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AR TIFICIAL COMPLEX NEURONS W ITH  H A LF-PLAN E­
LIKE AC TIV ATIO N  FUNCTION

The paper deals with the problems of realization of Boolean functions on 
neural-like units with complex weight coefficients. The relation between classes of 
realizable function is considered fa r half-plane-like activation function. We also 
introduce the concept of sets separability, corresponding to our notion of neuron.
The iterative online learning algorithm is proposed and sufficient conditions of its 
convergence are given.
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Introduction

Artificial neural networks based on neural-like units have numerous 
applications in different areas, such as artificial intelligence, objects 
classification, pattern recognition, data compression, forecasting, 
approximation or extrapolation of functions of many variables and many 
others [1]. Different networks architectures and neuron kinds are 
described in [1, 2]. One of most important task in the theory of feed­
forward neural networks with discrete activation functions is the one 
concerning the realization of a Boolean function on a single neuron. Its 
importance follows from the fact that for networks on the base of 
neurons with threshold-like activation function outputs of each network 
levels have two possible values (binary, bipolar, etc.). Minsky and Papert 
[3] proved that classical threshold units have enough weak capacity for 
recognition. Numerous improved models of neuron are proposed for 
overcome the mentioned limitations (see [1] for details).

In paper we deal with the one type of such extensions, namely 
complex neurons, which are introduced in [4]. There exists many way of 
complexification, e.g. [5].

Let E.J = {-1 ,1 } be the bipolar set and EjJ is an n-thCartesian power 

of E2. A  Boolean function in bipolar basis is a function mapping from 

E"to E2.

A  Boolean function f(x 15 ...,x n) on E!J is a Boolean threshold 

function if there exists a weight vector (w,, ...,w n)e  R" and a threshold
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-w n+1 such that

A
for all (Xj x„)e EJ^WjXj < -w ,1+1 «  f(x 1,...,x „) = - 1 .

With intent of simplify notation we extend input and weight 
vectors dimension by introducing one new additional (rt+l)-th 
coordinate. Let x = (x1,. . . ,x I1, l ) ,  w = (w1,...,w n,wn+1)e  Rn l ,

ft
(w,x) = ^  WjXj + wn+1 — inner product of vectors w and x (sometimes

j»i

called a weighted sum). Thus, for any threshold function f: 
f(x) = sgn(w,x), where f(x) = f (x 1, . . . ,x u) and sgn is sign function 

given by

f-1  if a < 0, 
sgn a = <

|l if a £ 0.

Complex neurons
Now we extend the notion of threshold function to the complex 

domain. Let us consider Boolean function over alphabet {« , P} where «

and fl are complex number. Let I be an arbitrary line dividing the 
complex plane C on two half-plane C+ and C_. We may regard following 
sgn function

f-1  if ze C , 
sgn, z = {

’ [1 if ze C+u 1.

A  Boolean function f : {a,p}n - » {a,p} is a complex Boolean 

threshold function (CBTF) in the alphabet {a,P} if there exists a 

complex weight vector w e Cn+1 and line I such that f(x) = sgn,(w ,z), 

where z is a complex conjugate vector for z (here we used the definition 
of inner product in complex vector spaces).

Note that we do not use the notion of the threshold in our 
definition, because it is convenient to include the threshold in the 
weight vector.

It is easy to see that using rotation and fitting of the free term 
wn,j we can restrict the class of possible sign function to the following 
function
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Resgn z =
-1  if Rez < 0, 
1 if Rez > 0.

Note that "small” change of term wIl,1 allows avoiding the 

possibility that the weighted sum (w ,z) value lies on the division line.

Let Tc (ot,f3) be a class of all CBTF in alphabet {a,p}. The question 

arises about relations existing among the classes of CBTF in different 
alphabets. The answer is given by the following proposition.

Proposition 1 .There exists an bijective correspondence between the 

classes Tc(a,P) and Tc (y,S) for arbitrary alphabets {a,(3}, {y,6}.

Proof.Let f(z) e Tc (a, p). Then there exists w e Cn+1 such that for 

all ze  {a,p}” f(z) = Resgn(w,z). The transformation
f ft f

2’’ —>-r------(z '-y )  + a is the one-one correspondence between sets {y,5}
o — y

and {a,p}. Then

Let g(z') be a Boolean function in alphabet {y,8} realizable on the 

complex neuron with the weight vector w ‘ , It is easy to see that the 
correspondence f  <-> g is bijective one between the functions from

Note, in particular, that one cannot obtain the class of CBTF more 

powerful that Tc ( - l , l )  by altering the alphabet.

The next question is how the cardinality of the class of CBTF 
changes if we restrict the set of possible value for weight vector 
coefficients. Let Tp(a,p) be the class of all CBTF of n variables 

realizable on neurons with weight vectors from the set D " 1,

W1<  +W„_, ( w', z ) ,

where wj

Tc (a,p)to Tc (y,ô).

TD (a,p) = (J Tp (a ,p ), where D с  С.
n-0
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Proposition 2 .If Rea *  Rep, then Tc (a,p) = TH (a,p).

Proof. Let us proof that equality T," (a, P) = (a, p) holds for all

non-negative integer n. From proposition 1 it follows that 

Tç (a, P) T̂ 1 (Re a, Re p). Let /  be an arbitrary member of 

Tc” (Rea,ReP), ze  {a ,p }"x {l}, z ^ X j  + iyj, e R (j = l ,...,n ) ,

Wj =Uj +ivj, U|,Vje R, (j = l , .. . ,n  + 1). Then

ОД = Re £ wjXj + wn+1 = £ ц ;Х , + u,1+1 = Re £ « Л  + un+1 .
\ »=1

It follows from the last equality that the classes T£ (Re a, Rep) and 

T” (<x,P) have the same cardinality. Then the same holds for classes 

Tc (a,P)and TR(a,P). Since Tc(Rea, Rep) c T c (a ,p ), these classes are 

equal.
Note that for the alphabet K, the last proposition is proved in [4]. 

From the previous proposition also follows that usage of neurons 
with weights belonging to the real line enable ua to generate all CBTF. 
We will prove that similar fact is true for neurons with weights lying 
on any line in complex space.

Propositions.// y e  C, yR = {yx | x e R} and complex numbers

a, p, y satisfy conditions jarg y) < ^ , Re(a -  p) y  ̂ 0 , then classes Tc (a,p)

and TïK(a,P)coincide.

Proof. Let us consider an arbitrary CBTF f(z )e  Tc (a,p). Then there

exists w e C "+J such that for each z e {a ,p }” equality Resgn(w,i) = f(z) 

is true, from which it follows that

(w,z) = ^WjZj + w„+1 = j^w /Y 'V i + Wn+, =(w',iT),
j=l j=l

wherew', = WjY"1, z'j (j = l , . . . ,n ) , w'n., = wn_,. So, for all CBTF 

f (z) inalphabet {a, P} there exists uniqueCBTF g (V) inalphabet {ya, yP) such
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thatfor each2 e {a, (3}‘ equality f(z) - g(z') holds. Using proposition 2 to 

function g (z)  we obtain

Re('w,z) = Re(w',z') = Rej ^ U jz ’ + U„_! = Ref X UJ  zi + u„,i = Re(w ,z),
V h  y 0=1 )

where Uj e R, Wj = uff, (j = l , .. .,n ) , wniJ = . Thus, the Boolean
Re y

function f(z) is realizable on complex neuron with weight vector

w e YRn I.

Learning algorithm

We have seen that Tc (<x,p) = TTB(a,p), and question how find some 

weight vector w e T yR(a,p), corresponding to given CBTF f  naturally 

arises. That is, we need a learning algorithm for the class of CBTF.

Let , A " be two finite disjunctive subsets of vectors from the set 

C"x {y} , (y^O) (i.e. A + n A ' = 0 ) a n d  A  = A * u A ‘ . We call sets A + and

A'p-separable, if there exists vectorw e yR"+1 such that for all* e A 
following conditions hold

(w,z) > 0 if z s  A  ,

(•w,z)<0 if i s  A ",

Next, we will suppose that there exists an angle <j) and real number 
c such that

V z e A  |Re(elezjj > c > 0 ( j =l , . . . n) .  (1)

We will assume (1), without any loss of generality, because A is a 
finite set.

Let the training sample of vectors |zk] satisfies following two 

conditions:
1) zk 6 A, k e N ;
2) each element of the setArepeats in learning sample infinitely 

many times.
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Without any Loss of generalitywe will assume that y = e ‘* t where

7E
<<)><—. Let the initial weight vector be w" =(0,...,0).Let us build the

<2 tu

sequence of vectors {w1} as follow:

wk = wk_1 + tkh4 (zk) e1*, (2)

wherehlt(z) = (Re (z,e~l , t Re (a^e‘ w) , l ) ,  and a coefficient tk in 

defined by

1 if R e ^ ^ z 11) < 0 and ze A +,

-1  if Re(wk~\zkj ;> 0 and ze A_, (3)

0 otherwise.

The algorithm of weights updating according to the rule (2)-(3) we 
call "the online learning algorithm" for the complex neural unit. The 
next proposition gives the sufficient condition for our learning 
algorithm to be convergent.

Proposition 4 . / /  finite, sets A* and A 'arey -separable, then there 
exists finite natural m such that the sequence (2) of weight vector, 
obtaining according to the rules (2)-(3) of online learning algorithmyield 
after m updates the weight vector w’ , which separates sets A ' and A".

Proof.We do our proof by contradiction. Suppose that the opposite 
is true. We can assume that at each step of the learning algorithm the 
coefficients tk *  0 (in opposite case we can simply throw awaysuch z*, 

for which (k = 0 , because weights are persistent on respective steps of 

the algorithm). Then w"+1 =ï,A(t(z1)e,<*+... + + /mA(>(z” )e'*. Now find the 

inner product of both sides of the last equality by which

separates sets A' and A". Without loss of generality we can assume there 
existsd > 0 such thatVze A the following inequalityholds

j(w,As(z))|> d > 0  (we always can satisfy it by changing in corresponding

way the free term u-l;>l). It follows from Cauchy-Schwartz inequality that
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H I K I à |( )|à £ |(w’ h *  (z* ))i - m d
k - \  f

and, hence,

H . (4)

In other way, if we square the both sides of (2), then we have that

F11 f = lwf + R e (w* a  (*‘1V  )+IK(z*1 )|f.
Accordingly to the learning algorithm all vectors w‘ satisfythe 

conditions wl = e 'V  , where u‘ e R'Hl. Therefore,

Re(w*, \  (z*111 ) ë* ) = R R e(i*V *) • ?  + Re(«*+, e ^ )  =
y=l

= Re| > /  ( * f  cos0-.F*+1sin^) + «*+1 = R e^R e(«*e'<1 (*‘ fl + iy)'' )) + V * j =

= R e ^  wjzj*1 + ^ 7 *  j  = Re(wl

From (3) it followsthatft Re^w*,z*+1j< 0 . Then, according to last 

equalities and condition (l)|wui|| -j|w*| <|^(z*u)| < nc" + 1, (£=0,1

Let us sum the last equality by Mrom 0 tom. Then

K f s l f c (* ‘">Fs<"+i)('*‘ +‘)*-» " . (5)

Inequalities (4) and (5) contradict for sufficiently large m. Hence, 
the learning process (2)-(3) cannot last infinitely long.

Conclusion

Artificial complex neurons with the half-plane surface of activation 
function are enough simple and powerful computational units. Main our 
results concerning complex neurons with Kesgn activation function are 
following:
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1.The choice of the alphabet of Boolean functions representation 

has no importance for representative power of class of respective 
realizable Boolean functions.

2. The restriction of possible weights to ones on an almost every line 
in complex plane does not shrink the class of respective complex Boolean 
threshold functions.

3. Neurons with restricted weights can be learned by using 
perceptron-like learning technique.
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