy

where « is the angle of inclination of the load to the axis Oy;.

5. Conclusions and prospects for further research. An analysis of the
results shows that the presence of initial stresses has a significant effect on the di-
stribution of stresses and displacement velocities in the half-space and the bending
moment in the plate. This effect is different depending on the position of the consi-
dered point of the layered body relative to the point of application of the load.

The values of the parameters of the stress-strain state at a particular point of the
layered body depend on the initial stresses, its coordinates, and contact conditions.

For subcritical speeds of movement of the load with rigid contact of stress, the
speed of movement in the half-space and the bending moment in the plate is less
than with non-rigid contact. At the same time, in the studied range of values, the
growth rate of the amplitude of the studied quantities during compression is greater
than during tension. Attenuation with distance from the point of application of the
load in compression is slower than in tension.

The influence of the initial stresses increases significantly with the increase in
the speed of the load. This is especially true during pre-compression. With rigid
contact, the influence of velocity and initial stresses is less significant than with
non-rigid contact.

Accounting for rotational inertia within the considered velocities of the surface
load and values \; in the case of rigid contact introduces an insignificant correction
(less than 2.6%), but in the case of non-rigid contact, the difference in the results
will be very large (up to 30%). It is especially necessary to take into account the
inertia of rotation at A\; < 1 and high speeds of the load.

It can be seen that as the velocity increases, the symmetry is more and more
violated, and the direct wave decays much faster and is practically absent in the
supersonic case. However, it does not completely disappear. This is apparently
explained by the layering of the medium.

In the case of rigid contact, the direct wave decays much faster than in a non-rigid
contact.
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Harmonic potential
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Figure 1. Distribution of stresses and displacement velocities in the half-space at
depth y, = —2h/)s and the bending moment in the plate at depth yo = —h/2
(curve 1 corresponds to A} = 0,8; curve 2 — \; = 1; curve 3 — \; = 1,2)
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Elastic potential of the Bartenev-Khazanovich type
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Figure 2. Distribution of stresses and displacement velocities in the half-space at
depth y, = —2h/)s and the bending moment in the plate at depth yo = —h/2
(curve 1 corresponds to A\; = 0,8; curve 2 — \; = 1; curve 3 — A\; = 1,2)
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Figure 3. Dependence of the values characterizing the stress-strain state of the
underlying half-space on the initial stresses at different subcritical speeds of the
load at the point y; = —\1h, yo = —2h /X (curve 1 corresponds to v? = 0,1¢2,
curve 2 — v? = 0,2¢%, curve 3 — v? = 0,3¢2, curve 4 — vZ = 0,4¢%)
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Figure 4. Influence of taking into account the inertia of rotation at different speeds

10.

of movement of the load and initial deformations on the value of the stress
component (Qoy at the point y; = —A\1h; yo = —2h/As (curve 1 corresponds to
v? = 0,1c¢2, curve 2 to v? = 0,2¢%, curve 3 to v = 0,3¢2, curve 4 to v? = 0,4¢?)
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Baouu C. KO., I'nmyxos HO. II., Jlazap B. ®., 2Kuryn FO. FO. /lunamvika
JIBOTIIAPOBOTO HAMIBIPOCTOPY 3 MOYATKOBUM HAINPyraMy MPU BILUIMBI PYXOMOTO Ha-
BaHTaKeHHS.

VY naniit crarTi B paMKax JiiHeapu30BAHOI T€OPil IPYKHOCTI 11 Tia 3 MOYATKOBUMHE Ha-
MPyTaMy PO3TJISTHYTO TJIOCKE 3aBJAHHS PO OOYPEHHS, IO PYXAETHCH 3 MOCTIHHOIO MTBUJI-
KICTIO MIOBEPXHEBUM HABAHTAXKEHHSAM BOIAPOBOTO HAMIBIPOCTOPY 3 MOYATKOBUMU HAIPY-
ramMm 3 JIOBLIBHOIO (POPMOIO TPYKHOTO TMOTEHIanry. PO3B 30K OTPUMAHO y 3arajibHOMY
BUIJISI/ JJ1s CTUCJMBOTO Ta CTUCIUBOrO HAMBIPOCTOPY T Pi3HUX YMOB KOHTAKTY. dncCiieH-
Hi pe3yJibTaTu HABEJIEH] JIJI HAIIBIIPOCTOPIB 3 MarepiajiB, 10 CTUCKAETHC 1 CTUCKAETHCH
BIATOBIHO 3 MPYKHUM TMOTEHITIAJIOM TapMOHIHHOTO THUNY i MPY’KHUM MOTEHITIAJIIOM THUIY
Baprenena-XazanoBuda Mpu *KOPCTKOMY 1 KOB3HOMY YMOBaX KOHTAKTY.

KurouoBi ciioBa: mapyBaruii HANiBIPOCTip, MOYATKOBA HAIPYTa, PyXOME HABAHTAXKEHHSI.
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