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Abstract

The dynamics of the model quantum system consisting of two station-
ary identical two-level atoms, one of which is irradiated by a real photons
field. The influence of states damping on the process of quantum information
transfer between two atoms qubits at arbitrary distances is studied, taking
into account the retarded dipole-dipole interaction of atoms. Under rather
general assumptions, the system of non-stationary equations is obtained that
describes the evolution of the amplitudes of possible states of the compound
system “atom A(1) + atom A(2) + field” in symmetric and antisymmetric
channels of interaction of an atom pair with the field of real photons. For
the first time, the combined influence of retarded dipole-dipole interaction
and state damping effects on the process of transmission of quantum infor-
mation from one atom qubit to another at arbitrary interatomic distances is
investigated.

1 Introduction
Because of the rapid development of quantum optics, many-particle problems

describing systems of qubits controlled by external fields have been of increasing
interest lately [1]. There are many different quantum systems modelling qubits –
carriers of a unit of quantum information [1, 2]. In this capacity, one of the possible
options is the use of two-level atoms. Usually, in the problems of quantum optics
and quantum informatics, the connection of atoms is carried out via retarded
interaction of atoms with each other, and the coherent control of the system is
carried out via their interaction with the field of real photons [1, 3, 4].

Promising schemes for implementing two-qubit quantum logic operations with
neutral atoms can be based on the effect of resonant transfer of quantum infor-
mation between two distant qubits, taking into account the retarded dipole-dipole
interaction of atoms in the field of real photons. The process of quantum informa-
tion transfer from one atom to another due to the resonance interaction of atoms
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Time of quantum information transfer 49

was previously studied [5, 6] under the rather strict condition that the time τ of
the excitations exchange between atoms is significantly shorter than the life time
Γ−1
n of an atom in the excited state |n⟩. However, this approach is acceptable only

when the interatomic distance R is much smaller than the characteristic wave-
length λ0 = 2πc/ω0 (ω0 = (En − E0)/ℏ) in the spectrum of interacting two-level
atoms (R ≪ λ0). The closer the atoms are to each other, the faster the transfer
of excitation energy from one atom to another occurs. Therefore, in the works
[5, 6], the damping of states in the process of quantum information transfer be-
tween qubits was not taken into account. However, the further the atoms from
each other, the more the role of state damping effects. It is also significant that
already at R ≳ λ0, the effects of the interaction retardation begin to appear as
well. Therefore, rather general questions about the role of damping of states and
effects of interaction retardation in the process of quantum information transfer
from one atom qubit to another at arbitrary interatomic distances require special
study.

The problem considered in this paper on the time τ of quantum information
transfer from one atom to another has two stages. The first stage consists in the
study of the influence of the retarded dipole-dipole interaction of atoms on the
optical properties of the energy levels of a system of two identical two-level atoms,
and the second one – in solving the dynamic problem – the system of time equations
(18) for the probability amplitudes at resonant (non-resonant) absorption of a
photon by one of the atoms of this system.

This paper is a logical continuation and development of research started by
the authors at the first stage in [7]. On the basis of a detailed study of the pair
interaction [8, 9, 10, 11, 12] of two hydrogen-like atoms located at an arbitrary
distance from each other, general analytical expressions for the widths and shifts
of the collective (symmetric and antisymmetric) states of the system of two dipole-
interacting two-level atoms are below obtained.

2 The system of time equations for the amplitudes
of states in the two-level approximation

In this section, we will study the interaction of two identical two-level atoms
A(1) and A(2) with a free electromagnetic field in the electrodipole approximation.
Throughout below, the concept of a complex (“compound”) object [13] is used,
namely “atomA(1) + atomA(2) + fieldF”. In accordance with this concept, when
analyzing the processes of quantum information transfer between qubits A(1) and
A(2), it is convenient to consider the field as a system with a defined number of
quanta nω and include it in the unperturbed Hamiltonian Ĥ. We will consider
the state of the diatomic quantum system “A(1) + A(2) + F” in the coordinate
representation, and the state of the photon field – in the occupation number rep-
resentation, which is convenient when studying systems with a variable number
of particles. In the future, we will assume that the atoms are at an arbitrary
distance from each other. In this case, it is necessary to take into account the
retarded dipole-dipole interaction of atoms. Without taking into account the in-
teraction of atoms with the field, the Hamiltonian Ĥ0 of the complete compound
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system “A(1) +A(2) + F” consists of the Hamiltonian ĤF of free quanta and the
Hamiltonian Ĥ of the system of two interacting two-level atoms A(1) and A(2):

Ĥ0 = Ĥ + ĤF = Ĥ1(r⃗1) + Ĥ2(r⃗2) + V̂
(±)
dip (r⃗1, r⃗2;R) + ĤF . (1)

Here Ĥ1, Ĥ2 are Hamiltonians of isolated atoms A(1) and A(2), respectively; R⃗
is the distance vector between atomic nuclei; V̂ (±)

dip (r⃗1, r⃗2;R) is the interaction
operator of atoms A(1) and A(2) at an arbitrary distance from each other in the
electric dipole approximation (see [7]); electron radius vectors r⃗1 and r⃗2 refer to
the first A(1) and the second A(2) atom, respectively. In the representation of
second quantization, the Hamiltonian ĤF and the energy Eω of the photon free
field are defined by standard expressions

ĤF =
∑
ω

ℏωâ+
ω âω, Eω =

∑
ω

ℏωnω, (2)

where nω is the number of photons of frequency ω in the normalizing volume
VR, â+

ω and âω are the operators of photons generation and annihilation in the
representation of the occupation numbers nω of the photon states |nω⟩. Below,
transitions accompanied by a change in the number of photons of a specific field
mode will be considered everywhere, so the indices characterizing the polarization
α (α = 1, 2) and the direction of the wave vector k⃗ are omitted everywhere. The
Hamiltonian of the field ĤF (2) is written in the standard form where zero energy
is omitted using the appropriate choice of the origin.

As a basis for writing the time wave function of the compound system, we will
choose the products of the eigenwave functions of the Hamiltonians Ĥ and ĤF .
Let the state of the compound system “A(1) +A(2) +F” at the initial moment of
time t1 = 0 (in the absence of interaction of atoms with the field) be described by
a wave function

Ψ̃(0)
m = |nω⟩Ψ(0)

m ≡ |nω⟩Ψ0(1)Ψ0(2). (3)
Here, the eigenfunction of the field |nω⟩ corresponds to a certain number of pho-
tons, and the wave function Ψ(0)

m of the initial state of a pair of identical atoms is
given by the expression [7]

Ψ0(1)Ψ0(2) = φ̃0(1)φ̃0(2)+

+
∑
n1n2

< φ̃n1(1)φ̃n2(2)|V̂ (±)
dip |φ̃0(1)φ̃0(2) >

2E0 − En1 − En2

φ̃n1(1)φ̃n2(2). (4)

The initial state of the jth atom A(j) is determined here by the index 0 with the
energy E0 and the wave function φ̃0(j). The summation in (4) is carried out over
all possible intermediate states in the spectrum of interacting atoms, except for
the initial state |00⟩. The second term on the right-hand side of the expression (4)
coincides with the first-order corrections of the non-relativistic perturbation theory
to the wave functions of a system of two atoms with non-degenerate energy levels,
where the interaction between atoms with the operator of retarded dipole-dipole
interaction V̂

(±)
dip from [7] is taken as a perturbation.
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The process of photon absorption by one of the atoms of the A(1)+A(2) system
can be formally considered as a quantum transition Ψ̃(0)

m → Ψ̃(0)
n of the complete

compound system “A(1) +A(2) + F” into a new state

Ψ̃(0)
n = |nω − 1⟩Ψ(0)

n ≡ |nω − 1⟩Ψs(a) ≡ Ψ̃(0)
s(a), (5)

where the function |nω − 1⟩ determines the state of the photon field, and the
function Ψs(a) describes the symmetric (antisymmetric) state of a pair of identical
two-level atoms:

Ψs = Φs exp(−iδEst1/ℏ), Ψa = Φa exp(−iδEat1/ℏ). (6)

Here

Φs(1, 2) = 1√
2

[φ̃n(1)φ̃0(2) + φ̃0(1)φ̃n(2)] , (7)

Φa(1, 2) = 1√
2

[φ̃n(1)φ̃0(2) − φ̃0(1)φ̃n(2)] , (8)

are superpositions of different coherent states of atoms, one of which is in the
ground state |0⟩, and the other is in the excited state |n⟩; t1 is the local time for
the pair of atoms associated with the location of the first atom A(1).

We determine the transition energy Ψ̃(0)
m → Ψ̃(0)

n by equations

E(0)
m − E(0)

n = E0 − En ∓ δEs = −ℏ(ω + ∆), (9)

where the upper minus sign corresponds to the symmetric state Ψs of the pair of
atoms, and the lower plus sign corresponds to the antisymmetric state Ψa; ω is
the frequency of a real photon; ∆ = ω − ω0 is the shift of the field frequency ω
from the atomic transition frequency ω0, and the shift of the energy levels of the
symmetric (7) and antisymmetric (8) states of pair of atoms is determined by the
expression (see [7])

δEs,a(R) = ±Re∆EAA(R) = ±e2|⟨n|r⃗|0⟩|2F (1, 2;R). (10)

Here ⟨n|r⃗|0⟩ is the matrix element of the atomic transition |n⟩ → |0⟩, and

F (1, 2;R) =
[

Φ(1, 2)
R3 − ω2

0Φ′(1, 2)
c2R

]
cos
(
ω0R

c

)
+ ω0Φ(1, 2)

cR2 sin
(
ω0R

c

)
, (11)

where
Φ(1, 2) ≡ cos θx1 cos θx2 + cos θy1 cos θy2 − 2 cos θz1 cos θz2 ,

and
Φ′(1, 2) ≡ cos θx1 cos θx2 + cos θy1 cos θy2

are the geometric factors depending on the orientation of dipole transitions in both
atoms. At the same time, θx1 , θy1 , θz1 are the angles formed with the axes Ox, Oy,
Oz by the direction of the transition dipole moment in the first atom A(1); θx2 , θy2 ,
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θz2 are the corresponding angles for the second atom A(2). The plus and minus
signs in the expression (10) correspond to the symmetric Φs and antisymmetric
Φa wave functions of the pair of identical atoms.

Let the quantum transition Ψ̃(0)
m → Ψ̃(0)

n corresponds to the elementary act of
the disappearance of one real photon at the location of the atom A(2). In the
one-mode approximation, the operator of the vector potential ˆ⃗

A binding the atom
A(2) and the field is defined in the form of a standard linear form respect to the
operators of generation â+

ω (t1) and annihilation âω(t1) of photons, i.e.

ˆ⃗
A = A⃗0

[
eik⃗r⃗

′
2 âω(t1) + e−ik⃗r⃗ ′

2 â+
ω (t1)

]
, (12)

where r⃗ ′
2 is the radius vector of the electron in the A(2) atom, and the pho-

ton operators in the Heisenberg representation are described by free evolution:
â+
ω (t1) = â+

ω (0) exp(iωt1), âω(t1) = âω(0) exp(−iωt1), so the operators âω(0) and
â+
ω (0) do not depend on coordinates and time. In the expression (12), the following

notation is introduced for convenience

A⃗0 =

√
2πℏc2

ωVR
e⃗,

where e⃗ is the unit polarization vector of this mode photon. Focusing on electric
dipole transitions and limiting ourselves to one-photon processes, we represent the
Hamiltonian of the interaction of a one-electron atom A(2) with the field of real
photons in the following form:

Ĥint = − e

mc
ˆ⃗p2A⃗, (13)

where ˆ⃗p2 is the electron momentum operator of the atom A(2). Then the complete
Hamiltonian Ĥ of the compound system “A(1) +A(2) + F” is of the form:

Ĥ = Ĥ0 + Ĥint = Ĥ + ĤF + Ĥint. (14)

We will obtain the equations describing the quantum transition Ψ̃(0)
m → Ψ̃(0)

n =
Ψ̃(0)
s(a). In this case, one can choose the set of atom-field functions of the form (3)

and (5) as a basis for writing the time wave function of the compound system
“atomA(1) + atomA(2) + fieldF”. We denote by am(t1) the amplitude of the
probability of being a pair of atoms A(1) +A(2) in the ground state Ψ(0)

m (4) and
the field in state |nω⟩. Then an(t1) ≡ as(a)(t1) acquires meaning of the probability
amplitude of finding the compound system in the symmetric (antisymmetric) state
Ψs(a) (5) by atomic degrees of freedom and in the |nω − 1⟩ state by field degrees
of freedom. Let us further take into account that the interaction of the A(2) atom
with the field of real photons is determined by the operator (13), which has a
certain type of symmetry with respect to the permutations of atoms. Accordingly,
the states with different symmetries, Ψ̃(0)

s and Ψ̃(0)
a , are not related to each other,

since the total Hamiltonian Ĥ (1) of the system of two identical atoms (and in
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particular the retarded dipole-dipole interaction of atoms V̂ (±)
dip ) is symmetric with

respect to the permutation of nuclei. Thus, the dynamics of symmetric Ψ̃(0)
m →

Ψ̃(0)
s and antisymmetric Ψ̃(0)

n → Ψ̃(0)
a channels of interaction of the pair of atoms

with the field of real photons can be considered separately from each other. In
the case of a symmetric channel Ψ̃(0)

m → Ψ̃(0)
s , for the states amplitudes am(t) and

an(t) (i.e. the coefficients for the basis functions Ψ̃(0)
m (3) and Ψ̃(0)

s (5)) from the
non-stationary Schrödinger equation with the Hamiltonian (14) we obtain in the
usual way [14] the following system of differential equations:

iℏ
dam
dt1

= Fmn exp[i(ωmn + ω + iγn)t1]an = Fmn exp(i(ε+ + iγn)t1)an,

iℏ
dan
dt1

= Fnm exp(−i(ε+ + iγn)t1)am,

 (15)

where ε+ = (δEs − ℏ∆)/ℏ, γn = Γn/2, and the damping constants Γn = Γs(a) =
γ0 + γs(a) of the symmetric (antisymmetric) state of the pair of atoms are de-
termined by formulas (20)–(24) in [7]. The specificity of the influence of the re-
tarded interatomic interaction V̂ (±)

dip on the optical properties of diatomic systems
A(1) +A(2) is that in the shifts ∆Es(a) = δEs(a) − iℏγs(a)/2 of energy levels Es(a)
of collective states Ψs(a) caused by this interaction appear imaginary terms, which
are known [7] to lead to an additional broadening γs(a) of levels Es(a) compared
to the radiative broadening γ0. In the system of equations (15), Fmn is the matrix
element of the transition Ψ̃(0)

m → Ψ̃(0)
s , which by introducing the effective dipole

moment of the atom A(2) can be written in the form

Fmn = − i

c

√
nω
2 ω0A⃗0d⃗

eff
n0 (R) exp(ik⃗R⃗). (16)

Here A⃗0 is the amplitude of the vector potential, k⃗ is the wave vector of a real
photon (k = ω/c), which is absorbed at the location of the atom A(2) with the
radius vector R⃗; d⃗effn0 (R) is the matrix element of the electric dipole moment
operator of the atom A(2), calculated taking into account all terms of the wave
function (4) of an initial state:

d⃗effn0 (R)= d⃗n0+d⃗′
n0(R)= d⃗n0+

∑
n2

(En2−E0)
ℏω0

d⃗0n2⟨φ̃n(1)φ̃n2(2)|V̂ (±)
dip |φ̃0(1)φ̃0(2)⟩

En + En2 − 2E0
. (17)

The first term d⃗n0 in (17) denotes the matrix element of the electric dipole moment
operator of a single atom between the |n⟩ and |0⟩ states. The specific form of
the dependence d⃗′

n0(R) is related to the type of interaction between atoms A(1)
and A(2). In the case of the dipole interaction of atoms considered here, d⃗′

n0(R)
decreases exponentially with the increase of the interatomic distance R. Thus, the
second term d⃗′

n0(R) in the r. h. s. of (17) takes into account the influence of the
interaction of atoms A(1) and A(2) on the absorption process of a real photon via
the field of virtual photons. This interaction is shown in [15, 16, 17] to lead to
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the inducing the so-called electronic polarizing field with the corresponding vector
potential at the location of the observer atom A(1).

With the substitution ãn(t1) = an(t1)e−γnt1 , the initial system of differential
equations (15) for the probability amplitudes ãn and am takes the well-known form
(see, for example, [13, 18]):

iℏ
dam
dt1

= Fmn exp[i(ωmn + ω)t1]ãn = Fmn exp(iε+t1)ãn,

iℏ
dãn
dt1

= −iγnℏãn + Fnm exp(−iε+t1)am.

 (18)

The system (18) should be solved under the initial condition am(0) = 1, ãn(0) =
0. The form of the equations (18) is the same for both channels of interaction
of the pair of atoms with the field of real photons; in the system (18), for the
antisymmetric channel Ψ̃(0)

m → Ψ̃(0)
a it is necessary to replace Γs with Γa and ε+

with ε−, where ε− = −(δEs + ℏ∆)/ℏ. Based on the system of equations (18), it
is possible to describe the mutual influence of atoms A(1) and A(2) in the field
of real photons quite completely. At the same time, the single terms in (18) have
the following physical meaning: 1) the term −iℏγnãn describes the damping of
symmetric (antisymmetric) states Ψ̃(0)

s(a) of the compound system; 2) other terms
in (18), proportional to the matrix elements Fmn and Fnm, describe the quanta
absorption by one of the system atoms.

The system of equations (18) is adequate to the two-level approximation in the
system of atoms [14], when in the Schrödinger wave equation the most significant
effect arises from the resonant (ω = ω0) terms ∼ exp[±i(ω0 − ω)t1], in which the
dependence on time is determined by a small difference in frequencies ω0 − ω.
A similar system of equations without taking into account the damping of states
(γn = 0) was obtained in [6] (see also the book [14]).

A certain disadvantage of the constructed system of equations (18) (as well
as the original system (15)) is its non-Hermitianity leading to non-conservation
of the normalization of the amplitudes am(t1), ãn(t1) of collective states Ψ̃(0)

m (3)
and Ψ̃(0)

n (5) as a result of their decay into the continuum. Physically, this is
explained by the fact that a variable external perturbation (13) can ionize bound
atomic states. These processes can be taken into account [13, 18] via introducing
additional damping into Γs(a): Γs(a) → Γ̃s(a) = Γs(a) + γ′

s(a), where γ′
s(a) is the

effective width taking into account the specified processes, and Γ̃s(a) is the total
width composed of contributions from all possible ways of “decay” of this quasi-
stationary state. The result is the same system of equations (18), in which only the
additional width γ′

s(a) is present from the states of the continuous spectrum. Thus,
the difficulties with non-conserving the normalization of the amplitudes of discrete
states can be circumvented in the same way as it is done in [13, 18]. However,
below we will assume that γ′

s(a)t1 ≪ 1 and therefore omit γ′
s(a).

Let us consider the general solution of the system (18). It is clear that obtain-
ing an exact solution of this system for an arbitrary form of Fmn(t1) and at the
same time for γn ̸= 0 is an obviously analytically unsolvable problem. In the ab-
sence of damping (γn = 0), a time-periodic perturbation with frequency ω would
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directly lead to periodic oscillations of the amplitudes of both states Ψ̃(0)
m (3), Ψ̃(0)

n

(5) with frequencies ω(1,2) determined by the roots of the corresponding secular
equation [14]. Taking into account the damping (γn ̸= 0) leads to the appearance
of imaginary parts in the frequencies ω(1,2) and, thereby, to the damping of the
amplitudes of the collective states Ψ̃(0)

m and Ψ̃(0)
n . Omitting intermediate calcula-

tions, we will immediately give the final result for the amplitudes am and ãn in
the case of a time-periodic perturbation (of the form (12), (13)):

am = exp
(
−γn − iε+

2 t1

){
cos((Ω+ + iβ+)t1) − i(ε+ + iγn)

2(Ω+ + iβ+) sin((Ω+ + iβ+)t1)
}
,

ãn = ane
−γnt1 = − iFnm

(Ω+ + iβ+)ℏ exp
(

−γn + iε+

2 t1

)
sin((Ω+ + iβ+)t1). (19)

Here Ω+ and β+ are the real numbers determined by the expression:

Ω+ + iβ+ =
{

|Fnm|2

ℏ2 + (ε+ + iγn)2

4

}1/2

.

The solution (19) for a symmetric interaction channel (and a similar solution
for an antisymmetric one) depends complicatedly on three parameters: ε+, Fnm,
γn = Γs/2 and time t1. However, it can be verified that the general character of
the dependence of |am(t1)|2 and |an(t1)|2 on time is of the form

exp(−γnt1) (A exp(−β+t1) +B exp(−iΩ+t1) + C exp(β+t1)) ,

where the constants A, B, C are determined by the parameters ε+, Fnm, Γs. De-
pending on the ratio between the three parameters Γs, β+ and Ω+, the information
system of two resonant atoms in the field of real photons is characterized by one
or another mode of operation.

First of all, for any ratios between Γs, β+ and Ω+, there is an initial stage of the
process when t1 ≪ Γ−1

s , β−1
+ , Ω−1

+ . In this case, only terms containing Fnm and
Fmn can be saved in the system (18). At the same time, when neglecting damping
(Γs = β+ = 0), the solutions (19) turn into the well-known formulas of the book
[14]. If Γs ≫ Γs − β+, Γ−1

s ≪ t1 ≪ (Γs − β+)−1, then the quasi-stationary regime
is realized. In a real situation, this regime corresponds to sufficiently long times
(Γst1 ≫ 1) of observing the compound system. At the same time, the distance
R between atoms can be significantly larger or comparable to the wavelength of
external radiation λ = 2πc/ω. In this case, the damping of the states has a
very non-trivial influence on the time dependence of the probabilities amplitudes
am(t1) and ãn(t1) (see (19)); the damping effect is stronger, the larger the damping
constant Γs and the smaller the ratio (Γs − β+)/Γs.

Other type of regime – oscillatory – is possible when Ω+ ≫ Γs, Ω−1
+ ≪ t1 ≪

Γ−1
s . This mode of time evolution of the “A(1)+A(2)+F” system is characterized

by the formulas (19), where Ω+ = Ω0 =
√
ε2

+/4 + |Fnm|2/ℏ2 and β+ = β0 =
ε+Γs/8Ω0. In the case of Γs = 0, the oscillatory mode was considered in detail
in [6].
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All modes of temporal evolution of the compound system mentioned here also
occur for the antisymmetric channel of interaction. By changing the parameters
characterizing the compound system “A(1)+A(2)+F”, one can trace a continuous
transition from one mode to another.

A feature of the problem being solved is the need to take into account the
exchange of excitations between resonantly interacting atoms. The study of this
problem carried out in [5] shows that when taking into account the dipole-dipole in-
teraction of atoms without retardation the exchange of excitations between atoms
is determined by the characteristic exchange time ℏ/δE′

s,a, where δE′
s,a is given

by the expression

δE′
s,a = ± e2

R3 |⟨n|r⃗|0⟩|2Φ(1, 2). (20)

If at some point in time the system consisting of two identical atoms is in a
state in which only one atom is excited, then as shown in [5] due to resonance
interaction this excitation is transferred to another atom in the time τ ′ = ℏ/δE′

s.
The closer the atoms are to each other, the faster the transfer of excitation energy
from one atom to another occurs. At the same time, the time τ ′ of excitation
transfer is significantly shorter than the lifetime Γ−1

n of an atom in an excited
state. Therefore, in [5], the damping of states in the process of atom-to-atom
excitation transfer was not taken into account.

As can be seen from the solution (19) of the system (18), taking into account
the damping of one of the levels leads to “transferring” this damping to another
level. So, for example, if at the initial point of time (t1 = 0) the state of Ψ̃(0)

m

was stable, then at following points of time (t1 > 0) it may decay with a constant
equal to half the damping constant of the state Ψ̃(0)

n . This effect has an analogy
in the problem of the destruction of the 2S1/2 metastable level of the hydrogen
atom by an external field [18]. The determining parameter for this effect is the
quantity Γs(a)τ12, where τ12 is the effective time of excitation energy transfer
from atom A(2) to atom A(1). The revealed effect of the loss of quantum states
coherence interferes with quantum computing and therefore must be minimized
to the utmost. In this regard, the use of ultracold electroneutral atoms in highly
excited states with the principal quantum number n ≫ 1 as qubits of a quantum
computer is seems to be the most promising. This implementation of a quantum
computer becomes possible due to the rapid development in recent years of the
technique of laser cooling and capture of neutral atoms in optical lattices or dipole
traps [2, 4, 19, 20]. The highly excited states of the atom, called Rydberg states,
have a number of unique properties, including long lifetimes and the ability to
sense each other over a significant interatomic distance [4]. These properties make
it possible to carry out quantum calculations provided there is no spontaneous
relaxation of the levels.

In accordance with the set initial conditions am(0) = 1, ãn(0) = 0 at the point
of time t1 = 0, the considered compound system is in the state Ψ̃(0)

m . However,
already at following points of time t1 under the influence of the perturbation (13),



Time of quantum information transfer 57

it evolves into a superpositional state:

Ψ̃s(t1) = 1√
2
e(− Γs

4 t1+i ε+
2 t1) ×

×
[
cos((Ω+ + iβ+)t1) − i(ε+ + iΓs/2)

2(Ω+ + iβ+) sin((Ω+ + iβ+)t1)
]
φ̃0(1)φ̃0(2)|nω⟩ −

− iFnm
ℏ(Ω+ + iβ+)e

(− Γs
4 t1−i ε+

2 t1) sin((Ω+ + iβ+)t1) ×

× 1√
2

[φ̃n(1)φ̃0(2) + φ̃0(1)φ̃n(2)] e(−iδEst1/ℏ)|nω − 1⟩. (21)

This wave function corresponds to the symmetric channel of interaction of the
atoms pair with the field of real photons. In the case of the antisymmetric interac-
tion channel, an explicit expression for the temporal wave function Ψ̃a(t1) of the
considered compound system can be obtained from (21) using the substitutions
Ω+ → Ω−, β+ → β−, Γs → Γa, and ε+ → ε−:

Ψ̃a(t1) = 1√
2
e(− Γa

4 t1+i ε−
2 t1) ×

×
[
cos((Ω− + iβ−)t1) − i(ε− + iΓa/2)

2(Ω− + iβ−) sin((Ω− + iβ−)t1)
]
φ̃0(1)φ̃0(2)|nω⟩ −

− iFnm
ℏ(Ω− + iβ−)e

(− Γa
4 t1−i

ε−
2 t1) sin((Ω− + iβ−)t1) ×

× 1√
2

[φ̃n(1)φ̃0(2) − φ̃0(1)φ̃n(2)] e(+iδEst1/ℏ)|nω − 1⟩.

Here the following notations are used in order to simplify the writing of formulas:

ε± = (±δEs − ℏ∆)/ℏ, Ω± + iβ± =
{

|Fnm|2

ℏ2 +
(ε± + iΓs(a)/2)2

4

}1/2

. (22)

Thus, the final state of the compound system “A(1) +A(2) +F” is a superpo-
sition (linear combination) of states Ψ̃s(t1) and Ψ̃a(t1):

Ψ̃(t1) = 1√
2
[
Ψ̃s(t1) + Ψ̃a(t1)

]
. (23)

The normalization factor in (23) is chosen to ensure equal probabilities of excita-
tion of both Ψ̃s and Ψ̃a states in the superposition state described by the wave
function Ψ̃(t1). After the point t1 = 0, the compound system develops indepen-
dently along symmetric and antisymmetric interaction channels, each of which,
generally speaking, decays with its own decay constant. These two communica-
tion channels can be particularly useful for performing two-qubit logic operations
and in a number of other applications [1].

Gathering together the formulas obtained for Ψ̃s(t1) and Ψ̃a(t1), we represent
the wave function Ψ̃(t1) in the form of a linear combination:

Ψ̃(t1) = A1φ̃0(1)φ̃0(2)|nω⟩+A2φ̃n(1)φ̃0(2)|nω −1⟩+A3φ̃0(1)φ̃n(2)|nω −1⟩, (24)



58 V.Yu. Lazur et al.

where the probability amplitudes of the possible states of the compound system
are given by the expressions

A1 = 1
2

{
e(− Γs

4 t1+i ε+
2 t1)

[
cos((Ω+ + iβ+)t1) − i(ε++iΓs/2)

2(Ω++iβ+) sin((Ω+ + iβ+)t1)
]
+

+ e(− Γa
4 t1+i ε−

2 t1)
[
cos((Ω− + iβ−)t1) − i(ε−+iΓa/2)

2(Ω−+iβ−) sin((Ω− + iβ−)t1)
]}
, (25)

A2 = − iFnm
2ℏ

[
sin((Ω+ + iβ+)t1)

Ω+ + iβ+
e(− Γs

4 t1−i ε+
2 t1)e(−iδEst1/ℏ)+

+sin((Ω− + iβ−)t1)
Ω− + iβ−

e(− Γa
4 t1−i

ε−
2 t1)e(iδEst1/ℏ)

]
, (26)

A3 = iFnm
2ℏ

[
− sin((Ω+ + iβ+)t1)

Ω+ + iβ+
e(− Γs

4 t1−i ε+
2 t1)e(−iδEst1/ℏ)+

+sin((Ω− + iβ−)t1)
Ω− + iβ−

e(− Γa
4 t1−i

ε−
2 t1)e(iδEst1/ℏ)

]
. (27)

For times Γs(a)t1 ≪ 1, the probability amplitudes (25)–(27) are normalized by
the condition: |A1(t1)|2 + |A2(t1)|2 + |A3(t1)|2 = 1. Hence and from the formulas
(25)–(27) it follows that the normalization of the total wave function Ψ̃(t1) is
conserved at Γs(a)t1 → 0. Resonance transfer of quantum information from atom
A(2) to atom A(1) is characterized by a change in amplitudes A1(t1), A2(t1) and
A3(t1) upon selective excitation of atom A(2) by the field of real photons.

Taking into account vanishing the matrix element of the operator (13) relating
the states Ψ̃(0)

s and Ψ̃(0)
a , the amplitudes of the probabilities of finding a compound

system in one or another state are represented as the sum of two groups of terms.
The terms in (25)–(27) with the factor exp(−Γst1/4 + iε+t1/2) correspond to the
system decay along the symmetric channel of interaction, and the terms with the
factor exp(−Γat1/4+iε+t1/2) – along antisymmetric one. When separating atoms
over long distances (R ≫ λ0), the contribution to Γs(a) tends to zero due to the
dipole-dipole interaction of atoms. In this case, the damping constants Γs(a) of
states Ψs(a) (6) with a sufficient degree of accuracy can be considered equal to
their asymptotic values (at R → ∞): Γs = Γa = γ0, where γ0 is the radiation
decay constant of a single atom. Coincidence of the damping constants Γs and Γa
leads to quantum oscillations between states |0n⟩ and |n0⟩ in which only one of
atom A(1) and A(2) is excited.

Summary
The theory of resonance interaction of two identical two-level atoms via the field
of virtual photons in the field of real photons is developed within the effects of the
2nd and 3rd orders of quantum electrodynamics [8, 15, 9, 10, 11, 12, 16]. On the
basis of the developed formalism, the temporal dynamics of the amplitudes of the
probabilities (see (25)–(27)) to detect the system of two dipole-interacting atoms



Time of quantum information transfer 59

qubits in one or another state (24) at absorption of a resonant photon by one of
the atoms of the system.

Regarding the formulas (25)–(27), we note the following. First of all, let us
pay attention to the fact that these formulas make it possible to detect and pre-
cisely control all the effects associated with the influence of retarded interaction
of atoms and damping of states on the process of quantum information transfer
between two atoms qubits. From the exchange-resonance nature of the transfer
of excitation energy from one atom to another, it follows that the efficiency of
quantum information transfer must strongly depend on the interatomic distance
and the mutual orientation of the dipole moments of the transition of atoms. At
the same time, the interaction of two-level atoms with each other, which is de-
scribed by the operator V̂ (±)

dip , and the interaction of one of them with the field of
real photons constitute a set of simple tools for control of internal quantum states
φ̃0(1)φ̃0(2)|nω⟩, φ̃n(1)φ̃0(2)|nω − 1⟩ and φ̃0(1)φ̃n(2)|nω − 1⟩ of the compound sys-
tem “A(1) + A(2) + F”, which is of undeniable interest from the point of view
of their practical application to the implementation of quantum logic operations
NOT and CNOT.

In the next article, we will trace the temporal evolution of the amplitudes
(25)–(27) at following points of time.
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