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Abstract
In the framework of asymptotic approach and semiclassical method the

closed analytic expression for matrix element of the two-electron exchange
interaction between polar molecular ion and neutral polar molecule, respon-
sible for direct two-electron transfer processes, have been calculated.

1 Introduction

The process of two–electron transfer between the atomic and molecular par-
ticles remains highly attractive object of research for both the theoretical and
experimental groups (see [1, 2, 3, 4] and references therein). In the theory of
electron transition in the course of atomic collision the exchange interactions at
large internuclear distances R between projectile and target particles are the most
important ones, since they are associated with the largest cross sections. However,
accurate calculation of such exchange interaction in the asymptotic region of large
R still requires significant computational effort. Aiming to simplify these calcu-
lations many analytical approximate theories have been proposed (see [1, 2, 3]
and references therein). Among them the asymptotic theory remains quite pop-
ular because of ability to combine the general character of proposed analytical
results and relatively satisfactory numerical estimations for cross-sections of the
processes under investigation. However, until now the application of asymptotic
theories were limited, mainly, to studying of the one-electron processes in the
collisions that involves atomic or simplest diatomic ions. The cases, where polar
molecules considered as a target have been studied in [5, 6, 7, 8, 9]. The application
of the asymptotic methods for studying of the two-electron exchange processes in
the collisions that involves the polar molecules, to the best of our knowledge, is
limited by publication [10].

In the present work the asymptotic theory [10] has been extended to the case
when both of the colliding particles has a permanent dipole moment. It allows
to calculate the leading asymptotic (at R−1 � 1) expression for the matrix ele-
ment Hab responsible for two-electron capture at slow collision of polar molecule
A(Za−2)+ with a doubly charged polar molecular ion BZb+:

A(Za−2)+ +BZb+ −→ AZa+ +B(Zb−2)+, (1)
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where Za and Zb are effective charges of the cores of colliding particles (further
we suppose that Za = Zb = 2).

2 The asymptotic arrangement of the problem

In the following, we shall assume the electronic configuration of the molecu-
lar cores AZa+ and BZb+ are frozen during the course of collision. Therefore,
the problem is reduced to consideration of two active electrons described by the
following Hamiltonian of the system (AB)(Za+Zb−2)+

Hab = −∆1

2
− ∆2

2
+ Va(r1a) + Va(r2a) + Vb(r1b) + Vb(r2b) + r−1

12 , (2)

where −∆i/2 is a kinetic energy operator for the i−th electron, Va(b) are the
potentials of electronic interaction with ionic core AZa+ or BZb+, the r12 is the
distance between two active electrons. At asymptotic distances (r → ∞) the
potentials Va,b(r) has the Coulomb form

Va,b(r) → −Za,b/r. (3)

Let d1a and d2a are the dipole moments of ions A(Za−1)+ and AZa+, and d1b and
d2b are the dipole moments of ions B(Zb−1)+ and BZb+. Let us to introduce the
coordinate frames {x, y, z} and {x̃, ỹ, z̃} with common origin in the point O in
the center of mass of the particle A(Za−1)+, such that axis Oz directed along the
vector �R and axis Oz̃ along the vector �da. Transition from the {x̃, ỹ, z̃} to {x, y, z}
described by the three Euler angles Ω1 = (α1, β1, γ1) [11]. Similarly, we shall
introduce the frame {x̄, ȳ, z̄} with the origin O′ in the center of mass of the ion
BZb+ and with the axis O′z̄ along the vector �db. Mutual orientation of the frames
{x, y, z} and {x̄, ȳ, z̄} described by Euler angles Ω2 = (α2, β2, γ2), see Fig.1.

Let m1a and m2a (m1b and m2b) are the projections onto Oz̃ (O′z̄) the orbital
momentum of the electrons in initial (final) electronic state, i.e. centered at the
core AZa+ (BZb).

It is known from the asymptotic theories, that two-electron exchange inter-
action Hab is determined by asymptotic of the electronic wave functions in the
whole configuration space of the coordinates of both electrons [1]. As shown in
[1, 10], the asymptotic, at R → ∞, form of Hab can be represented through the
one-electronic orbitals as follows

Hab = 〈ϕ(0)
b (�r1b)ϕba(�r2a)|r−1

12 |ϕab(�r1b)ϕ
(0)
a (�r2a)〉. (4)

The ϕab is the wave function of the "outer" electron of the A(Za−2)+ molecule in
the vicinity of the ion BZb+, and vice versa: ϕba is the wave function of the "outer"
electron of the B(Zb−2)+ near the core AZa+. Hence, without the perturbation of
ion BZb+ (AZa+) the wave function ϕab (ϕba) goes over into the wave function ϕ

(0)
a

(ϕ(0)
b ), which is the wave function of a bound state of ion A(Za−1)+ (B(Zb−1)+).
We shall calculate the wave functions ϕab and ϕba of the quasimolecular systems

A(Za−2)+ + BZb+ and AZa+ + B(Zb−2)+ for the asymptotic configuration which
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Figure 1: Geometry of the quasimolecular system

contribute mainly to the matrix element (4), i.e. in the vicinity of the cores AZa+

and BZb+.

3 The wave functions and exchange interaction
We start from the asymptotic of the one-electron wave function ϕab of the

polar molecule in case the perturbation of the distant core BZb+ is small, i.e.
the arrangement A(Za−2)+ +BZb+ is under consideration. The wave function ϕab

satisfies the Shroedinger equation(
−∆

2
+ Ua(ra) + Vb(rb)− E1a

)
ϕab(�rb) = 0, (5)

where Ua(ra) and Vb(rb) are the interaction potentials of the electron with ions
A(Za−1)+ and BZb+ respectively. The electronic energy E1a at R → ∞ goes
over into the unperturbed bound energy E

(0)
1a = −1/2n2

1a of the outer electron
of a molecule A(Za−2)+. In the framework of a point–dipole model the electronic
interaction with a dipoles �d1a and �d2b reads:

Ua(�ra) = −(Za − 1)/ra − �d1a · �ra/r3a. (6)

Vb(�rb) = −Zb/rb − �d2b · �rb/r3b . (7)
We solve equation (5) with the boundary condition [6, 10]:

ϕab(�ra) =
1<ra�R

ϕ(0)
a (�ra) =

(2− n1a)
n1a(Za−1)+1

2(Za − 1)1/2
√

Γ(2n1a(Za − 1))
rn1a(Za−1)
a e−ra/n1aZ

(1)
Lm1a

(θ̃a, φ̃a). (8)

The functions Z
(1)
Lm1a

are the dipole-spherical harmonics (see [6]-[10]), which sat-
isfies the following equation

[
− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
− 2d1a cos θ

]
Z

(1)
Lm(θ, φ) = ηLmZ

(1)
Lm(θ, φ),

(9)
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and can be expanded over the standard spherical harmonics

Z
(1)
Lm(θ̃a, φ̃a) =

∑
l≥|m|

amLl(d1a)Ylm(θ̃a, φ̃a). (10)

The coefficients amLl(d1a) defined by the following system of recurrent equations

2d1a

[
l2 −m2

4l2 − 1

]1/2
amLl−1 + [l(l + 1)− ηLm]amLl

+ 2d1a

[
(l + 1)2 −m2

(2l + 1)(2l + 3)

]1/2
amLl+1 = 0. (11)

Here m is the number of root, i.e. the number of eigensolution ηLm of the equation
(11) at a given quantum number L.

In the region far from each of molecules, where the potentials Ua(ra) and Vb(rb)
goes over into the Coulomb asymptotic form the semiclassical solution for ϕa(�ra)
of equation (5) reads:

ϕa(�ra) =
n−1
1a π

−1/2

√
Γ(2n1a(Za − 1) + 1)

(
n1a(Za − 1)

e

)n1a(Za−1)

× F (pa)

za|pa(za)|1/2
∑

�≥|m1a|

�∑
k=−�

am1a

L� (d1a)D
�
km1a

(Ω1)

× 1

2|k||k|!

(
(2�+ 1)(�+ |k|)!

2(�− |k|)!

)1/2 (
ρ

za

)|k|
eikφa , (12)

where
p2a(za) = 2(−|E1a|+ (Za − 1)/za + Zb/(R− za)). (13)

Expansion for F (pa) close to axis R (i.e. at small θa) reads

F (pa) = exp

(
−
∫ za

z1a

|pa(z)|dz
)
exp

(
−ρ2pa(za)

2za

)
, (14)

where ρ � za sin(θa), and the turning points z1a and z2a are determined by relation

pa(z1a) = pa(z2a) = 0.

Under the condition ra ∼ 1 the solution (12) goes over into the asymptotic of the
unperturbed wave function of the polar molecule (8).

The wave function ϕab in the vicinity of ion BZb+ given in terms of a surface
integral [1, 10]

ϕab(�rb) = −1

2

∫

S

dS (ϕab∇Gb −Gb∇ϕab) , (15)

where the S-plane divides the electronic location in the initial and final channels
of the reactions. The Gb ≡ Gb(�rb, �r

′
b ;E1a) is the one-electron Green’s function
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of the quasimolecular system A(Za−2)+ + BZb+, which can be expanded over the
dipole-spherical harmonic as follows

Gb(�rb, �r
′
b ;E1a) = − 2

rbr′b

∞∑
l=0

+l∑
m=−l

glm(rb, r
′
b;E1a)Z

(2)
lm (θ̄b, φ̄b)Z

(2)
lm

∗
(θ̄′b, φ̄

′
b), (16)

where glm(rb, r
′
b;E1a) is the radial Green’s function. The functions Z

(2)
lm (θ̄b, φ̄b)

satisfies the equation (9) subject to the following substitutions in the latter: d1a →
d2b, η → s(s + 1), and assuming that s ≡ slm. As a result, the radial Green’s
function glm(rb, r

′
b;E1a) satisfies the following equation

[
d2

dr2
+ 2

(
E1a +

Za − 1

|�R− �r|
+

Zb

r
− s(s+ 1)

2r2

)]
glm(r, r′;E1a) = δ(r − r′), (17)

and can be represented as a product

glm(rb, r
′
b;E1a) = −n1a

2
f1lm(r<)f2lm(r>), (18)

where r< = min(rb, r
′
b), r> = max(rb, r

′
b), and f1lm(r), f2lm(r) are the linearly

independent solutions of the homogeneous version of the equation (17) with the
boundary conditions

f1lm(r) =
r→∞

r−n1aZber/n1a , f2lm(r) =
r→∞

rn1aZbe−r/n1a . (19)

As seen, the asymptotic of the ϕab on the variable rb determined by asymptotic
of the Green’s function Gb(�rb, �r

′
b ;E1a) at r′b ∼ R � 1, rb ∼ 1 and hence, r< = rb,

r> = r′b. In this region of configuration space of electronic coordinates one can
neglect the term Za − 1/|�R− �r| � 1 in equation (17) to take approximate solution
f
(0)
1lm(r) of the equation

[
d2

dr2
+ 2

(
E1a +

Zb

r
− s(s+ 1)

2r2

)]
f
(0)
1lm(r) = 0, (20)

as a zero approximation for the solution f1lm(r). We note, that detailed algorithm
of construction of the solutions similar to considered here f1,2 given in [1, 10, 12].

Using obtained approximations and solving equation (20) semiclasically (see
[10]) we can represent the Green’s function Gb(�rb, �r

′
b ;E1a) in the region r′b �

1, rb ≈ 1 as following expansion

Gb(�rb, �r
′
b ;E1a) =

n1a

4π

(
n2
1aZb

2e

)n1aZb F (pb)

zbz′b

∞∑
l=0

+l∑
m=−l

∑
λ≥|m|

∑
µ≥|m|

(−1)λ+|m|

× amlλ(d2b)a
m
lµ(d2b)B

−
λmf

(0)
1lm(rb)P

|m|
λ (θ̄b)e

imφ̄b

µ∑
k=−µ

Dµ
km(Ω2)B

+
µk

[
ρ

z′b

]|k|
e−ikφ′

b

2|k||k|! ,

(21)
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where Pm
λ (θ) is the associated Legendre polynomials, parameter B±

lm reads

B±
lm =

[
(2l + 1)(l ± |m|)!

(l ∓ |m|)!

]1/2
, (22)

and

F (pb) = exp

(
−
∫ z2a

z′
a

|pb(z)|dz
)
exp

(
−ρ2pb(z

′
b)

2z′b

)
, (23)

p2(z′b) = 2(−|E1a|+ (Za − 1)/(R− z′b) + Zb/z
′
b), z′a + z′b = R. (24)

The turning points z′1b and z′2b determined by following relations

p(z′1b) = p(z′2b) = 0, z′1b,2b = R− z′2a,1a.

Finally, using the semiclassical representations (21) for the Green’s function
Gb(�rb, �r

′
b ;E1a) and (12) for the wave function ϕab we can proceed to calculation of

the surface integral (15). The integration in (15) is tedious albeit straightforward
and leads to the following result for the wave function ϕab of the polar molecule
in the vicinity of ion BZb+:

ϕab(�rb) = Da(R)
∞∑

l≥|m1a|

+l∑
k=−l

n
|k|
1a

2|k||k|!a
m1a

Ll (d1a)D
l
km1a

(Ω1)B
+
lkR

−|k|−1

×
∞∑

l′=0

+l′∑
m′=−l′

f
(0)
1l′m′(rb)

rb

∑
λ≥|m′|

∑
µ≥|m′|

am
′

l′λ(d2b)a
m′

l′µ(d2b)

× (−1)λ+µ+|m′|Dµ
km′(Ω2)B

+
µkB

−
λkPλ(θ̄b)e

im′φ̄b , (25)

Da(R) =
1

2

√
n1a

2πΓ[t]

(
n2
1aZb

2e

)n1aZb
(
n1a(Za − 1)

e

)n1a(Za−1)

exp(−Ia(R)),

where t = 2n1a(Za − 1) + 1, and the barrier integral Ia(R) reads

Ia(R) =
n−1
1a√

(R− z1a)z2a

{(
−R2 + (z1a + z2a)R− z1az2a

)
K(ka)

+(R− z1a)z2aE(ka) +
[
R2 − (z1a + 2z2a)R+ z1az2a + z22a

]
Π(νa, ka)

}
, (26)

νa = (z2a − z1a)/(R− z1a), ka =
√
νaR/z2a.

The K(k), E(k) and Π(ν, k) are the full elliptic integrals of the first, second and
the third kind. The wave function ϕba(�ra) can be obtained from the ϕab(�rb) after
formal substitutions: a � b, Ω1 → Ω2, (l̄, m̄) → (l̃, m̃), (θ̄b, φ̄b) → (θ̄a, φ̄a). In
order to calculate the Hab we shall use the following representation for f

(0)
1lm [5]

f
(0)
1lm(r1b) = (2/n1a)

n1aZb
Γ(1 + slm − n1aZb)

Γ(2slm + 2)
Mn1aZb,slm+1/2 (2r1b/n1a) , (27)
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where Mkµ(x) is the Whittaker function. The normalized wave function ϕ
(0)
b of

the potential (7) reads [5]:

ϕ
(0)
b (�r1b) = B2r

n2bZb−1
1b e−r1b/n2b

∑
n≥|m2b|

am2b

L′n (d2b)Ynm2b
(θ̄1b, φ̄1b), (28)

B2 =
1

2
√

ZbΓ(2n2bZb)

(
2

n2b

)n2bZb+1

. (29)

In calculation of the integral for Hab we use the dipole approximation for r−1
12

1

r12
= − 8π

3R3

+1∑
q=−1

+1∑
j=−1

+1∑
i=−1

r2ar1bY1j(θ̃2a, φ̃2a)D
1
qj(Ω1)Y1i(θ̄1b, φ̄1b)D

1
−qi(Ω2)

(1 + q)!(1− q)!
,

(30)
and finally comes the following representation for Hab

Hab = −8π(−1)S+1

3R3

+1∑
q=−1

+1∑
j=−1

+1∑
i=−1

D1
qj(Ω1)D

1
−qi(Ω2)

(1 + q)!(1− q)!
H1bH2a, (31)

H1b =

∫
ϕab(�r)ϕ

(0)
b

∗
(�r) r Y1i(θ, φ)d�r, (32)

H2a =

∫
ϕba(�r)ϕ

(0)
a

∗
(�r) r Y1j(θ, φ)d�r. (33)

Calculating the integral (32) we obtain the resulting expression for H1b

H1b =
√
3B2Da(R)

∑
l≥|m1a|

+l∑
k=−l

am1a

Ll (d1a)

|k|!
(n1a

2

)|k|
Dl

km1a
(Ω1)R

−|k|−1

×
∞∑

l̄=0

l̄∑

m̄=−l̄

∑
λ≥|m̄|

∑
µ≥|m̄|

(−1)−µam̄l̄λ(d2b)a
m̄
l̄µ(d2b)D

µ
km̄(Ω2)

√
2λ+ 1B+

lkB
+
µk

×
∑

n≥|m2b|
am2b

L′n (d2b)
√
2n+ 1Tλn1

000 Tλn1
m̄m2bi

Jb(sl̄m̄), (34)

with Jb(s) given by

Jb(s) =

(
2

n1a

)n1aZb+s+1 (
n1an2b

n1a + n2b

)t2 Γ(t1)Γ(t2)

Γ(t3)
2F1

(
t1, t2; t3;

2n2b

n1a + n2b

)
,

t1 = −n1aZb + s+ 1, t2 = n2bZb + s+ 3, t3 = 2s+ 2.

Here 2F1 is the Hypergeometric function and T l1l2l
m1m2m are the 3j-Wigner’s sym-

bols. The matrix element H2a can be obtained from the H1b by the following
substitutions: a � b, B2 → A2, Ω1 → Ω2, (l̄, m̄) → (l̃, m̃). Substituting obtained
H1b, H2a into (31) we come to the final result for the matrix element Hab.
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4 Concluding remarks

To conclude, we have calculated the semiclassical representation for the two-
electron wave functions of the quasimolecules A(Za−2)+ + BZb+ and AZa+ +
B(Zb−2)+ under assumption of a large intermolecular separation R. The obtained
results allow to construct the two-electron exchange interaction Hab in a form of
a leading asymptotic approximation at large R. The matrix element Hab may be
applied for cross section calculation of the direct two-electron capture (1) in slow
collision of a polar molecule with a double charged polar molecular ion.
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