Міжнародна конференція молодих науковців і аспірантів
Ужгород, 18-22 травня 2015 року
МАТЕРІАЛИ КОНФЕРЕНЦІЇ

INTERNATIONAL CONFERENCE
OF YOUNG SCIENTISTS AND POST-GRADUATES
Uzhhorod, 18-22 May 2015
PROCEEDINGS OF THE CONFERENCE
This book presents proceedings of the conference. The contributions are dedicated to the studies of the phenomena occurring in different atomic systems in free and condensed states. The papers on the studies of technological and physical peculiarities of the production of certain substances with preset properties are also included.
They are seeing with diminished intensities in PL spectra from freshly fractured surfaces too (not shown). We suggest that this high-energy emission could be due to the presence of some types of GeO nanoclusters (Tabl) on surface and in native matrix of GeS glasses. This suggestion based on quantum-mechanical calculation of different type GeO$_x$ defect clusters presented in [1].

Relative intensities (E, eV) oscillator strength (f) for lowering singlet state of single oxygen vacancies (OV), basic singlet; double oxygen vacancies (DOV), with geometrical parameters optimized for excited states [1].

<table>
<thead>
<tr>
<th>Defect, cluster, method</th>
<th>initial state, E(S, m), f(0-n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OV, (H$_3$GeO)$_2$Ge-Ge(OGe$^{5+}$H)$_3$</td>
<td>S$_v$, CIS(D); 2.72, 0.80; 3.08</td>
</tr>
<tr>
<td>CCSD</td>
<td>3.08</td>
</tr>
<tr>
<td>OV, (H$_3$GeO)$_2$Ge-Ge(OGe$^{5+}$H)$_3$</td>
<td>S$_v$, CIS(D); 2.98, 0.10; 3.31</td>
</tr>
<tr>
<td>CCSD</td>
<td>3.31</td>
</tr>
<tr>
<td>DOV, (H$_3$GeO)$_2$Ge-Ge(OGe$^{5+}$H)$_2$-Ge(OGe$^{5+}$H)$_3$</td>
<td>S$_v$, CIS(D); 2.19, 0.45</td>
</tr>
<tr>
<td>CCSD</td>
<td>2.17, 0.43; 2.63</td>
</tr>
</tbody>
</table>

From the variety of oxygen-deficient defects the theoretical modeling shows that X$_r$Ge-GeX$_2$ (X=OH, OAH, A=Ge) defect gives in q-GeO$_2$ only a red/orange PL band at 2.0–2.1 eV. Non-bridging oxygen in clusters -OGeX$_2$ (X=OGeH$_2$) type and E' center are corresponding for the PL emission at 1.59, 1.89 and 1.98 eV [1]. Oxygen related bands in the PL spectrum of an as-synthesized GeO$_x$ perfect single crystal nanowire, which was excited at the OK-edge (536.5 eV), showed during fitting procedure four components at 1.90, 2.17, 2.42, and 2.70 eV. Thermal annealing of the GeO$_x$ nanowire leads to the disappearance of the high energy bands at 2.42 and 2.70 eV and decreasing intensity of PL yield [2]. Redistribution of intensity in PL spectra (Fig. 2, Fig. 3) we connected with different amount of structural units (s.u.) in g-GeS$_2$(T,V) with week Ge-Ge bonds. Such s.u. are susceptible for oxidation (i.e. Ge(OH)$_2$ formation, Tabl.), in ethane-like (250 cm$^{-3}$) and Ge$_{44}$ (290 cm$^{-3}$) s.u. Detailed assignment of the Raman bands for these samples has been done in [3].

We suggested that Ge oxidation of GeS$_2$(T,V) plays an important role in radiative recombination processes in IR, visible and UV. This may be an effect related to the bulk Ge-oxygen impurities for freshly fractured glasses and surface contaminants due oxidation during long term aging.

Акустические измерения выполнены методом механической резонансной спектроскопии. При повышении температуры от 4,2 К до 320 К динамический модуль Юнга E сплава монотонно понижается от 194 ГПа до 182 ГПа, а поглощение возрастает. Значения E согласуются с данными [2] для сплавов подобного состава. Отжиг при 1243 К в течение 6 ч с последующим медленным охлаждением образца приводит к существенному (~ 20%) увеличению E, а также к появлению при температуре ~ 230 К пика акустического поглощения. Отжиг приводит к изменению структурно-фазового состава сплава при этом состав дendirных областей остаётся неизменным, и в междendirных областях происходит снижение содержания Cu и Al и повышение содержания остальных элементов. На границах между дendirными и междendirными областями происходит образование частиц, обогащенных Ni (~30%), Al (~20%) и Cu (~20%). Согласно [3] эта фаза имеет упорядоченную кристаллическую решётку типа В2. Эти результаты согласуются с [4] о высокотемпературном упрочнении после выдержки при 570-870 К.

В интервале 4,2-300 К наблюдается высокие значения прочности и пластичности сплава. Величина условного предела текучести σ_0 при повышении температуры от 4,2 до 300 К изменяется значительно сильнее (от 700 до 430 МПа, т.е. на 38,5 %), чем величина модуля Юнга (на 6%). При температурах ниже 15 К обнаружено изменение характера пластического течения от планиметрического к скалакообразному. В пределах термоактивированного характера пластической деформации для образцов в литом состоянии вычислены величины активационного объема для термоактивированного движения дислокаций, значения которого уменьшаются с понижением температуры от 122 би при 300 К до 35 би при 30 К.

В литых образцах обнаружено аномальное уменьшение σ_0 от 700 МПа при 4,2 К до 570 МПа при 0,5 К. В отожженном состоянии эта аномалия не наблюдается. Различия в свойствах литых и отожженных образцов связаны со структурно-фазовыми превращениями при отжиге, в частности с образованием выделений ОЦК фазы в ГЦК матрице [5].