> M.J. RONTO ${ }^{1}$, Y.V. VARHA ${ }^{2}$
> ${ }^{1}$ University of Miskolc, Hungary,
> ${ }^{2}$ Uzhgorod National University, Ukraine, matronto@uni-miskolc.hu, mailto:jana.varha@mail.ru, jana.varha @mail.ru

## CONSTRUCTIVE EXISTENCE ANALYSIS OF TWO SOLUTIONS OF SOME NON-LINEAR INTEGRAL BVPS

We consider the following non-linear integral boundary value problem

$$
\begin{align*}
& \quad \frac{d x}{d t}=f(t, x), t \in[a, b]  \tag{1}\\
& \int_{a}^{b}[g(s, x(s))+h(s, f(s, x(s)))] d s=d . \tag{2}
\end{align*}
$$

Here we suppose that the functions $f:[a, b] \times D \rightarrow R^{n}, g:[a, b] \times D \rightarrow R^{n}$ and $h:[a, b] \times D \rightarrow R^{n}$ satisfy the Caratheodory and the Lipschitz condition in the domain D and d is a given vector. Let $D_{a}$ and $D_{b}$ be a convex subsets of $R^{n}$ where one looks for respectively the initial value $x(a)$ and the value $x(b)$ of the solution of the boundary value problem (1), (2).

The problem is to find and establish the existence of an absolutely continuous solution $x:[a, b] \rightarrow D$ of the problem (1), (2) with initial value $x(a) \in D_{a}$.

We note, that the domain $D$ will be defined by using convex linear combinations of subsets $D_{a}$ and $D_{b}$. We introduce the vectors of parameters $z=\operatorname{col}\left(z_{1}, z_{2}, \ldots z_{n}\right)=x(a), \eta=\operatorname{col}\left(\eta_{1}, \eta_{2}, \ldots \eta_{n}\right)=x(b)$ and now, instead of integral problem (1), (2) we will consider the following "model-type" two-point boundary value problem with separated parameterized conditions: $\frac{d x}{d t}=f(t, x), t \in[a, b], x(a)=z, x(b)=\eta$.

We connect the introduced model type problem with the special parameterized sequence of function $x_{m}(t, z, \eta)_{m=0}^{\infty}$, satisfying the boundary conditions $x(a)=z, x(b)=\eta$ for all $z, \eta \in R^{n}$. We prove the uniform convergence of the sequence of functions : $x_{\infty}(t, z, \eta)=\lim _{m \rightarrow \infty} x_{m}(t, z, \eta)$.The limit function $x_{\infty}\left(t, z^{*}, \eta^{*}\right)$ will be a solution of the original integral boundary value problem if and only if the pair of parameters $\left(z^{*}, \eta^{*}\right)$ satisfies the following system of $2 n$ algebraic determining equations:

$$
[\eta-z]-\int_{a}^{b} f\left(s, x_{\infty}(s, z, \eta)\right) d s=0, \int_{a}^{b}\left[g\left(s, x_{\infty}(s, z, \eta)\right)+h\left(s, f\left(s, x_{\infty}(s, z, \eta)\right)\right)\right] d s-d=0 .
$$

The existence of two solutions was proved by studying the approximate determining system:

$$
[\eta-z]-\int_{a}^{b} f\left(s, x_{m}(s, z, \eta)\right) d s=0, \int_{a}^{b}\left[g\left(s, x_{m}(s, z, \eta)\right)+h\left(s, f\left(s, x_{m}(s, z, \eta)\right)\right)\right] d s-d=0 .
$$

1. Rontó A., Rontó M., and Varha Y. "A new approach to non-local boundary value problems for ordinary differential systems," Applied Mathematics and Computation. - 2015. - Vol. 250. - P. 689-700.
2. Rontó M., Varha Y., and Marynets K. "Further results on the investigation of solutions of integral boundary value problems," Tatra Mt. Math. Publ., to be published.
