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We study diffractive phenomena in proton-proton and electron-proton collisions at the LHC 
and DESY using analyticity, crossing symmetry and unitarity, particularly the Regge-pole 
model realizing these concepts. Fits to the data are presented and tensions between theoretical 
predictions and the data that may indicate the way to further progress are in the focus of our 
paper. Elastic pp (LHC) and DIS ep scattering (DESY) usually are considered by means of two 
pomerons, “soft” and “hard” or with a single one, but varying intercept. We introduce a 
reggeometric pomeron replacing the above objects. 
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1. Introduction

In this paper we present our study of diffractive proton-proton and electron-proton collisions in 
the framework of the Regge pole model (we recall that Regge poles lie on the so called Regge 
trajectories in the t channel) through the introduction of a reggeometric pomeron . 
First of all, we start with a brief recapitulation of the present state of the theory. The construction 
of the scattering amplitude implies two steps: choice of the input (Born term) and subsequent 
unitarization. The better the input (i.e.,the closer to the expected unitary output), the better are 
the chances of a successfully converging solution (i.e., the smaller are the unitarity corrections). 
The standard procedure is to use a simple Regge-pole amplitude as input with subsequent 
eikonalization. 

The common feature in many papers studying this problem (see Refs. 1-7) is the use of 
a supercritical pomeron, , as input, motivated by the rise of the cross sections 
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and by perturbative QCD calculations (for instance, Ref. 8, where the BFKL theory is 
introduced). The next indispensable step is unitarization, usually realized in the eikonal 
formalism. Unitarization is necessary at least for two reasons: to reconcile the rise of the total 
cross sections with the Froissart-Martin bound and to generate the diffractive dip-bump 
structures in the differential cross sections. The latter issue is critical for most of the theoretical 
constructions since the standard eikonalization procedure results in a sequence of secondary 
dips and bumps, while experimentally a single dip-bump is observed only, as confirmed by all 
measurements including those recent, at highest LHC energy. This deficiency is usually 
resolved e.g. by introducing the so-called enhanced diagrams, or extra free parameters. Still, 
none of the above-mentioned models was able to reproduce the whole set of pp and  a data 
from the ISR to the LHC in the dip-bump region. This is a crucial test for all existing models. 
These models did not predict the unexpected rapid rise, as , of the forward slope revealed 
by the experiment TOTEM (see Ref. 9) or the drastic decrease of the parameter , ratio 
of the real to imaginary part of the elastic scattering amplitude, reported in Ref. 10. The latter 
(a single data point) was fitted a posteriori by an odderon [11], although in an earlier paper by 
one of the authors the model predicted quite a different trend. To summarize, the existing 
Regge-eikonal models are compatible with the general trend of high-energy diffractive 
scattering, but many details, such as the dynamics of the dip-bump, the role of the odderon still 
remains open and controversial.  

The TOTEM Collaboration announced [12] new results of the measurements on the 
proton-proton elastic slope at 7 and 8 TeV, B(7 TeV)= 19,89 0,27 and B(8 TeV)= 19,9 0,3 
GeV-2, showing that the logarithmic approximation, with a ln(s) behavior, an exponential fit 
over the large |t|-range from 0.005 to 0.2 GeV2 describes the differential distribution well. These 
data offer new information concerning the burning problem of the strong interaction dynamics, 
namely the onset of (or the appoach to) the asymptotic regime of the strong interaction. 

The approach to the expected asymptotic behavior has two stages. One is the onset of 
pomeron dominance, i.e., of the domain where secondary reggeon contributions become 
negligible. It can be shown that in the nearly forward direction, at LHC energies the contribution 
from secondary trajectories is negligible, smaller than the error bars in the measured total cross 
section, i.e. “soft” physics at the LHC is pomeron-dominated. The next question is where does 
the pomeron itself reaches its asymptotics. Below we address these questions. 

2. S-matrix theory, Regge-pole models

Regge-pole theory is the adequate tool to handle “soft” or “forward” physics. It is a successful 
example of the analytic S-matrix theory, based on analyticity, unitarity and crossing symmetry 
of the scattering amplitude. It was developed in the 60-ies of the past century, culminating in 
discovery of duality and dual amplitudes, whereupon, in the 70-ies was overshadowed by local 
quantum eld theories, more specifically by quantum chromodynamics (QCD). 

2.1. Regge poles and trajectories; factorization 

Below we introduce the Regge-pole model with emphases on its practical applications. 
Its derivation from potential scattering, the Schrödinger equation and its relation to quantum 
mechanics can be found in many textbooks (see, e.g., Refs. 13-15). 

In relativistic S-matrix theory we do not have a Schrödinger equation, and the existence 
of Regge poles is conjectured by analogy with quantum mechanics. The use of the complex 
angular moments results (for details, see Refs.13-15) in a representation for the amplitude,  

,
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valid in all channels, where  is the residue and 

is the signature factor. 
Baryon and meson trajectories are nearly linear functions in a limited range of their 

variables. This is suggested by the (nearly) exponential shape of forward cone in elastic 
scattering and by the meson and baryon spectrum. In Fig. 1 a typical Chew-Frautschi plot is 
shown. Similar nearly linear plots are known for other mesons and baryons [13-15]. Whatever 
appealing, this simplicity is only an approximation to reality: analyticity and unitarity as well 
as the finiteness of resonances require Regge trajectories to be non-linear complex functions 
(see, for instance, Refs. 16-18). 

Fig. 1. Linear mesonic Chew-Frautschi plot (spin vs. squared masses, ). 

Let us reiterate that Regge trajectories are building blocks of the scattering amplitude. 
In dual models (see below) they appear as the only variables. By crossing symmetry, they 
connect (smoothly interpolate between) the resonance formation – which implies positive x=s 
or t) with scattering (negative x), thus anticipating duality. 

Fig. 2. Diagrams describing Regge-pole factorization. 

Factorization of the Regge residue  and the “propagator”  is a basic 
property of the theory (see Ref. 14). As mentioned, at the LHC for the first time, we have the 
opportunity to test directly Regge-factorization in diffraction, since the scattering amplitude 
here is dominated by a pomeron exchange, identical in elastic and inelastic diffraction. Simple 
factorization relations between elastic , single /  and double   /  
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cross-sections are known from the literature [19]. By writing the scattering amplitude as a 
product of vertices, the elastic f and the inelastic F, multiplied by the (universal) propagator 
(pomeron exchange), , ,  for the elastic scattering, single (SD) and 
double (DD) diffraction dissociation (see Fig. 2) one gets 

      (1) 

Assuming exponential residua exp(Bt) for both the elastic scattering and SD, and 
integrating over t one obtains 

 ,                 (2) 

where 
, . 

To summarize this discussion, we emphasize the important role of the ratio between the 
inelastic and elastic slope, which at the LHC is close to its critical value, BSD/Bel = 0.5,  which 
means a very sensitive correlation between these two quantities. The right balance may require 
a correlated study of the two quantities, by keeping the ratio above 0.5. This constrain may 
guide future experiments on elastic and inelastic diffraction. 

2.2. Pomeron and odderon 

Regge trajectories (reggeons), introduced in the 60-ies of the past century correspond to 
a family of mesons or baryons sitting on the real part of the trajectories – the so-called Chew-
Frautschi plot, to which their parameters (intercept and slope) are adjusted. There are two 
exceptions, namely the pomeron and odderon. The pomeron was introduced by I.Ya. 
Pomeranchuk as a fictive trajectory with postulated unit intercept to provide for non-decreasing 
asymptotic total cross-sections. In those days, the common belief was that asymptotically the 
cross sections tend to a constant limit. This has changed after the rise of cross sections was 
discovered at the ISR. The new, fictitious trajectory accommodates the asymptotically constant 
or rising cross section provided its intercept is respectively one or bigger, . The so-
called supercritical pomeron, typically with  violates the Froissart bound (and 
unitarity) at very high energies, beyond any credible extrapolation. Nevertheless, formally and 
for aesthetic reasons, the input amplitude should be subjected to unitarization.  

Unlike the case of ordinary (called also secondary or sub-leading) reggeons the pomeron 
trajectory was considered, since the beginning, as not connected to any observed particle. This 
assumption changed in the 70-ies with the advent of the quark model and the QCD. Nowadays 
the pomeron trajectory has its own Chew-Frautschi plot with glueballs, bound states of gluons. 
Glueballs are eventually mixed with quarks, forming “hybrids”: this makes difficult their 
experimental identification. 

The existence of the pomeron makes plausible the existence of its odd-C counterpart – 
the odderon. While the pomeron is made of an even number of gluons, the odderon is a bound 
state of an odd number of gluons. Moreover, the pomeron is “seen” as the imaginary part of the 
forward amplitude (total cross section), instead the identification of the odderon is not so 
unique.  
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2.3. Duality 

The notion of duality, discovered in 1968 [20], has many facets values. Here we deal 
with resonance-Regge duality (or the Veneziano model [21]), discovered by saturating the so-
called nite energy sum rules. Their analysis showed that, contrary to expectations, the proper 
sum of resonances produces a smooth Regge behavior and vice versa, their sum producing 
double counting. As a next step, an explicit dual amplitude was constructed. It is an Euler B-
function:  

.         (3) 

The Veneziano amplitude has several remarkable properties: it is crossing symmetric by 
construction, can be expanded in a pole series (resonance poles) in the s and t channel, and at 
large s, by the Stirling formula it is Regge-behaved, thus explicitly showing resonance-Regge 
duality - see, for instance, Fig. 3. At the same time, the model is not free from difficulties or 
limitations: it is valid only in the so-called narrow-resonance approximation, bringing to real 
and linear trajectories only, and  as a result analyticity and unitarity are violated. A solution was 
found in dual amplitudes with Mandelstam analyticity (DAMA) [22], replacing Eq. (3) with 

,               (4) 

where g > 1 is a parameter. 

Fig.  3. Diagrams describing the resonance-Regge duality 

Its low-energy pole decomposition the amplitude has the form 

 ,                         (5) 

where   is the residue, whose form is fixed by the t-channel Regge trajectory. 
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Fig.  4. (a) Re and Im  for the degenerate  trajectory; (b) continuous line: (s) 
for the degenerate trajectory, dashed line: (s) for the nondegenerate  trajectory. 

As an example of typical terms in Eq. 3, in Fig. 4 we present the Chew-Frautschi plot of the 
degenerate trajectory (real and imaginary parts) in Fig. 1(a), together with, in Fig. 1(b) 
the width (s) for the degenerate trajectory (continuous line) and the nondegenerate  
trajectory (see, on this, Ref. 23), by means of a dispersion relation. 

Resonance-Regge duality is applicable also in relating resonances in the missing mass 
of the DD to the high-mass smooth asymptotics, as shown in Fig.  5. 

Finally, we mention the parton-hadron (Bloom-Gilman) duality [24]: it relates 
resonance production in deep-inelastic scattering to the smooth scaling behaviour of  structure 
functions and may be a clue to the confinement problem! 

2.4. Geometry and the black disc limit 

The unitarity condition is simple in the impact parameters representation of the 
scattering amplitude; it is  

 ,   (6) 

with the inverse transformation 

         (7) 

In these equations  is called elastic impact parameter profile, A(s,t) is the elastic 
amplitude, J0(z) is the Bessel function of the zeroth order,  is a two-dimensional vector, 

 and b is the impact parameter.
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Fig. 5. Finite-mass sum rules (FMSR), Ref. 17, relating low missing-mass resonances 
(horizontal axis) with high mass production (vertical axis) in diffraction dissociation, are 

shown. 

For the observables the following expressions hold, see Refs. 5-7: 

                   (8) 

     (9) 

              (10) 

where, in the impact parameter b representation, h(s, b) is the elastic-scattering amplitude at the 
center-of-mass energy and Imh(s, b), usually called the profile function, represents the hadron 
opacity. The eikonal and u matrix approaches differ dramatically concerning the “black disc 
limit”, absolute in the eikonal model, but merely transitory for the u matrix. A large number of 
paper appeared, e.g. Refs. 5-7, dramatizing the “dangerous” vicinity of the black disc limit 

, reached or even crossed at the LHC. The transformation of the experimental 
data, including the differential cross sections measured at the LHC can be always questioned 
because the real part of the amplitude (or the phase) is not measured directly. 

Contrary to the eikonal, in the u matrix approach the black disc is not an absolute limit. 
Having reached 0.5, the nucleon will tend to be more transparent [25]. This 
phenomenon was discussed in a number of papers by S.M. Troshin and N.E. Tyurin (see, for 
instance, Ref. 25 and references therein). In Sec. 3 we come back to the predictions of this 
unorthodox unitarization scheme. 

3. Unitarity and “asymptopia”

3.1. Unitarity 

We find approximate solutions of the u-matrix unitarization with a double pole (DP) as 
input. Postponing a detailed fit to the data, here we explore the general trend in the behavior of 
the observables, concentrating on the expected transition to the asymptotic regime of the strong 
interaction. 

In the u matrix approach, the unitarized amplitude is [25] 

 , (11)
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where  is the input “Born” term. 
We obtain for the forward measurables, in the O(L-1) approximation (L = ln(s/s0), s0 

being a scale for the square of the total energy s) 

     (12) 

      (13) 

                   (14) 

where is a parameter, whose typical value is 0.06 [17]. 
One can see from Eqs. (12)-(14) that, in the leading O(L-1) approximation, the energy 

dependence of the cross sections is not affected by unitarization if g is constant, that was typical 
for the ISR era with geometrical scaling (GS). The GS is violated beyond the ISR energies, 
requiring the energy dependence, , to be discussed in what follows. 

Furthermore, in the O(1/L) approximation, the amplitude can be written as 

  .                     (15) 

In the “Born approximation” we have the McDowell-Martin limit [26] for the slope: 

  .           (16) 

The parameter g may be found from the ratio 

          (17) 

where g is constant in the case of unit dipole pomeron (DP) intercept, sharing the property of 
geometrical scaling (GS), typical of the ISR energy region, with 

    (18) 

Beyond the ISR the ratio (17) starts rising, braking the GS. This phenomenon is related 
with the rise of the parameter g(s); that can be calculated (and parametrized) uniquely from the 
experimental data on the the ratio (17). Consequently, the GS relation will be replaced by the 
asymptotic formulas to be discussed in the next Subsection.The results of the “perturbative” 
(due to smalleness at high energies of the parameter L-1) expansion are attractive for their 
simplicity and the possibility to perform the calculations analytically. Evaluation of higher-
order, subleading corrections is possible but was not done as yet. Even more interesting are 
exact numerical calculations with simultaneous fits to the date. They are feasible, although 
require huge machine resources (two-fold numerical Fourier-Bessel transforms with 
minimization (through MINUIT procedure at each step). 
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3.2. Asymptotic universality 

In this Subsection we use the obtained results to predict future trends. Our first 
conclusion is the existence of two regimes: the first is the “low-energy” ISR-FNAL region, 
which shows modest (logarithmic) rise of the cross section with constant ratios  and 

, i.e. GS; the second is asymptotic, with Froissart saturation and . The 
transition between the two regimes and the onset of the asymptotic behavior is quantified by 
the “running constant” g(s). 

One can see from Eq. (12) that the rise of  is a combined effect coming from two 
factors: increasing intensity of the interaction  and increasing interaction 
radius . Their product results in the Froissart saturation, 

.   (19) 

Eq. (19) relates the coefficient c with the slope of the pomeron trajectory   Setting 
 GeV-2, we get  mb, close to its fitted value. 

4. Diffractive deep-inelastic scattering: how many pomerons?

Let us establish two postulates: 
1. Regge factorization holds, i.e. the dependence on the virtuality of the external particle

(virtual photon) enters only the relevant vertex, not the propagator; 
2. there is only one pomeron in Nature and it is the same in all reactions. It may be

complicated, e.g. having many, at least two, components (soft and hard?). 
The first postulate was applied, for example, in Refs. 27 and 28 to study the deeply virtual 

Compton scattering (DVCS) and the vector meson production (VMP). In Fig. 6, where 
diagrams (a) and (b) represent the DVCS and the VMP, respectively, the Q2 dependence enters 
only the upper vertex of the diagram (c), where we explicitate the Regge-factorized form of the 
amplitude for both processes. The particular form of this dependence and its interplay with t is 
not unique. 

Fig. 6. Diagrams of DVCS (a) and VMP (b); (c) DVCS (VMP) amplitude in a Regge-
factorized form 

Hadron-hadron elastic scattering is different from exclusive VMP and DVCS not only because 
the photon is different from a hadron (although they are related by vector meson dominance), 
but even more because of the transition between space-and time-like regions: while the virtual 
photon's “mass square” q2 is negative, that of the hadron is positive and that makes this attempt 
interesting! 
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4.1. Reggeometric pomeron 

We start by reminding the properties and some representative results of the single-term 
Reggeometric  model (see Ref. 27). 

The invariant scattering amplitude is defined as 

. 
              (20) 

Here 
                       (21) 

is the linear pomeron trajectory, a and b are two parameters to be determined with the fitting 
procedure and mN is the nucleon mass. The coefficient  is a function providing the right 
behavior of elastic cross section in  = Q2 + MV

2 (MV being the vector meson mass):  

 ,                      (22) 

where  is a normalization factor,  is a scale for the virtuality and nS is a real positive 
number. Notice that we use the variable  as a measure of “hardness”. By using Eq. (22) with 
the norm and  

,      (23) 

the differential and integrated elastic cross sections become 

(24) 

and 

 ,            (25) 

where 
. 

Eqs. (24) and (25) (for simplicity we set 2) were fitted [29] to the HERA data 
obtained the by ZEUS and H1 Collaborations on exclusive diffractive VMP. 

A shortcoming of the single-term Reggeometric pomeron model, expressed by Eq. (20), 
is that the fitted parameters in this model acquire particular values for each reaction. 

4.2. Two-component Reggeometric pomeron 

In this Subsection we try to approach a complicated and controversial subject, namely 
the existence of two (or more) different pomerons: one “soft” responsible for on-mass-shall 
hadronic reactions, and the other one(s) “hard” applicable to of-mass-shall deep inelastic 
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scattering (DIS). There are similarities between the two soft and hard models (e.g., Regge 
behavior), but also differences. The main difference is that the Regge pole model, being part of 
the analytic S matrix theory, strictly speaking, is applicable to asymptotically free states on the 
mass shall only. Another difference is that the hard (or “Lipatov”) pomeron is assumed to follow 
from the local quantum field theory (QCD) with confined quarks and gluons. We do not know 
how can these two extremes be reconciled. Below we try to combine these two approaches by 
using a specific model, a “handle” combining three independent variables: s, t and Q2: 

We introduce an universal, “soft” and “hard”, pomeron model (see Ref. 27). Using the 
Reggeometric ansatz expressed by Eq. (20),  the amplitude is written as a sum of two parts, 
corresponding to the “soft” and “hard”  components of a universal, unique pomeron: 

  .                    (26) 

Here sos and soh are squared energy scales, and ai and bi, with i=s,h, are parameters to be 
determinated with the fitting procedure. The two coefficients  and  are functions similar 
to those defined in Ref. 25.  

Each component of Eq. (26) has its own, “soft” or “hard”, pomeron linear trajectory: 

,            . 

As input we use the parameters suggested by Donnachie and Landshoff [30], so that 

, . 

Let us illustrate the important and delicate interplay between the “soft” and “hard” 
components of our unique pomeron. Since the amplitude consists of two parts, according to  Eq. 
(26), it can be written as 

 . (27) 

As a consequence, the differential and elastic cross section contain also an interference term 
between the “soft” and “hard” parts, so that they read 

    (28) 
and 

.                     (29) 

Given Eqs. (28) and (29), we can define the following ratios for each component: 

              (30) 

and 
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,            (31) 

where i stands for s, h, interf. 
Fig. 7 shows the interplay between the components for both  and , as 

function of , for W = 90 GeV. In Fig. 8. both diagramts show that not only  is the parameter 
defining softness or hardness of the process, but such is also the combination of  and t, similar 
to the variable  introduced in Ref. 27. On the whole, it can be seen from the diagrams 
that the soft component dominates in the region of low  and t, while the hard component 
dominates in the region of high  and t. 

Fig. 7. Interplay between soft (green line), hard (blue line) and interference (yellow line) 
components of the cross section  (upper Figure) and the ratio  (lower Figure) as 

function of , for W = 90 Gev. 

5. Conclusions

The total, elastic and inelastic cross sections at the LHC did not reveal surprises; the rate of 
their rise (not predicted by the theory) follows extrapolations of phenomenological models, 
typically ln2s or, equivalently that of Donnachie and Landshoff 's supercritical pomeron with 

 
        Forward physics at the LHC is dominated by the pomeron exchange, the role of secondary 

(e.g. f of ) exchanges is negligible, their relative contribution there being smaller than the 
experimental uncertainties. The odderon is not “seen” in fits to total cross sections. Although 
the common belief is that cross sections will continue rising indefinitely, alternatives, e.g. 
tending to a constant, oscillations etc. are not excluded by the theory. 
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Fig. 8. Left column: soft (upper surface), hard (middle surface) and interference (bottom 
surface) components of the ratio  are shown as functions of  and t, for W=90 

GeV. Right column: some representative curves of the surfaces projected onto the  
plane. 

Contrary to total cross sections, the data on the forward slope B(s,0) and the phase (the  
parameter) offers surprises, triggering theoretical work. The forward slope B(s,0), typically 
logarithmic in Regge-pole models, was found by the TOTEM collaboration to accelerate from 
ln(s) to ln2(s) at highest LHC energy [9,12], needing theoretical explanation and understanding. 
Another news from TOTEM is the surprisingly low value  = 0.10±0.01 [10]. The low 
value of the ratio  is almost a direct evidence for the odderon, predicted many years ago 
and discussed in numerous papers, see e.g. Refs.17 and 31 and references therein. Recent fits 
to the TOTEM data with its low  value cannot prove or disprove the existence of the odderon 
until larger values of t, namely those at the dip will be shown to work. 

There is little doubt about the existence of the odderon, just because nothing forbids its 
existence. Its parameters are not predicted from theory. By a plausible estimate, based on the 
string model, the odderon's slope is roughly . The odderon could be detected 
directly by measuring pp and  differential cross sections at the same energy, e.g. by rescaling 
the LHC down to the closed Tevatron energy,v . 

The pomeron is the central object in forward physics at the LHC. As repeatedly stressed 
in this paper, in the LHC energy region one for the first time has a chance to identify the 
pomeron, uncontaminated by secondary exchanges. Perturbative quantum chromodynamics 
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(pQCD) predicted that the intercept of the (bare) pomeron is much higher than its “canonical” 
value 0.08. 

Finally we note that we ignore the so-called rapidity gap survival corrections that 
brought much confusion in studies of diffraction dissociation. In our opinion, the confusion 
comes from the mixture of the space-time treatment of inelastic processes with the analytic S 
matrix theory, part of which are Regge-poles, operational only for asymptotic states. A 
reasonable Regge-pole model compatible with unitarity should not contain “rapidity gap 
survival corrections”, otherwise it should be improved within its own formalism. In other 
words, the size of these corrections reflect the “goodness” of the model. 
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