

Journal of Chemistry and Technologies

pISSN 2306-871X (Print), ISSN 2313-4984 (Online)

journal homepage: http://chemistry.dnu.dp.ua

UDC 546.273+ 535.375.5+620.192.41

RAMAN SCATTERING IN GLASSY Li₂B₄O₇

Pavlo P. Puga^{*1}, Pavlo S. Danyliuk¹, Galina V. Rizak¹, Aleksandr I. Gomonai², Ivan M. Rizak³, Vasyly M. Rizak¹, Galina D. Puga¹, Lenka Kvetkova⁴, Nikolay N. Birov², Ivan I. Chychura², Vladimir N. Zhiharev¹ ¹Uzhhorod national university, Voloshyna St., 54, Uzhhorod, 88000, Ukraine

²Institute of electron physics of the National academy of sciences of Ukraine, Universytetska St., 21, Uzhhorod, 88017, Ukraine ³Nonprofit Foundation for Supporting Education, Science, Scientific, Technological, and Innovative Activity, Peremohy St., 173/28, Uzhhorod, 88017, Ukraine

⁴Institute of material science of Slovak academy of sciences, Watsonova St., 47, Kosice, 04001, Slovak Republic

Abstract

Lithium tetraborate is a promising material to be used in the production of solid electrolytes and solid-state batteries. A powerful tool for investigating its structure in the B_2O_3 -Li₂O system is Raman spectroscopy. The Raman spectra were investigated using the XploRA PLUS (HORIBA Jobin Yvon) Raman spectrometer at the temperature of T = 300 K within the 70-2000 cm⁻¹ range. The excitation wavelength was 785 nm, the spectral resolution was no worse than 1 cm⁻¹. As a result of the study, we have determined the nature of vibrational modes. We detected a fine structure in the 70-400 cm⁻¹ range, which we found to correspond to normal vibration of the lithium-oxygen structural complexes in the structure of [LiO₆] frames, and also vibrations and librations of [LiO₆] frame and the BO₃ and BO₄ groups in the structure of [B₄O₇]²⁻ cluster as a whole. In the 400-800 cm⁻¹ range the superposition of vibrations of [LiO₄] clusters and [BO₄] tetrahedrons takes place, whereas their normal vibrations are detected in the 800-1354 cm⁻¹ range. In the 1300-2000 cm⁻¹ range we observed the manifestation of two-phonon states, the normal vibrations of borate rings, and the symmetric stretching of the BO₃ flat triangles, and detected two peaks that have not been observed previously. The obtained results show that the Raman spectra of glassy Li₂B₄O₇ generally display a single-mode behavior and are caused by a combination of vibrations of different types which are interconnected via the frame structure of the glass consisting of complex boron-oxygen and lithium-oxygen structural complexes.

Keywords: lithium tetraborate; mode; structural complexes; tetrahedral groups; trigonal groups.

КОМБІНАЦІЙНЕ РОЗСІЮВАННЯ СВІТЛА У СКЛОПОДІБНОМУ Li2B4O7

Павло П. Пуга^{*1}, Павло С. Данилюк¹, Галина В. Різак¹, Олександр І. Гомонай², Іван М. Різак³, Василь М. Різак¹, Галина Д. Пуга¹, Ленка Кветкова⁴, Микола М. Биров², Іван І. Чичура², Володимир М. Жихарєв¹

¹Ужгородський національний університет, вул. Волошина, 54, Ужгород, 88000, Україна ²Інститут електронної фізики НАН України, вул. Університетська, 21, Ужгород, 88017, Україна ³Благодійний фонд підтримки освіти, науки, науково-технічної та інноваційної діяльності, вул. Перемоги, 173/28,

Ужгород, 88000, Україна

⁴Інститут матеріалознавства Словацької академії наук, вул. Ватсонова, 47, Кошице, 04001, Словаччина

Анотація

Досліджено спектри комбінаційного розсіювання світла у склоподібному тетрабораті літію. Встановлено, що більшість коливальних мод скла Li₂B₄O₇ у межах усередненого порядку зумовлена змішаними модами складних бор-оксигенових та літій-оксигенових структурних комплексів.

Ключові слова: тетраборат літію; мода; структурні групи; тетраедричні групи; тригональні групи.

*Corresponding author: e-mail: actinate@gmail.com © 2018 Oles Honchar Dnipro National University doi: 10.15421/081811

КОМБИНАЦИОННОЕ РАССЕЯНИЕ СВЕТА В СТЕКЛООБРАЗНОМ Li₂B₄O₇

Павел П. Пуга^{*1}, Павел С. Данилюк¹, Галина В. Ризак¹, Александр И. Гомонай²,

Иван М. Ризак³, Василий М. Ризак¹, Галина Д. Пуга¹, Ленка Кветкова³, Николай Н. Биров²,

Иван И. Чичура², Владимир Н. Жихарев¹

¹Ужгородский национальный университет, ул. Волошина, 54, Ужгород, 88000, Украина

²Институт электронной физики НАН Украины, ул. Університетская, 21, Ужгород, 88017, Украина

^зБлаготворительный фонд поддержки образования, науки, научно-технической и инновационной деятельности, ул.

Победы, 173/28, Ужгород, 88000, Украина

⁴Институт материаловедения Словацкой академии наук, ул. Ватсонова, 47, Кошице, 04001, Словакия

Аннотация

Исследованы спектры комбинационного рассеяния света в стеклообразном тетраборате лития. Установлено, что большинство колебательных мод стекла Li₂B4O7 в пределах усредненного порядка обусловлена смешанными модами сложных бор-кислородных и литий-кислородных структурних комплексов.

Ключевые слова: тетраборат лития, мода, структурные группы, тетраэдрические группы, тригональные группы.

Вступ

Широкозонні діелектрики на основі тетраборату літію (ТБЛ) є перспективними матеріалами для нелінійної оптики у зв'язку із їх високою променевою та радіаційною стійкістю, прозорістю в широкій області спектра, високими нелінійно оптичними коефіцієнтами для перетворення частоти лазерного випромінювання, а також характеризуються високою інтенсивністю комбінаційного розсіювання світла (КРС). Вони є важливими для потенційного застосування в суперіонних провідників якості для виготовлення твердих електролітів, а відтак і твердотільних джерел електроенергії, а матриця тканиноеквівалентного Li₂B₄O₇ V різних фазових станах є перспективною для термолюмінесцентної дозиметрії. Тому вивченню спектроскопічних характеристик цього матеріалу приділяється значна увага дослідників [1–12]. Для використання таких електролітів важливим є знання про зв'язок між структурою і іонною провідністю, яка багато в чому пов'язана із природою взаємодії суперіонних комплексів у системі B₂O₃-Li₂O. Потужним інструментом вивчення їх структури є раманівська та ІЧ спектроскопія.

В останні роки дослідженням коливальних спектрів Li₂B₄O₇ присвячено цілий ряд робіт [13–27], у яких, за винятком [18; 19; 26–28], вивчалися фононні спектри монокристалів ТБЛ. Відомості про коливальні спектри для склоподібних боратів у літературі практично відсутні.

Ідентифікація коливальних мод для розупорядкованих боратів на основі ТБЛ також практично відсутня через надто складну будову і кристалів, і стекол. Структура кристалу Li₂B₄O₇, вперше визначена авторами роботи [29; 30], містить 8 формульних одиниць, тобто, 104 атоми в елементарній комірці із просторовою групою I4₁cd (C_{4v}¹²) із розмірами тетрагональної комірки a = b = 9.477(5) Å, і c =10.290(4) А. Об'ємні борокисневі комплекси [В₄О₉]⁶⁻ складені із двох плоских трикутників [ВО₃] і двох тетраедрів [ВО₄] із сильним ковалентним зв'язком [22], які об'єднуються спільними для сусідніх комплексів атомами кисню у спіралі із віссю, паралельною осі с, формуючи через спільні атоми кисню жорсткий тривимірний каркас. Катіони літію розміщені в каналах цього каркасу вздовж напрямку, паралельному оптичній осі кристалу. В першу координаційну сферу атома літію входять чотири найближчих атоми кисню, створюючи сильно деформований тетраедр. Ланцюжки із літій-кисневих тетраедрів навиті на вісь 4₁.

Враховуючи той факт, що стекла та монокристали ТБЛ практично E ізоструктурними В межах усередненого порядку, який охоплює декілька координаційних сфер [31], можна вважати, що аналогічну будову матиме і склоподібний $Li_2B_4O_7$ 3 дещо зміненими параметрами елементарної комірки, що повинно внести деякі зміни динаміку деформованої В структури тетрабората літію.

Вважається, що спектри комбінаційного розсіювання у склоподібних матеріалах

надають інформацію про структуру ближнього порядку, але у них часто проявляється деяка схожість зі спектрами кристалів аналогічної будови. У спектрах КРС стекол переважають широкі і безперервні смуги. З іншої сторони, раманівське розсіювання у стеклах є дуже сильним порівняно зі звичайним раманівським розсіюванням другого порядку у кристалах. Окрім того, у спектрах КРС стекол можуть спостерігатися порівняно вузькі розділені смуги, які характеризують розсіювання першого порядку в кристалах. Було показано, що розупорядкування у стеклах призводить до скасування правила відбору при $\mathbf{k} = 0$, і всі вібраційні моди можуть вносити свій вклад у природу розсіювання [32]. На основі цього Шукер і Ґаммон зробили висновок [33] про те, що КРС у стеклах є розсіюванням першого порядку і тісно пов'язане із вібраційною щільністю фононних станів.

Вивченню спектрів КРС склоподібного Li₂B₄O₇ у літературі не приділена належна увага і такі дані на сьогодні практично відсутні. Метою даної роботи було експериментальне вивчення механізмів розсіювання у спектрах КРС склоподібного тетрабората літію.

Експериментальні результати

Спектри мікрораманівського розсіювання досліджувалися на раманівському спектрометрі XploRA PLUS (HORIBA Jobin Yvon). Збудження спектрів здійснювалося випромінюванням лазера з довжиною хвилі λ = 785 нм. Спектральне розділення було не гірше 1 см⁻¹. Дослідження проводилися при температурі T = 300 К. Використані для дослідження склоподібні зразки Li₂B₄O₇ були синтезовані за технологією, описаною в [34; 35].

Спектри КРС склоподібного ТБЛ були вивчені в діапазоні 50 – 2000 см⁻¹. Результати дослідження приведено на рис. (а). Для порівняння на рис. b наведено спектр КРС монокристалічного ТБЛ [26].

спектрі стехіометричного У $Li_2B_4O_7$ зафіксовано 13 чітких КРС-смуг, які добре корелюють із літературними даними [9; 18; 19; 26-28], що були зафіксовані в обмеженому спектральному інтервалі (300 – 1500 см-1) цими авторами. Із рисунка випливає, що в області 70 – 1700 см-1 структура спектра склоподібного ТБЛ відносно складна. Найбільш чітко виражені СМУГИ проявляються при 77.1, 100, 350, 506, 769, 958, 1115 і 1440 см⁻¹. Окрім цього, у структурі вказаних КРС-смуг зафіксовано додаткові особливості при 146, 240, 387, 682, 853, 977, 1075, 1354, 1658 та 1874 см⁻¹. У цій енергетичній залежності можна виділити 4 групи КРС-смуг у спектральних діапазонах 70 – 600 см-1, 600 – 860 см-1, 860 – 1050 см-1 і 1050 – 2000 см-1.

Для ідентифікації структури спектра КРС склоподібного Li₂B₄O₇ необхідно врахувати особливості кристалохімічної будови тетрабората літію. Згідно зі структурними даними [29; 30], іони Літію в матриці ТБЛ знаходяться в оточенні спотворених кисневих тетраедрів, у яких відстань Li-O становить від 0.197 до 0.214 нм, і октаедрів, де ця відстань близька до 0.263 нм.

Figure. Raman spectrum of glassy (a) and single-crystal (b) [14] lithium tetraborate

Рисунок. Спектр комбінаційного розсіювання світла склоподібним (а) та монокристалічним (b) [26] тетраборатом літію

За аналогією з іонами Літію, іони Бору знаходяться неоднорідному в координаційному оточенні. В тетраедрі [ВО4] усереднені відстані В-О становлять 0.145 нм, а в системі [BO₃] – 0.139 нм. На підставі коливань відомих частот структурних комплексів $[LiO_4], [LiO_3],$ [BO₄], [BO₃] i ідентифікацію однофононних проведено спектрів склоподібного Li₂B₄O₇.

Різко виражена структура в діапазоні 70 – 350 см⁻¹ відповідає нормальним коливанням каркасів [LiO₆]. У спектральній області 400 – 600 см⁻¹ має місце суперпозиція коливань каркасних груп [LiO₄] та тетраедрів [BO₄].

Максимуми в діапазоні частот 600–800 см-1 зумовлені коливаннями комплексів [LiO₄]. За нормальні коливання цих же комплексів відповідають піки в спектральних інтервалах 800 – 980 см⁻¹, 980 – 1164 см⁻¹ і 1160 – 1354 см⁻¹.

Моди в області широкого максимуму при 958 см⁻¹, відповідно до [9; 17; 18; 26], зумовлені деформацією тетраедрів [BO₄], а за коливання при 387 см⁻¹ відповідає розтяг тетраедрів [ВО₄]. групи Симетричному розтягу $[BO_3]$ відповідають частоти 853, 958 та 977 см-1. цього. Окрім КРС-смуга при 853 см-1 характеризує моди групи три-, пента- та диборату. Найбільш інтенсивна мода при 769 см⁻¹ характеризує коливання симетричних деформацій комплексів [ВО₃].

Особливість області 666 - 700 см-1 в відповідає коливанням, що характеризують асиметричну деформацію плоских трикутників в структурі $Li_2B_4O_7$ (682 см-1) $[BO_3]$ та коливаннями оксигенових містків між одним тетраедральним i одним тригональним атомами Бору або між одним тетраедральним і двома тригональними атомами Бору. Слабо виражена особливість в інтервалі 240 – 255 см-1 зумовлена вібраціями каркасів [Li–O₆], а плече при 387 см⁻¹ зумовлено коливаннями, викликаними симетричним розтягом тетраедрів [BO₄]. Цим же модам відповідають піки при 506, 958 та 977 см⁻¹.

Широка структурна дифузна смуга з максимумами на 1341.7 i 1425.3 см⁻¹, що спостерігається в області частот 1300-1500 см-1, пов'язана, на наш погляд, з проявом двохфононних станів (v = 1425.3 см-1). Найбільш імовірним є наявність обертонів і складових тонів коливань в діапазоні частот 693.9 – 780.0 см-1. Максимум на частоті 1341.7 см-1 характеризує вібраційні коливання боратних кілець та симетричний розтяг плоских трикутників ВО3. Дифузні максимуми з частотами 1648.2 та 1893.8 см-1 £ відповідальними за нормальні коливання бороксидних зв'язків В-О [24; 27].

Дані по ідентифікації коливань можуть бути одержані за допомогою аналізу характеристичних частот інших складних іонів, до складу яких входять атоми Бору в тетраедричному і тригональному околі атомів кисню. За даними авторів [20; 21; 25; 26] 900 – 1050 см-1 область відповідає симетричному розтягу групи ВО₃ (935.9, 953.3 i 1014.0 см-1), в той час як область 600 – 900 см-1 асиметричній деформації плоских трикутників BO₃ (693.9 см⁻¹) та коливанням містків оксигенових між одним тетраедральним і одним тригональним та між одним тетраедральним і двома тригональними атомами Бору. Зазначимо, що в цій області частот спостерігаються також коливання, що відповідають за спотворені моди груп ВО₄. Область 400 – 600 см-1 відповідає за змішані трансляційні (432.6 см⁻¹, 477.9 см⁻¹) і вібраційні (528.4 см⁻¹) коливання іонів Літію. Окрім того, у спектрах боратів літію, до складу яких входять тетраедричні групи [LiO₄], спостерігаються характеристичні лінії в області частот 200-400 см⁻¹, відповідні за вібраційні моди каркасів [LiO₆]. До коливань у цьому спектральному інтервалі (200 – 300 см⁻¹) можуть бути віднесені лібраційні коливання груп ВО₃ і ВО₄ в структурі кластера [В₄0₇]²⁻ як цілого, що призводить до деформації останнього [23].

Table

Identification of Raman spectra of glassy litium tetraborate

Таблиця

Положення максимуму КРС, см ⁻¹	Тип коливань
80 101 144 148	вільні коливання літій-оксигенових структурних комплексів
209	деформаційні (згинальні) моди зв'язків ВО4
240 255	вібраційні моди каркасів LiO6
377	симетричний розтяг тетраедрів ВО4
425 460	коливання катіонів Літію
506	симетричний розтяг тетраедрів ВО4
530	коливання катіонів Літію
682	асиметрична деформація плоских трикутників ВО3
697	коливання оксигенових містків між одним тетраедральним і одним тригональним та між одним тетраедральним і двома тригональними атомами Бору
769	симетрична деформація плоских трикутників ВО3

Ідентифікація спектрів КРС склоподібного тетраборату літія

50		
Journal of Chemistry and Technologies, 2018, 26(2), 31-38		
853	моди групи три-, пента- та диборату	
	Продовження таблиці	
958	симетричний розтяг ВО3 трикутників	
977	симетричний розтяг ВО3 плоских трикутників	
1075 1115	коливання за рахунок спотворення тетраедрів ВО4	
1354 1440	коливання, відповідальні за вібрації різних боратних кілець та симетричний розтяг плоских трикутників ВО3	
1658 1874	коливання зв'язків В–О	

Область частот 70 – 200 см⁻¹ (71.1; 109.5; 152.2 см⁻¹) характеризує «зовнішні» моди літійоксигенових структурних комплексів, що входять у матрицю склоподібного Li₂B₄O₇ (див. рис.).

Чітко виражений максимум при 1440 см-1 за частотним положенням своїм відповідає симетричному розтягу плоских трикутників [ВО₃] та вібраційним коливанням різних боратних кілець. Плече та максимум при 1075 і 1115 см-1 відповідно характеризують коливання, характерні для спотворених [BO₄] тетраедрів структурі склоподібного V тетрабората літію. Особливості у КРС спектрі при 1658 та 1874 см-1 зумовлені коливаннями В-О зв'язків.

Для наочності дані по ідентифікації коливальних мод склоподібного тетрабората літію наведено в таблиці.

Висновки

26

У результаті проведених досліджень спектрів КРС склоподібного тетрабората літію уточнено ідентифікацію декількох мод, а в області 1800 – 2000 см-1 зафіксовано два максимуми КРС. В області 100 – 400 см-1 виявлена тонка структура, яка раніше не спостерігалася. Одержані результати свідчать про те, що спектри КРС склоподібного Li₂B₄O₇ мають переважно одномодовий характер і зумовлені комбінацією коливань різних типів, які пов'язані між собою каркасною будовою скла зі складних бор-оксигенових і літійоксигенових структурних комплексів. Окрім вказаних коливань у природу КРС дають вклад також вібраційні моди різних боратних кілець. Отримані результати можуть бути використані для уточнення кристалографічних параметрів різних представників боратів.

Бібліографічні посилання

- [1] Padlyak B. V. Spectroscopy of the Er-doped lithium tetraborate glasses / B. V. Padlyak, R. Lisiecki, W. Ryba-Romanowski // Optical Materials. – 2016. – V.54. – P. 126– 133. <u>https://doi.org/10.1016/j.optmat.2016.02.025</u>
- [2] Khalilzadeh N. Silver Doped Lithium Tetraborate Nanoparticles Synthesis and Evaluation // 5th International Conference on Advanced Research in Engineering and Technology (2017, June 1–4, Shiraz, Iran). – 2017. – P. 1–10.
- Photoelestic properties of lithium tetraborate crystals /
 O. Krupych, O. Mys, T. Kryvyy [et al.] // Applied Optics. –
 2016. V. 55, N 36. P. 10457–10462. http://dx.doi.org/10.1364/A0.55.010457
- [4] Shardakov N.T. X-ray Fluorescence of Fe, Mn, and Ti in Lithium-Tetraborate-Based Glass //Glass Physics and Chemistry. – 2018. – V. 44, N 5. – P. 388–393. http://dx.doi.org/10.1134/S1087659618050152
- [5] Thermoluminescence characteristics of biological tissue equivalent single crystal: europium doped lithium tetraborate for dosimetry applications / R. Nattudural, A. K. Raman, C. B. Palan, S. K. Omanwar // J. Material Science: Materials in electronics. – 2018. – V. 29, N 17. – P. 14427–14434.
- [6] Positron lifetime spectroscopy of lithium tetraborate Li₂B₄O₇ /O. Shpotyuk, V. Adamiv, I. Teslyul, A. Ingram // J. Non-Crystal solids. – 2017. – V. 471. – P. 338–343.
- [7] Рентгенолюмінесценція і спектроскопічні характеристики іонів Ег³⁺ у полікристалічному тетрабораті літію / П.П. Пуга, П.С. Данилюк, В.М. Красилинець [et al.] // Науковий вісник Ужгородського університету. Серія фізика. – 2015. – Т. 38. – С. 56–63.
- [8] Рентгенолюминесценция ионов Eu³⁺ в стеклообразном и поликристаллическом тетраборате лития / П.С. Данилюк, П.П. Пуга, В.М. Красилинець [et al.] // Физика и химия стекла. – 2018. – Т. 44, N 1. – С. 3–10.
- [9] Raman Scattering in Glassy Li₂B₄O₇ Doped by Er₂O₃ / P.P. Puga, P.S. Danyliuk, A.I. Gomonai [et al.] // Ukr. J. Phys. Opt. – 2018. – V. 19, N 4. – P. 211–219.
- [10] Rare earth dopant (Nd, Gd, Dy, and Er) hybridization in lithium tetraborate. / T. D. Kelly, J. C. Petrosky, J. W. McClory [et al.] // Frontiers in Physics (Condensed Matter Physics). – 2014. – V. 27. – P. 1–10.
- [11] Investigations on structural and magnetic properties of Mn doped Er_2O_3 / R. Tomar, P. Kumar, A. Kumar [et al.] // Solid State Sciences. 2017. V. 67. P. 8–12.
- [12] Abrashev M. V. Raman spectra of R₂O₃ (R rare earth) sesquioxides with C-type bixbyite crystal structure:

A comparative study / M. V. Abrashev, N. D. Todorov, J. Geshev // J. Appl. Phys. – 2014. – V. 116, N 10. – P. 103508-1–103508-7.

- [13] Paul G. L. Raman spectrum of Li₂B₄O₇ / G.L. Paul, W. Taylor // J. Phys. C: Solid State Phys. – 1982. – V.15, N 8. – P. 1753–1764.
- [14] Furusawa S. Raman Scattering Study of Lithium Diborate (Li₂B₄O₇) Single Crystal / S. Furusawa, S. Tange, Y. Ishibashi, K. Miwa // J. Phys. Soc. Japan. – 1990. – V.59, N 5. – P. 1825–1830.
- [15] Бурак Я. В. Продольно-поперечные расщепления фононных мод в кристаллах Li₂B4O₇ / Я. В. Бурак, Я. О. Довгий, И. В. Китык // Журнал прикладной спектроскопии. – 1990. – Т. 52, N 1. – С. 126–128.
- [16] Про фононні спектри монокристалів боратів / В. Т. Адамів, Т. Й. Берко, І. В. Кітик [та ін.] // Укр. фіз. журн. – 1992. – Т.37, N 3. – С. 368–373.
- [17] Спектри комбінаційного розсіювання світла монокристалів тетраборату літію / Т. Й. Берко, Я. О. Довгий, І. В. Кітик [та ін.] // Укр. фіз. журн. – 1993. – Т. 38, N 1. – С. 39–43.
- [18] Spectroscopic Characterization of Lithium Doped Borate Glasses / T. Lopez, E. Haro-Poniatowski, P. Bosh [et al.] // J. Sol-Gel Science and Technology. – 1994. – V. 2, N. 1–3. – P. 891–894.
- [19] Li Y. Pressure-induced Amorphization Study of Lithium Diborate / Y. Li, G. Lan. // J. Phys. Chem. Solids. – 1996. – V. 57, N 12. – P. 1887–1890.
- [20] Дергачев М. П. Комбинационное рассеяние света в кристаллах Li₂B₄O₇ с примесями / М. П. Дергачев, В. Н. Моисеенко, Я. В. Бурак // Опт. и спектр. – 2001. – Т.90, N 4. – С. 604–607.
- [21] Вдовин А. В. Колебательный спектр кристаллов Li₂B₄O₇ / А. В. Вдовин, В. Н. Моисеенко, В. С. Горелик, Я. В. Бурак // Физика твердого тела. – 2001. – Т. 43, N 9. – С. 1584–1589.
- [22] Бурак Я. В. Ізотопний ефект у спектрах комбінаційного розсіяння світла в монокристалах Li₂B₄O₇ / Я. В. Бурак, І. Б. Трач, В. Т. Адамів, І. М. Теслюк // Укр. фіз. журн. – 2002. – Т.47, N 10. – С. 923–927.
- [23] Горелик В. С. Комбинационное и гиперэлеевское рассеяние света в кристаллах тетрабората лития / В. С. Горелик, А. В. Вдовин, В. Н. Моисеенко – Препринт ФИАН РФ им. П.Н. Лебедева №13. Москва, 2003. – 99 с.
- [24] Elalaoui A. E. Raman scattering and non-linear optical properties in Li₂B₄O₇ / A. E. Elalaoui, A. Maillard, M. D. Fontana // J. Phys.: Cond. Matter. – 2005. – V. 17, N 46. – P. 7441–7454.
- [25] Burak Ya. V. To the origin of vibrational modes in Raman spectra of Li₂B₄O₇ single crystals / Ya. V. Burak, V. T. Adamiv, I. M. Teslyuk // Func. Mater. – 2006. – V. 13, N 4. – P. 591–595.
- [26] Voronko Yu. K. Raman Spectroscopy Study of the Phase Transformations of LiB₃O₅ and Li₂B₄O₇ during Heating and Melting / Yu. K. Voronko, A. A. Sobol, V. E. Shukshin // Inorganic Materials. – 2013. – V. 49, N 9. – P. 923–929.
- [27] El Batal F. H. Gamma ray interaction with lithium diborate glasses containing transition metals ions / F. H. El Batal, A. A. El Kheshen, M. A. Azooz, S. M. Abo-Naf // Optical Materials. – 2008. – V. 30, N 6. – P. 881–891. http://dx.doi.org/10.1016/j.optmat.2007.03.010

- [28] Yadav A. K. A review of the structures of oxide glasses by Raman spectroscopy / A. K. Yadav, P. Singh. // RSC Advances. – 2015. – V. 5, N 83. – P. 67583–67609.
- [29] Krogh-Moe J. The Crystal Structure of Lithium Diborate, Li₂O-2B₂O₃ // Acta Cryst. - 1962. - V. 15, N 3. - P. 190-193.
- [30] Krogh-Moe J. Refinement of the Crystal Structure of Lithium Diborate, Li₂O-2B₂O₃ // Acta Cryst. B. – 1968. – V. 24, N 2. – P. 179–181.
- [31] Cervinka L. Medium-range order in amorphous materials // J. Non-Crystalline Solids. – 1988. – V. 106. – P. 291– 300.
- [32] Brillouin and Raman scattering study of borate glasses / J. Lorösch, M. Couzi, J. Pelous [et al.] // J. Non-Cryst. Sol. – 1984. – V. 69. – P. 1–25.
- [33] Shuker R. Raman-scattering selection-rule breaking and the density of states in amorphous materials / R. Shuker, R. W. Gammon. // Phys. Rev. Lett. – 1970. –V. 25, N 4. – P. 222–225.
- [34] Рентгенолюминесценция и спектроскопические характеристики ионов Ег³⁺ в стеклообразной матрице тетрабората лития / П. С. Данилюк, П. П. Пуга, А. И. Гомонай [та ін.] // Опт. и спектр. – 2015. –Т. 118, N 6. – С. 956–961.
- [35] Спектры оптического поглощения и уровни энергии ионов Er³⁺ в стеклообразной матрице тетрабората лития / П. С. Данилюк, К. П. Попович, П. П. Пуга [та ін.] // Опт. спектр. – 2014. – Т. 117, N 3. – С. 783–788.

References

- Padlyak, B. V., Lisiecki, R., Ryba-Romanowski, W. (2016). Spectroscopy of the Er-doped lithium tetraborate glasses. *Optical Materials*, 54, 126–133. https://doi.org/10.1016/j.optmat.2016.02.025
- [2] Khalilzadeh, N. (2017) Silver Doped Lithium Tetraborate Nanoparticles Synthesis and Evaluation. *The 5th International Conference on Advanced Research in Engineering and Technology* (2017, June 1–4, Shiraz, Iran), 1–10.
- [3] Krupych, O., Mys, O., Kryvyy, T., Adamiv, V., Burak, Ya., Vlokh, R. (2016). Photoelestic properties of lithium tetraborate crystals. *Applied Optics*, 55(36), 10457– 10462. <u>http://dx.doi.org/10.1364/A0.55.010457</u>
- [4] Shardakov N.T. (2018). X-ray Fluorescence of Fe, Mn, and Ti in Lithium-Tetraborate-Based Glass. *Glass Physics and Chemistry*. 44(5), 388–393. http://dx.doi.org/10.1134/S1087659618050152
- [5] Nattudural, R., Raman, A. K., Palan, C. B., Omanwar S. K. (2018). Thermoluminescence characteristics of biological tissue equivalent single crystal: europium doped lithium tetraborate for dosimetry applications. *J. Material Science: Materials in electronics*. 29(17), 14427–14434. <u>https://doi.org/10.1007/s10854-018-9575-1</u>
- [6] Shpotyuk, O., Adamiv, V., Teslyul, I., Ingram A. (2017). Positron lifetime spectroscopy of lithium tetraborate Li₂B₄O₇. J. Non-Crystal solids. 471, 338–343. https://doi.org/10.1016/j.jnoncrysol.2017.06.016
- [7] Puga, P., Danilyuk, P., Krasylynec, V., Turok I., Gomonai, O., Birov, M., Volovich, P., Chychura, I., Rizak, V. (2015). X-ray and Spectroscopic Characteristics of Er³⁺ Ions in Polycrystalline Lithium Tetraborate. *Uzhhorod University Scientific Herald. Series Physics*, 38, 56–63.

http://dx.doi.org/10.24144/2415-8038.2015.38.56-63

- [8] Danilyuk, P. S., Puga, P. P., Krasilinets, V. N., Gomonai, A. I., Puga, G. D., Rizak, V. M., Turok, I. I. (2018). X-ray Fluorescence of Eu³⁺ Ions in Glassy and Polycrystalline Lithium Tetraborate, *Glass Physics and Chemistry*, 44(1), 1–6.<u>http://dx.doi.org/10.1134/S1087659618010066</u>
- [9] Puga, P.P., Danyliuk, P.S., Gomonai, A.I., Rizak, H.V., Rizak, I.M., Rizak, V.M., Puga, G.D., Kvetková, L., Byrov, M.M. (2018). Raman Scattering in Glassy Li₂B₄O₇ Doped by Er₂O₃. Ukr. J. Phys. Opt., 19(4), 211–219. http://dx.doi.org/10.3116/16091833/19/4/211/2018
- [10] Kelly, T. D., Petrosky, J. C., McClory, J. W., Adamiv, V. T., Burak, Y. V., Padlyak, B. V., Teslyuk, J. M., Lu, N., Wang, L., Mei, W. N., Dowben, P. A. (2014). Rare earth dopant (Nd, Gd, Dy, and Er) hybridization in lithium tetraborate. *Frontiers in Physics (Condensed Matter Physics)*, 27, 1–10. https://doi.org/10.3389/fphy.2014.00031
- [11] Tomar, R., Kumar, P., Kumar, A., Kumar, A., Kumar, P., Pant, R. P., Asokan, K. (2017). Investigations on structural and magnetic properties of Mn doped Er₂O₃. *Solid State Sciences*, 67, 8–12.

https://doi.org/10.1016/j.solidstatesciences.2017.03.003

- [12] Abrashev M. V., Todorov N. D., Geshev J. (2014). Raman spectra of R₂O₃ (R – rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study. *J. Appl. Phys.*, 116(10), 103508-1–103508-7. <u>https://doi.org/10.1063/1.4894775</u>
- [13] Paul, G. L., Taylor, W. (1982). Raman spectrum of Li₂B₄O₇.
 J. Phys. C: Solid State Phys., 15(8), 1753–1764.
 http://dx.doi.org/10.1088/0022-3719/15/8/021
- [14] Furusawa, S., Tange, S., Ishibashi, Y., Miwa, K. (1990). Raman Scattering Study of Lithium Diborate (Li₂B₄O₇) Single Crystal. *J. Phys. Soc. Japan.*, 59(5), 1825–1830. <u>http://dx.doi.org/10.1143/JPSJ.59.1825</u>
- [15] Burak, Ya. V., Dovhiy, Ya. O., Kityk, I. V. (1990). Longitudinal-transverse splitting of phonon modes in $Li_2B_4O_7$ crystals. *Journal of Applied Spectroscopy*, 52(1), 126–128 (in Russian).
- [16] Adamiv, V. T., Berko, T. J., Kityk, I. V., Burak, Ja. V., Dzhala, V. I., Dovgij, Ja. O., Moroz, I. E. (1992). On phonon spectra of the borate monocrystals. *Ukr. J. Phys.*, 37(3), 368–373 (in Ukrainian).
- [17] Berko, T. J., Dovgij, Ja. O., Kityk, I. V., Burak, Ja. V., Dzhala, V. I., Moroz, I. E. (1993). Raman spectra of lithium tetraborate monocrystals. *Ukr. J. Phys.*, 38(1), 39–43 (in Ukrainian).
- [18] Lopez, T., Haro-Poniatowski, E., Bosh, P., Asomoza, M., Gomez, R., Massot, M., Balkanski, M. (1994). Spectroscopic Characterization of Lithium Doped Borate Glasses. J. Sol-Gel Science and Technology, 2(1–3), 891–894. http://dx.doi.org/10.1007/BF00486371
- [19] Li, Y., Lan, G. (1996). Pressure-induced Amorphization Study of Lithium Diborate. *Phys. Chem. Solids*, 57(12), 1887–1890.

http://dx.doi.org/10.1016/S0022-3697(96)00081-9

- [20] Dergachev, M. P., Moiseenko, V. N., Burak, Ya. V. (2001). Raman Scattering in Li₂B₄O₇ Crystals with Impurities. *Optics and Spectroscopy*, 90(4), 604–607. http://dx.doi.org/10.1134/1.1366746
- [21] Vdovin, A. V., Moiseenko, V. N., Gorelik, V. S., Burak, Ya. V. (2001). Vibrational Spectrum of Li₂B₄O₇ Crystals. *Physics* of Solid State, 43(9), 1648–11652.

http://dx.doi.org/10.1134/1.1402218

- [22] Burak, Ya. V., Trach, I. B., Adamiv, V. T., Teslyuk, I. M. (2002). Isotope Effect in the Raman Spectra of Li₂B₄O₇ Single Crystals. *Ukr. J. Phys.*, 47(10), 923-928 (in Ukrainian).
- [23] Gorelik, V. S., Vdovin, A. V., Moiseenko, V. N. (2003). [Raman and hyper-Rayleigh scattering of light in lithium tetraborate crystals]. Preprint of the Lebedev Physics Institute of Russian Academy of sciences, N 13, Moscow (in Russian).
- [24] Elalaoui, A. E., Maillard, A., Fontana, M. D. (2005). Raman scattering and non-linear optical properties in Li₂B₄O₇. *J. Phys.: Cond. Matter*, 17(46), 7441–7454. <u>https://doi.org/10.1088/0953-8984/17/46/027</u>
- [25] Burak, Ya. V., Adamiv, V. T., Teslyuk, I. M. (2006). To the origin of vibrational modes in Raman spectra of Li₂B₄O₇ single crystals. *Func. Mater.*, 13(4), 591–595.
- [26] Voronko, Yu. K., Sobol, A. A., Shukshin, V. E. (2013). Raman Spectroscopy Study of the Phase Transformations of LiB₃O₅ and Li₂B₄O₇ during Heating and Melting. *Inorganic Materials*, 49(9), 923–929. http://dx.doi.org/10.1134/S0020168513090203
- [27] El Batal, F. H., El Kheshen, A. A., Azooz, M. A., Abo-Naf, S. M. (2008). Gamma ray interaction with lithium diborate glasses containing transition metals ions. *Optical Materials*, 30(6), 881–891.

http://dx.doi.org/10.1016/j.optmat.2007.03.010

[28] Yadav, A. K., Singh, P. (2015). A review of the structures of oxide glasses by Raman spectroscopy. *RSC Advances*, 5(83), 67583–67609.

http://dx.doi.org/10.1039/C5RA13043C

- [29] Krogh-Moe, J. (1962). The Crystal Structure of Lithium Diborate, Li₂O-2B₂O₃. *Acta Cryst.*, 15(3), 190–193. <u>http://dx.doi.org/10.1107/S0365110X6200050X</u>
- [30] Krogh-Moe, J. (1968). Refinement of the Crystal Structure of Lithium Diborate, Li₂O–2B₂O₃. *Acta Cryst. B*, 24(2), 179–181.
- http://dx.doi.org/10.1107/S0567740868001913 [31] Cervinka, L. (1988). Medium-range order in amorphous materials. J. Non-Cryst. Sol., 106, 291–300. http://dx.doi.org/10.1016/0022-3093(88)90277-3
- [32] Lorösch, J., Couzi, M., Pelous, J., Vacher, R., Levasseur, A. (1984). Brillouin and Raman scattering study of borate glasses. J. Non-Cryst. Sol., 69, 1–25. http://dx.doi.org/10.1016/0022-3093(84)90119-4
- [33] Shuker, R., Gammon, R. W. (1970). Raman-scattering selection-rule breaking and the density of states in amorphous materials. *Phys. Rev. Lett.*, 25(4), 222–225.
- http://dx.doi.org/10.1103/PhysRevLett.25.222 [34] Danilyuk, P. S., Puga, P. P., Gomonai, A. I., Krasilinets, V. N.,
- Volovich, P. N., Rizak, V. M. (2015). X-Ray Luminescence and Spectroscopic Characteristics of Er³⁺ Ions in a Glassy Lithium Tetraborate Matrix. *Optics and Spectroscopy*, 118(6), 924–929.

http://dx.doi.org/10.1134/S0030400X15060089

[35] Danilyuk, P. S., Popovich, K. P., Puga, P. P., Gomonai, A. I., Primak, N. V., Krasilinets, V. N., Turok, I. I., Puga, G. D., Rizak, V. M. (2014). Optical Absorption Spectra and Energy Levels of Er³⁺ Ions in Glassy Lithium Tetraborate Matrix. *Optics and Spectroscopy*, 117(3), 759–763. <u>http://dx.doi.org/10.1134/S0030400X14110058</u>