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I.Varga

Partially solved differential systems with two-point non-linear boundary
conditions

1. Introduction and subsidiary statements

The solvability analysis and approximate construction of solutions of various types of
regular and singular boundary value problems were successfully done mainly in case of an
explicit form of differential systems

dx(t)
dt

= f(t,z(1)).

There is a large gap in the study of solutions of boundary value problems given for systems
of differential equations of implicit form, in particular partially resolved with respect to
the derivative. This work in a certain form fills this shortcoming.

We study the following boundary value problem on a compact interval

df‘;lgt) _ (t,x(t), da;i”) telab], (1)

g(x(a), z(b)) = d. (2)
Here we suppose that f : [a,b] x D x Dy — R" and g : D x D — R" are continuous
functions defined on a bounded sets D C R™ and D' C R" (domain D will be concretized

later, see (8), Dy is given), and the function f is Lipschitzian with respect to the second
and third variables in the following form:

v du dv
%—g :‘f(t,u,a)—f<t,v,%>|§K1’U—U‘+KQ a—a (3)
for any t € [a,b] fixed and all {u,v} C D, {%7 %} C Dy, where K7, Ky are a non-negative
constant matrix of dimension n X n.

Here and below, the absolute value sign and inequalities between vectors are understood
componentwise. A similar convention is adopted for the operations "max", "min". The
symbol 1,, stands for the unit matrix of dimension n, r(K') denotes a spectral radius of
a square matrix K.

If the maximal in modulus eigenvalue of matrix K5 is less then one

du d du dv

T(K2)<1,
then from (3) we obtain
du  dv
1, — Ko |22 — Y < Ky u— ],
| g~ | = Krle =l




or

d d
‘f(t,u,d—D—f(t,v,d—:>|§Klu—v!, (4)

K=[1,-K)] 'K

Moreover, we suppose that for the maximal in modulus eigenvalue of matrix

where

3(b—a)
10

Q= K (5)

holds
r(Q) < 1. (6)
If z € R" and p is a vector with non-negative components, B(z, p) stands for the
componentwise p -neighbourhood of z :

B(z,p) ={{ e R" : | — z[ < p}.

Similarly, for the given bounded connected set 2 C R", we define its componentwise
p—neighbourhood by putting

B, p) = Y B(&p).

Let us fix certain closed bounded sets D, C R" and D, C R™ and focus on the
continuously differentiable solutions z : [a,b] — D, «' : [a,b] — D; of problem (1)-(2)
with values z(a) € D, and z(b) € D,. For given two bounded connected sets D, C R”
and D, C R", introduce the set

Da,b = (1_9)Z+0777 ZGDaWEDb,@E [07 1] (7)
and its componentwise p—neighbourhood
D := B(Dgyp, p) - (8)

It is important to emphasize that D and D; are supposed to be bounded and, thus, the
Lipschitz condition for f is not assumed globally. The boundary conditions (2), generally
speaking, non-separated and non-linear.

With the function f involved in equation (1), we associate the vector

max t,x,92) — min t,x, 9
(t,x)e[a,b]xpxplf( 20 ) (m)e[a,b]xDxle( 20 )

5[avb]aD7D1 (f) = 2 . <9)
We recall some subsidiary statements which are needed below.
2. Parametrization and convergence of successive approximations
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The idea that we are going to employ is based on the reduction to a family of simple
auxiliary boundary value problems [?]. This approach was used also in [?, 7, 7 7 7].
Namely, we introduce the vectors of parameters

z = col(z1, 22, .oy 2n), M = col(N1, M2y ey M) (10)
by formally putting
+ = 2(a), 1 = o) (11)

Instead of boundary value problem (1)-(2) we will consider the following "model"
problem with two-point linear separated parametrized conditions at a and b:

dx dx
ot (tn %) e e, (12)

z(a) =z, z(b) =n. (13)

As will be seen from statements below, one can then go back to the original problem
by choosing the values of the introduced parameters appropriately.

Let us connect with the two-point parametrized boundary value problem (12)-(13) the
sequence of functions

t
d m Y Y
tmaltyzan) ==+ [ 1 (sionfs o, 2252 s (14

b
t—a dxm, (s, z,m) t—a
_b—a/f (3;5%(372777),T> d8+m[77_2]> te [CL,b],

m = 1,2, ..., satisfying (13) for arbitrary z,n7 € R", where

xo(t,z,n):z—kt:Z[n—z]: <1—t_a)z—|—t:_zn,t€[a,b]. (15)

[t is easy to see from (15) that z((¢, z,7n) is a linear combination of vectors z and 7,
when z € Dy, n € Dy.

Teopema 1. Assume that

b—a
2

3 non negative vector p: p >

Olab).0.0, (f), (16)



where D is the p—neighhourhood of the set Dy, defined according to (7), (8) and dy4),p.p, (f)
is given as in (9):

max t x, 92y — min ¢, 4
(t@)e[a,b}xDXle( y Ly dt) (t7m)€[a,b]><D><D1f( ) dt>

) S

a4,0.0,(f) =

the function f € C(la,b]x D x Dy, R™) s Lipschitzian with respect to the second and third
variables according to condition (3) and for the matriz Q) of form (5) holds an inequality
(6).

Then, for all fivred z € D,, and n € Dy:

1. The functions of the sequence (14) belonging to the domain D are continuously
differentiable on the interval [a, b], and satisfy the two-point separated boundary conditions
(13).

2. The sequence of functions (14) for t € [a,b] converges as m — oo to the limit
function uniformly

Too (t,2,m) = lim x,,(t, 2, 7). (18)
—00

m

3.The limit function satisfies the two-point separated boundary conditions (13).
4. The limit function o (t, z,n) for all t € [a,b] is a unique continuously differentiable
solution of the integral equation

ﬂw:z+/}@@@%%f%@-éii/}@xwyffbw (19)
+Z:Z[”_Z]’

i.e. it 1s the solution of the Cauchy problem for the modified system of integro-differential
equations:

Gt (he ) A e = 20

where A(z,m)) : Dy X Dy — R" is a mapping given by formula

A@my—m4jfewm@¢WLsz%m>@. (21)

5.The following error estimation holds:

‘xoo ('72777) — Tm (.7 2777)‘ <

10 _
< 5041(75, a,b—a)Q™ (1, — Q) ! Oa4,0,0,(f), t € [a,b] ,m > 0. (22)



Teopema 2. Under the assumptions of Theorem 1, the limit function

Too(t, 2*,m") = lim x,, (¢, 2", n") (23)
m—r 00
of the sequence (14) is a solution of the non-linear boundary value problem (1)-(2) if and
only if the pair of parameters (z*,n*) from (11) satisfies the system of 2n algebraic or
transcendental equations

b
MG == 2= [Fsa (o2, 25 s 2,

A(z,m) == g(2s (a,2,1) , o0 (b, 2,m)) —d = 0. (24)

Remark 1. The system of equations (24) is usually referred to as a determining equations.
In such a manner, the original infinite-dimensional problem (1)- (2) is reduced to a system
of 2n equations numerical equations.

The method thus consists of two parts, namely, the analytic part, when the integral
equation (19) is dealt with by using the method of successive approximations (14), and
the numerical one, which consists in finding values of the 2n unknown parameters from
equations (24).

The next statement proves that the system of determining equations (24) defines all
possible solutions of the original non-linear boundary value problem (1)-(2).

Although Theorem 2 provides a theoretical answer to the question on the construction
of a solution of the original non-linear boundary value problem (1)-(2), its application faces
certain difficulties due to the fact that the explicit form of the limit function z« (-, z,7)
and consequently the explicit form of the functions

A:D,xDy—R" A:D,x D, —R"
in (24) is usually unknown. This complication can be overcome by using the so-called

approrimate determining equations

b
Am(Zﬂ?) = [77 o Z] _ /f(saxm (S7Z:77) ) W)ds — 07

Am('zvn) = g(a:m (CL,Z,?]),ZL’m (bv'zan)D —d=0 (25)

for a fixed m.

3. Example
Let us apply the approach described above to the system of differential equations

10 — (1) wa(t) — 220 + 23(1) = fi (L1 (1)  wa(t), 252, 4220)

dxjt(t) = dxét(t) dxjt(t) ts o) +i=1f (t,l’l(t) (1), 2alt) el
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t €la,b] = [O, %] , considered under the two- point non-linear boundary conditions

2(a) - wa(b) = —5
{ () — m(b) — o (27)

Following (10), (11), introduce the parameters z = col(z1, 22), 1 = col(n,n2).
Let us consider the following choice of subsets D,, Dy and D7, where one looks for the
values x(a), x(b) and the values of the derivatives doi(t) das(t)

dt ° dt
D,=Dy={(z1,22): —02<2; <02, —02<1z7<0.2}, (28)
d d
Dlz{(acl,xg): —0.2§%§0.2, —0,23%30.2}. (20)

This choice of the sets D, and Dy, is motivated by the fact that the zero-th approximate
determining system (i. e., (25) with m = 0) has roots lying in these sets (28), see the
second line in Table 1. Recall that, in order to obtain it, only function (15) are used, and
no iteration is yet carried out. We see that this piecewise linear function provides quite
reasonable approximate values of the parameters. In this case, according to (7), we have

Dy = D, = D, (30)
For p involved in (16), we choose the vector
p = col(0.3,0.3). (31)
Then, in view of (28), (30), (31), the set (8) takes the form
D ={(x1,29): —05<x <0.5, —05 <2z <0.5}. (32)

A direct computation shows that the Lipschitz condition (4) for f given by (26) on D and
Dy of forms (32) and (29) holds with matrices

05 1 0 1
Kl_( 0 0.5>’K2_<0.2 0.2)’

1, — Ko™ = 1.333333333 1.666666667
! 2171 0.333333333  1.666666667

K=11,— KQ]—l K — ( 0.6666666665 2.166666666 )

0.1666666666 1.166666667
Therefore, by (5)
Q= 0.09999999998 0.3249999999
— 1\ 0.02499999999 0.1750000000
and r(Q) = 0.235128120913226 < 1.



m 21 ) Ui )2
Exact 0 0|—5 =-0.03125| 5 =0.03125
0 0.001561487459 | -0.001556662026 |  -0.0312475768 | 0.03125243824
1| 0.0004122967488 |  -0.0003873893367 | -0.03124984993 | 0.03125016999
2| -0.000157576675 |  0.0001562942819 | -0.03124997556 | 0.03125002482
3-0.8640511032 -107° | 0.6489136242-107° | -0.03124999997 | 0.03125000006
4] 0.1264993624-10* | -0.1236038310-10~* | -0.03124999985 | 0.03125000015
5| -4.892901202:1077|  6.586000019-10~7 | -0.03125000000 | 0.03125000001
6| -0.1073874769-107° | 0.1030957108-107° | -0.03125000001 | 0.03125000000
7| 1.587193848-1077| -1.712004563-1077 | -0.03124999999 | 0.03124999999
8| 8.595697086-107% | -8.040876912-10 — 8 | -0.03125000000 | 0.03125000000
9| -2.502073667-107° |  2.574184204-107% | -0.03124999999 | 0.03125000001

Furthermore, in view of (9)

max tox, ey — min t . dx
(tvx)e[chb]xDXle( y Ly dt) (Lx)e[a,b]xDxle( y Ly dt)

Oap,0.0: (f) = 5 =

B ( 0.4812500000 )

0.3525000000
and by (31) we have

<p

b—a, () = 0.1203125000
g Cladl.D.DiI) =\ 0881250000

We thus see that all the conditions of Theorem1 are fulfilled, and the sequence of functions
(14) for this example is convergent.
It is easy to verify that the pair of functions

t* ¢
R = -5, a =5
is a solution of the given boundary value problem (26)-(27).

Using (14) and applying Maple 13 for different values of m to implement the approxima-
tions x,, (t, 2,1) = col(xm1 (t, 2,m) , Tme (t, 2,m)) and solving the approximate determining
system (25), we find the following values of introduced parameters, which are presented
in Table 1.

The graphs of the exact and approximate solution for m = 9 for the first and second
components are shown on the Fig. 1.
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Figure 1: The exact solution (z7(t), z5(t)) (solid line) and its nineth approximation (dots)



