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Abstract 
The historical aspect of the discovery of the Kramers-Kronig 
dispersion relations is considered. A calculational technique is 
shown for investigating the validity of the Kramers-Kronig 
relations. The dielectric susceptibility function is constructed as a 
classical linear response function in the framework of two 
equations of charge motion of the microscopic Lorentz theory. It 
is shown that the Kramers-Kronig relations can be satisfied in the 
presence of poles in both the upper and lower half-planes 
simultaneously. It is shown that the accuracy of fulfilling the 
KK's relations depends on the removal of the pole of the lower 
half-plane from the real axis. To determine the optical parameters 
of the absorbing medium from the reflection spectra, it is 
necessary to perform a conformal transformation. An example of 
the application of this approach to the reflection spectrum of 
silicon is shown. 
Keywords: Kramers-Kronig relations,  Optical parameters, 
Reflection spectrum, Jahoda formula 

1 Introduction  

September this year marked the 90th anniversary of the 
opening of the International Congress on Physics in Italy 
(Como,  Pavia, and Rome). At the famous Congress 
among many grandees of physics was and prof. Kramers 
(photo in Figure 1). Kramers made a report “Diffusion of 
light by atoms” [1], which in the future was predetermined 
to be as reference in the  thousands  scientific articles. The 
edition [1], the title page of which is in Figure 2, there is 
very rare1. 

So, in his report, Kramers finally formulated the 
dispersion relations, which we have been using for nearly 
a century with the name of the Kramers-Kronig (KK) 
relations. They state that the real and imaginary parts of 
the dielectric susceptibility (DS) ς(ω) = ℜ(ζ) + iℑ(ζ) ≡ 
ξ(ω) + iη(ω) are related by integral equations: 
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1 We will refer the reader to the site of the Lorentz Institute at the 
University of Leiden https://www.lorentz.leidenuniv.nl/IL-
publications/sources/Kramers_27.pdf 
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where  ℘ means that the integral is in the sense of 
Cauchy's principal value, ω is a circular frequency. To this 
pair of equations the other pair is equivalent, which 
follows from the parity of the function ξ(ω), ξ(-ω) = ξ(ω),  
and the oddness of the function η(ω), η(-ω) = -η(ω), : 
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Figure 1. Hendrik Kramers, George Uhlenbeck (left), and Samuel 
Goudsmit (right).  
 

Kramers derived these formulas two years earlier and 
reported to the Royal Academy in Copenhagen. A partially 
similar result  were obtained at this time by Kronig [2], 
and by Kallman and Mark [3]. This is emphasized in the 
article of Kramers [1].  The formula (2) was first obtained 
by Kramers, Kronig mentions this much more later in the 
article [4]. 
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Figure. 2. The title page of the 
Materials book of  the Inter- 
national Congress on Physics in 
Como, Pavia, and Rome in 1927. 
 

 
 
 
 
 
 

 
We note that the Kramers-Kronig relations are 

obtained in the sequence, first (1) – (2), and then (3) – (4), 
and not vice versa [1, 5], as is often stated in the literature. 
This is due to the fact that Kramers used the Sellmeier 
formula [1],  
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which he attracted both to classical and to quantum 
dispersion theory [6, 7]. 

If to be consistent, it should be noted that Kronig 
dirived  a different relation. He obtained a relation  for the 
refractive index [2] 
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where α = 4πκ/λ = 2ωκ/c is the absorption coefficient, κ is 
the extinction coefficient, c is the speed of light in 
vacuum.  

The Kramers relations (1) – (2) and (3) – (4) are 
absolutely exact and legitimate, since the dielectric 
susceptibility ζ(ω) is a fundamental material response 
function. This applies in full, naturally, to the permittivity 
ε(ω) = ζ(ω) + 1. However, the function of the complex 
refractive index ν(ω) = n(ω) + ik(ω) (-k = κ) is not such, 
and the Kramers-Kronig relations for it (more precisely, 
for ν(ω) - 1) are valid [8]. This is confirmed by practice.  

Following Landau's assertion [9], the only essential 
property of the dielectric permittivity function (dielectric 
susceptibility) that is used in the derivation of the 
Kramers-Kronig formulas is the absence of singular points 
in the upper half-plane2. There are known proofs of the 

2 Landau considered the amplifying medium, therefore, singular points 
are located in the lower half-plane. We next consider the absorbing 
medium, in this case the essentially singular points are located in the 
upper half-plane. 

Kramers-Kronig relations [10 – 19], which became 
textbook ones, in which, in fact, the requirement of 
analyticity of a DS function in one of the half-planes is 
mandatory. We intend to clarify this issue using the 
calculation technique, investigating the function DS for the 
presence of singular points, poles. This is the first. The 
second question, which we will be dealing with, is how the 
KK relations are fulfilled, depending on the kind of 
function of application. 

2 Theory and Calculations 

Our approach is simple, to describe the reaction of the 
medium to an external electromagnetic field, that is, to 
construct function ζ(ω) we use the microscopic 
electromagnetic Lorentz's theory. According to the 
microtheory, the equation of motion of a charge (electron) 
in an external periodic field has the form [20]: 
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where  e, m are charge and mass of an electron, 
respectively,  c is  the light speed in vacuum, ω is external 
wave frequency. The first term in (14) expresses Newton's 
second law, the third is Hooke's law, so the coefficient k is 
called a quasielastic constant. This equation is exact in the 
sense that the second term in it expresses the law of 
conservation of energy. Its solution contains a complex 
amplitude through which we calculate the dielectric 
susceptibility:  
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ω0
2 = k/m is eigenfrequency of an electron, A ~ (e2/m)E0. 

Kramers in the original used exactly this expression. 
In practice, an approximate equation is used, which, as 

it turns out, describes dispersion very well. It is obtained 
by replacing the third derivative with the first derivative 
under the condition of almost periodic motions: 
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In another method [21], an expression is found that 
unites our two cases (7) and (10): ζ ∼ 1/[ω0

2 -
 ω2 + i(γω + τω3)]. Its use is superior only in convenience. 

The function ζ(ω) is a complex-valued function of a 
real variable ω. In order to investigate its properties, it is 
advisable to consider it as a function of the complex 
variable z = ω + iω im → ω.  This is accepted in 
mathematical analysis, and this technique is used in all 
known proofs of the Kramers-Kronig relations. As a result, 
formula (7) turns into formula 
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where z = ω + iω im. 

So, we will find the poles for the functions represented 
by formulas (7) and (10). Clearly, we must find the zeros 
of the denominator. The first case, let the denominator in 
the unfolded form will equate to zero: 
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The condition for the fulfillment of relation (12) is the zero 
values of the real and imaginary parts of this relation, 
which in turn is equivalent to a system of two equations of  
two unknowns  ω    and  ω im. The values of these 
unknowns determine the poles. The first of them is easy to 
notice at once, with ω equal to zero the imaginary part 
vanishes, and the real part vanishes when the cubic 
equation is valid: 
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0

23 =ω+ω+ωΓ imim    (13) 
 
As is easy to see, this equation has a real solution, which 
can only be negative. Thus, we have a pole in the lower 
half-plane.  

We find two more poles by putting from the imaginary 
part  
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into the real part and equating it to zero: 
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This cubic equation has one real and two imaginary 

roots. Using the real root and formula (13), we obtain two 
more symmetric poles in the upper half-plane. 

In the case of formula (10), it is easy to show that the 
function ζ(ω) has two poles in the upper half-plane. A pair 
of poles can be of two types. First, ω ≠ 0: 
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The second, ω = 0: 
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Under condition γ2/4 = ω0

2, the two poles degenerate 
into one pole in the upper half-plane on the imaginary 
axis: ω = 0, ω im = γ/2. 

Thus, when the function ζ(ω) is described by the 
formula (10), it has no singularities in the lower half-plane. 
The KK's relations will be satisfied for any reasonable 
values of the parameters ω0, A, and γ.  In this connection, 
let us return to the formula (7) and analyze how the KK's 
relations are satisfied in the presence of poles in both the 
upper and the lower half-planes.  

In order for function ζ(ω) to satisfy KK's relations, we 
set the parameters in formulas (7) and (10) so that function 
ζ(ω)  approximately approximates the dielectric 
susceptibility of silicon. The data for silicon are obtained 
from remarkable work [22], where the dielectric 
permittivity for silicon, germanium, and crystals of class 
AIIIBV in the range [1.5, 6.0] with a step of 0.1 eV is given. 
DS function for silicon and for model functions of DS 
according to formula (7) and formula (10) are shown in 
Figure 3. 
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Figure 3. The general form of the DS model functions according to 
formula (7) (1 – A = 160, ω0 = 4.0, Γ = 0.05), and formula (10) ( 2 – 
A = 160, ω0 = 4.0, γ = 0.9).  
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In order to verify how the KK's relations for the 
function under investigation are fulfilled, we must first of 
all choose the method of calculating integrals in the sense 
of the Cauchy principal value, which are used everywhere 
in the Kramers-Kronig analysis. To do this, the discrete 
integration operator in the form of the formula of 
trapeziums is quite useful:  
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where Δx  is the integration step, N is the number of points 
of integration. The points that invert the integral to 
infinity, we simply omit.  

The calculation result for the formula (7) in range [-30, 
30] with step 0.1 is shown in Figure 4. (Here and further in 
this paper, the units of frequency ω are not indicated, since 
in view of the specificity of the KK's relations, any scale 
factor for ω under the integral sign will be reduced, and 
the ω will be  dimensionless. In our case, we should 
consider ω as energy in eV). 
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Figure 4. Plots of the DS model function by formula (7) in two principal cases: a), b) – A = 160, ω0 = 4.0, Γ = 1: the KK relations are not satisfied; c), d) – 
A = 160, ω0 = 4.0, Γ = 0.05: the KK relations are satisfied. For graphs a) – b), data 1 is the initial form of the function, data 2 is the form of the function 
after the first transform , and data 3 is the form of the function after the second  transform  by KK's relations; for graphs c) – d), data 1 is initial, data 2 is 
after the first and second transformation by KK’s relations. 
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In the first case (Figure 4, a, b), we moved away from the values of the parameters according to Figure 3 and put Γ = 1. 

As a result, as we see, the KK's relations are not satisfied. However, we went further and applied the transformation once 
more to the result obtained. We came to an unexpected situation –  the relations are being fulfilled. In the case when the 
parameters correspond to the values from Figure 3, as expected, the relations are satisfied (Figure 4, c, d). Moreover, the 
results of the first and second transformations coincide perfectly. Thus, some difference for the graphs of the initial function 
and the function after the first transformation is not a consequence, as it would seem, of the error of calculations, but a 
consequence of the properties of the function itself, which is to be transformed. We return to this important discussion, but 
first we will clarify the difference between the analytic properties of the function ζ(ω) in the two cases considered. To do 
this, we construct contour graphs of lines of the same level for the complex function ζ(z)  according to formula (11), see 
Figure 5. On these graphs, the poles of the function can clearly be seen, the positions of which can be calculated according 
to formulas (13) – (15).  
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Figure 5. Contour plots of the  model DS function ζ(z) by formula (11), z = ω + iω im,  in the complex plane z for the cases shown in Figure 4: a), b) – A = 
160, ω0 = 4.0, Γ = 1; c), d) – A = 160, ω0 = 4.0, Γ = 0.05; a), c), and b), d) are real and imaginary parts, respectively. 
 
 

The Figure 5 shows for the dielectric susceptibility 
function two poles in the upper half-plane, of which we 
have heard so much, but have not seen; and one pole in the 
lower half-plane, of which we have not heard and seen. If 
the parameter Γ is sufficiently reduced, the pole on the 
imaginary axis will shift to side -∞, and the Kramers-
Kronig relations will be satisfied. We came to an 
important conclusion. From the condition that in the upper 

half-plane the function has poles, and in the lower half-
plane it is analytic (holomorphic), it follows that the 
Kramers-Kronig relations hold for it. However, from the 
condition that the Kramers-Kronig relations hold for a 
function it does not follow that the function is analytic 
only in one of the half-planes. 

Now we turn, we can say, to the second part of our 
work, and consider the application of the KK relations to 
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functions that do not have the form of a classical response 
function. Considering the dielectric susceptibility function, 
we can intuitively assume that the response function must 
have properties. It must be a complex-valued function of 
the real argument. Its real and imaginary parts must vanish  
at infinity ±∞. Its real part is an even function, and the 
imaginary part is an odd function. Its real part changes 
sign on the positive (negative) axis, and the imaginary part 
does not change. Other functions, in addition to function 
DS, have these properties. For example, first of all, the 
functions associated with the dielectric permittivity ε(ω) -
 1, with the complex refractive index ν(ω) - 1, and the 
reflection coefficient 

.
)(1
)(1

)(
ωε+

ωε−
=ωr   (19) 

 
The consideration of the reflection coefficient has only 

theoretical value, in practice the use of the reflection 
coefficient has no  significance. Neither the real nor the 
imaginary part can be measured separately by experiment. 
Then, as the logarithm of the reflection coefficient and the 
KK analysis applied to it, has  great importance for optics 
and spectroscopy. This value is so large in the optics of 
semiconductors that we must make a small digression and 
touch upon this problem. 

–––÷÷÷––– 
 

With the beginning of the 50's semiconductor optics 
developed rapidly. The determination of the optical 
constants from the reflection and absorption spectra was 
the first task. In the pioneering works of Avery, Robinson 
and Price [23 – 25] the idea of determining optical 
constants from the spectra of the fundamental reflection of 
optical crystals was put forward. The formulation of the 
problem was clear, it is necessary to apply the Kramers-
Kronig analysis to the function  

 
,||lnln θ+= irr    (20) 

 
that is, to the logarithm of the complex reflection 
coefficient r = |r|eiθ. Applying the Kramers-Kronig 
analysis by formulae (1) and (2) to the function (7), we 
obtain equations: 
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Since from the experiment we have a reflection spectrum 
|r(ω)|2, then applying the second relation (9), we obtain the 

phase angle θ(ω) of the reflection coefficient, and hence 
the optical constants – real refractive index n and 
extinction coefficient κ:  
 

,
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However, things did not go as good as they wanted. 

Several years later Jahoda found the key to the cherished 
casket. He, first in his dissertation [26], and then in [27] 
showed how to calculate this phase. For this Jahoda used 
the theory of networks in the Bode idea  [28]. According 
to Bode and Jahoda  
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This relationship for the phase in the form of a formula 

(12) is densely included in many articles, books and 
textbooks [29 – 53]. We note that an investigation of the 
optical properties of silicon, germanium, and some other 
classical semiconductor crystals was carried out with the 
help of this formula. 

Another approach to solving equation (9) was 
suggested by Plaskett and Schatz [54 – 56]. According to 
[54] ,  
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Here, β is the imaginary part of the frequency, which can 
tend to 0 or ∞.  

3 Example 

Let's consider an example of silicon from the already cited 
work [22]. According to the reflectivity data in the range 
[1.5, 6.0] eV, we construct the function ln r|ω|  in the range 
[-6.0, 6.0], defining it on the interval (-1.5, 1.5) using 
model data. We apply to this function the KK 
transformation according to formula: 
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As a result, we obtain curve 2 in Figure 7. To determine 
the angle of rotation, we must use several control points in 
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which the dielectric constant (refractive index and 
extinction coefficient) is reliably known, measured by 
some other method (the prism method in the transparency 
region,  or from the absorption spectrum in the region of 
moderate absorption). The figure shows that this angle is 
equal to the sum of the  slope angles modules of the lines, 
which are the linear trend of the given and the determined 
curves. In Figure 6 curve 1 is calculated from the total data 
of silicon, and curve 3 is determined by the rotation of 
curve 2. As can be seen, the angle of rotation is -
(arctan|0.084|+arctan|-0.06|). The obtained refractive index 
for silicon is shown in Figure 7. Note that we intentionally 
did not put model data in the range (6.0, ∞). As a result, as 
we see, there are  "loose" tails appear on the edge of the 
interval, there is no accuracy. This underconversion in  KK 
transform  can be eliminated by expanding the measuring 
range of reflectivity and continuing its model data. 
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Figure 6. To the determination of the phase function for silicon.  
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Figure 7. The refractive index of silicon is determined from the reflection 
spectrum. 

4 Conclusion 

The current state of materials science is such that it is 
technologically possible to create new types of media - 
nanostructured media, composite materials, in general the 
so-called metamaterial media. This leads to new 
statements of problems for electrodynamics and optics of 
condensed matter. In this respect, the Kramers-Kronig 
analysis will continue to play a large role in connection 
with its fundamental origin. We see the prospects as 
follows. On the one hand, the application of KK relations 
makes it possible to verify the values of optical 
characteristics for well-studied media, such as 
semiconductor crystals, for example. On the other hand, it 
is necessary to develop the KK method itself in the 
theoretical sense. This article has been, to a greater extent, 
devoted to  this probleme. 
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