-53-

УДК 546.571+546.289+546.221+548.5

Погодін А.І., к.х.н., с.н.с.; Філеп М.Й., к.х.н., с.н.с.; Малаховська Т.О., к.х.н., с.н.с.; Кохан О.П., к.х.н., доц.; Поп М.М., к.фіз.-мат.н., докторант

ВИРОЩУВАННЯ МОНОКРИСТАЛІВ АРГІРОДИТУ Ag₈GeS₆

ДВНЗ «Ужгородський національний університет», 88000, м. Ужгород, вул. Підгірна 46; e-mail: artempogodin88@gmail.com

Мінерал Ag₈GeS₆ є родоначальником широкого класу тетраедрично щільно упакованих фаз об'єднаних спільною назвою аргіродити. Тернарні аргіродити є складними халькогенідами, що формуються на основі багато- та однозарядних катіонів. Структуроутворюючими поліедрами є тетраедри, що формується на основі багатозарядного катіону та халькогенів, а однозарядні катіони займають утворені пустоти. Аргіродити відносять до перспективних твердотільних провідників та термоелектриків. Метою даної роботи є розробка близьких до оптимальних умов вирощування монокристалів Ag₈GeS₆ методом спрямованої кристалізації з розплаву. Вихідна шихта Ag₈GeS₆ одержана з елементарних компонентів високої чистоти двостадійним однотемпературним методом. Методом ДТА підтверджено конгруентний характер плавлення Ag_8GeS_6 ($T_{nn} = 958^{\circ}C$) та проходження структурного фазового переходу $Pna2_1 \rightarrow F-43m$ при температурі 227°С. Вирощування монокристалу Ag_8GeS_6 здійснювали з розплаву методом спрямованої кристалізації. Режим росту Ag₈GeS₆ підбирали з врахуванням характеру термічної поведінки сполуки на основі даних ДТА. Вирощений монокристал Ag₈GeS₆ довжиною ~ 30 мм та діаметром 12 мм та володіє середнім ступенем спайності. За результатами РФА встановлено, що вирощений монокристал Ag₈GeS₆ є однофазним та кристалізується в низькотемпературній модифікації ПГ Pna2₁ з параметрами гратки: а = 15.147 Å, b = 7.469 Å, c = 10.584 Å.

Ключові слова: аргіродити; монокристали; спрямована кристалізація; фазовий аналіз.

Мінерал Ag₈GeS₆ є родоначальником широкого класу сполук – аргіродитів [1-4], що об'єднуються подібною кристалічною структурою та відносяться до тетраедрично шільно упакованих фаз. Структуроутворюючими поліедрами є тетраедри, що формується на основі багатозарядного катіону та халькогенів. Однозарядні, рідше двозарядні, катіони розташовуються в утворених між тетраедрами пустотах. Заповнюваність кристалографічних позицій однозарядними катіонами зазвичай є меншою 1. Таким чином утворюється жорстка аніонна та розупорядкована катіона підрешітка аргіродитів [1-5]. Особливості кристалічної структури аргіродитів зумовлюють наявність таких параметрів як високі значення іонної провідності, аномально низької теплопровідності, менші значення ширини забороненої зони, що відносить аргіродити до перспективних твердотільних провідників [3-5], термоелектриків [6-8], фотоелементів [9, 10].

Для тернарних аргіродитів характерним є наявність структурного фазового переходу із однієї з трьох примітивних комірок (P2₁3, Pna2₁, Pmn2₁) низькотемпературної модифікації у гранецентровану кубічну F-43m високотемпературну модифікацію [1, 6]. При даних фазових переходах мотив кристалічної структури аргіродитів зберігається, але відбувається зростання можливих кристалографічних позицій катіону Me¹⁺.

Тернарний сульфід Ag₈GeS₆ утворюсться на квазібінарному перерізі Ag_2S - GeS_2 та плавиться конгруентно при 948°С [11, 12]. Ag_8GeS_6 володіє вузькою областю гомогенності [11]. При температурі 230°С Ag₈GeS₆ зазнає структурного фазового переходу Pna2₁→F-43m [11, 12]. Низькотемпературна модифікація нтм-Ag₈GeS₆ (рис. 1) кристалізується у примітивній ромбічній комірці, ПГ Рпа2₁ з параметрами гратки a = 15.149 Å, b = 7.476 Å, c = 10.589 Å,

[©] Погодін А.І., Філеп М.Й., Малаховська Т.О., Кохан О.П., Поп М.М. DOI: 10.24144/2414-0260.2022.1.53-57

Z = 4 [1, 13]. Основним структурним елементом нтм-Ag₈GeS₆ є деформовані тетраедри [GeS₄]. Всі атоми у ромбічній структурі нтм-Ag₈GeS₆ займають позиції Вікоффа 4а із фактором заповнення позиції рівним 1.

Рис. 1. Елементарна комірка нтм-Ag₈GeS₆ [13]. Візуалізація за допомогою VESTA 3.5.4 [14].

Високотемпературна модифікація втм-Ag₈GeS₆ кристалізується у гранецентрованій кубічній комірці, ПГ F-43m з параметри гратки 10.70 Å [12].

У роботі [9, 10] повідомляється, що нанокристали Ag_8GeS_6 проявляють електрокаталітичну активність. Авторами [15] вказується, що Ag_8GeS_6 може проявляти нелінійно оптичні властивості в ІЧ області.

Метою даної роботи є розробка близьких до оптимальних умов вирощування монокристалів Ag_8GeS_6 методом спрямованої кристалізації з розплаву.

Експериментальна частина

Полікристалічний сплав Ag_8GeS_6 синтезували сплавлянням елементарних компонентів: Ад (99.995%), Ge (99.9999%) та (99.999%) у вакуумованих S (0.13 Па) ампулах. Синтез Ag_8GeS_6 кварцових здійснено двостадійним однотемпературним методом деталі якого представлені на рис. 2.

Ідентифікацію одержаного сплаву здійснювали з використанням методів диференційного термічного (ДТА, термопари типу S, швидкість нагріву 700°С/годину) та рентгенівського фазового аналізів (РФА, ДРОН-4-07, СиКа-випромінювання, Niфільтр, $\Delta 2\Theta$ =0.02°, експозиція 1 с).

Результати та їх обговорення

Температурна поведінка сплаву надає інформацію, необхідну важливу лля встановлення оптимального температурного режиму вирощування монокристалу Ag₈GeS₆. Крива нагріву Ag_8GeS_6 (рис. 3) характеризується наявністю двох ендотермічних ефектів, що відповідають процесу фазового переходу втм- Ag_8GeS_6 , 227°C $HTM-Ag_8GeS_6 \rightarrow$ та процесу плавлення втм- $Ag_8GeS_6(тв) \rightarrow L$, 958°С. Різкий екзотермічний ефект на кривій охолодження Ag₈GeS₆ вказує на високу швидкість кристалізації розплаву, що є сприятливою умовою для одержання монокристалів спрямованою кристалізацією.

Фазовий аналіз одержаного сплаву вказує на однофазність синтезованого зразку. Вирощування монокристалу Ag_8GeS_6 здійснювали використанням 3 методу спрямованої кристалізації з розплаву у печах опору. Процес росту двохзонних відбувався вакуумованих (0.13 Па) V конічних кварцових ампулах.

Результати ДТА були використані для підбору режиму росту Ag₈GeS₆.

Температура зони розплаву становила 1007°С, при цій температурі розплав витримувався протягом 24 годин. Подальше формування монокристалічного зародку протягом 48 годин відбувалось у нижній конусоподібній частині ампули.

Переміщення межі розподілу розплавкристал здійснювали 3 швидкістю 0.5 мм/годину. Відпал монокристалу Ag₈GeS₆ здійснювали при температурі 637°С протягом 72 годин. Охолодження ло кімнатної температури здійснювали i3 швидкістю 5°С/годину. В результаті одержано монокристал Ag₈GeS₆ темно сірого кольору з металевим блиском довжиною ~ 30 мм та діаметром 12 мм (рис. 4.). Монокристалічний Ag_8GeS_6 володіє середнім ступенем спайності.

Рис. 4. Монокристал Ag₈GeS₆ вирощений методом спрямованої кристалізації.

Одержаний монокристал Ag₈GeS₆ досліджено методом РФА. Експериментальна дифратограма (рис. 5) містить лише одну систему рефлексів, що відповідає ромбічній сингонії. Таким чином вирощений Ag₈GeS₆ кристалізується у низькотемпературній модифікації.

Рис. 5. Порівняння дифрактограми вирощеного Ag₈GeS₆ (експ.) та розрахованої за літературними даними дифрактограми Ag₈GeS₆ (теор.).

Використовуючи EXPO 2014 [15] розраховано параметри елементарної комірки нтм-Ag₈GeS₆, що становлять a = 15.147 Å, b = 7.469 Å, c = 10.584 Å.

Висновки

Методом спрямованої кристалізації з розплаву вирощено якісний монокристал Ag₈GeS₆ довжиною ~ 30 мм та діаметром 12 мм. Режим росту підбирали на основі результату ДТА. Одержаний монокристалічний зразок є однофазним, що підтверджується результатами РФА.

Список використаних джерел

1. Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites - a new family of the tetrahedrally close-packed structures. *Mat. Res. Bull.* 1979, 14, 241–248. Doi: 10.1016/0025-5408(79)90125-9.

2. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure – property relations of high temperature ion conductors. *Z. Kristallogr.* 2005, 220, 281–294. Doi: 10.1524/zkri.220.2.281.59142.

3. Beeken R.B., Garbe J.J., Gillis J.M., Petersen N.R., Podoll, B.W., Stoneman M.R. Electrical conductivities of the Ag_6PS_5X and the Cu_6PSe_5X (X=Br, I) argyrodites. *J. Phys. Chem. Solids.* 2005, 66(5), 882–886. Doi: 10.1016/j.jpcs.2004.10.010.

4. Laqibi M., Cros B., Peytavin S., Ribes M. New silver superionic conductors Ag_7XY_5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I)–synthesis and electrical studies. *Solid State Ionics*. 1987, 23(1-2), 21–26. Doi: 10.1016/0167–2738(87)90077–4.

-55-

-56-

5. Deiseroth H.–J., Maier J., Weichert K., Nickel V., Kong S. - T., Reiner C. Li₇PS6 and Li₆PS₅X (X: Cl, Br, I): possible three–dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements. *Z. Anorg. Allg. Chem.* 2011, 637, 1287–1294. Doi: 10.1002/zaac.201100158.

6. Lin S., Li W., Pei Y. Thermally insulative thermoelectric argyrodites. *Mater. Today*, 2021, 48, 198–213. Doi: 10.1016/j.mattod.2021.01.007.

7. Li W., Lin S., Weiss M., Chen Z., Li J., Xu Y., Zeier W.G., Pei Y. Crystal Structure Induced Ultralow Lattice Thermal Conductivity in Thermoelectric Ag₉AlSe₆. *Adv. Energy Mater.* 2018, 8, 1800030. Doi: 10.1002/aenm.201800030.

8. Heep B.K., Weldert K.S., Krysiak Y., Day T.W., Zeier W.G. Kolb U., Snyder G.J., Tremel W. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag_8SiSe_6 . *Chem. Mater.* 2017, 29(11), 4833–4839. Doi: 10.1021/acs.chemmater.7b00767.

9. He Q., Qian T., Zai J., Qiao Q., Huang S., Li Y., Wang M. Efficient Ag_8GeS_6 counter electrode prepared from nanocrystal ink for dye-sensitized solar cells. *J. Mater. Chem. A.* 2015, 3, 20359–20365. Doi: 10.1039/C5TA05304H.

10. Li Z., Liu C., Zhang X., Zhang Z., Guo W., Shen L., Zhang L., Long Y. An easily prepared Ag_8GeS_6 nanocrystal and its role on the performance enhancement of polymer solar cells. *Organic*

Electronics. 2017, 45, 247–255. Doi: 10.1016/j.orgel.2017.03.029.

11. Олексеюк І.Д., Когут Ю.М., Федорчук А.О., Піскач Л.В., Горгут Г.П., Парасюк О.В. Система Ag₂S–GeS₂ та кристалічна структура Ag₂GeS₃. *Наук. вісник Волин. нац. ун-т ім. Лесі Українки.* 2010, 16, 25–33.

12. Abbasova V.A., Alverdiyev I.J., Rahimoglu E., Mirzoyeva R.J., Babanly M.B. Phase relations in the $Cu_8GeS_6-Ag_8GeS_6$ system and some properties of solid solutions. *Azerbaijan chemical journal*. 2017, 2, 25–29.

13. Eulenberger G. Die Kristallstruktur der Tieftemperaturmodifikation von Ag_8GeS_6 . *Monatsh. Chem.* 1977, 108, 901–913. Doi: 10.1007/BF00898056.

14. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* 2011, 44, 1272–1276. Doi: 10.1107/S0021889811038970.

15. Gao L., Lee M.-H., Zhang J. Metal-cation substitutions induced the enhancement of second harmonic generation in A_8BS_6 (A = Cu, and Ag; B = Si, Ge, and Sn). *New J. Chem.* 2019, 43, 3719–3724. Doi: 10.1039/C8NJ06270F.

16. Altomare A., Cuocci C., Giacovazzo, C. Moliterni A., Rizzi R., Corriero N., Falcicchio A. EXPO2013: a kit of tools for phasing crystal structures from powder data. *J. Appl. Crystallogr.* 2013, 46, 1231–1235. Doi: 10.1107/S0021889813013113.

Стаття надійшла до редакції: 23.05.2022.

CRYSTAL GROWTH OF ARGYRODITE Ag₈GeS₆

Pogodin A.I., Filep M.J., Malakhovska T.O., Kokhan O.P., Pop M.M.

Uzhhorod National University, Pidgirna St. 46, 88000, Uzhhorod; Ukraine, artempogodin88@gmail.com

The mineral Ag₈GeS₆ is the first compound of a wide class of tetrahedrally close packed phases united by the common name argyrodites. Ternary argyrodites are complex chalcogenides formed on the basis of multi- and single-charged cations. Structural polyhedrons are tetrahedra formed on the basis of a multicharged cation and chalcogens, and the single-charged cations occupy the formed voids. Argyrodites belong to promising solid-state conductors and thermoelectric materials. This work is aimed to develop close to optimal conditions for single crystals growth of Ag₈GeS₆ by the method of directional crystallization from the melt. The initial Ag₈GeS₆ alloy was obtained using high purity elementary components by a two-stage single-temperature method. The congruent nature of the melting of Ag₈GeS₆ (T_{melt} = 958°C) and the passage of the structural phase transition Pna2₁ \rightarrow F-43m at a temperature of 227 ° C was confirmed by the DTA method. The Ag₈GeS₆ single crystal was grown from the melt by directional crystallization method. The growth regime of Ag₈GeS₆ was selected taking into account the nature of the thermal behavior of the compound based on DTA data. The grown single crystal of Ag_8GeS_6 is ~ 30 mm long and 12 mm in diameter and has a medium degree of cleavage. According to the results of XRD analysis, it was established that the obtained single crystalline sample of Ag_8GeS_6 is single-phase and crystallizes by low-temperature modification SG Pna2₁ with following lattice parameters: a = 15.147 Å, b = 7.469 Å, c = 10.584 Å.

Keywords: argyrodites; single crystals; directional crystallization; phase analysis.

References

1. Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites - a new family of the tetrahedrally close-packed structures. *Mat. Res. Bull.* 1979, 14, 241–248. Doi: 10.1016/0025-5408(79)90125-9.

2. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure – property relations of high temperature ion conductors. *Z. Kristallogr.* 2005, 220, 281–294. Doi: 10.1524/zkri.220.2.281.59142.

3. Beeken R.B., Garbe J.J., Gillis J.M., Petersen N.R., Podoll, B.W., Stoneman M.R. Electrical conductivities of the Ag₆PS₅X and the Cu₆PSe₅X (X=Br, I) argyrodites. *J. Phys. Chem. Solids.* 2005, 66(5), 882–886. Doi: 10.1016/j.jpcs.2004.10.010.

4. Laqibi M., Cros B., Peytavin S., Ribes M. New silver superionic conductors Ag_7XY_5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I)–synthesis and electrical studies. *Solid State Ionics*. 1987, 23(1-2), 21–26. Doi: 10.1016/0167–2738(87)90077–4.

5. Deiseroth H.–J., Maier J., Weichert K., Nickel V., Kong S. - T., Reiner C. Li₇PS6 and Li₆PS₅X (X: Cl, Br, I): possible three–dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements. *Z. Anorg. Allg. Chem.* 2011, 637, 1287–1294. Doi: 10.1002/zaac.201100158.

6. Lin S., Li W., Pei Y. Thermally insulative thermoelectric argyrodites. *Mater. Today*, 2021, 48, 198–213. Doi: 10.1016/j.mattod.2021.01.007.

7. Li W., Lin S., Weiss M., Chen Z., Li J., Xu Y., Zeier W.G., Pei Y. Crystal Structure Induced Ultralow Lattice Thermal Conductivity in Thermoelectric Ag₉AlSe₆. *Adv. Energy Mater.* 2018, 8, 1800030. Doi: 10.1002/aenm.201800030.

8. Heep B.K., Weldert K.S., Krysiak Y., Day T.W., Zeier W.G. Kolb U., Snyder G.J., Tremel W. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag₈SiSe₆. *Chem. Mater.* 2017, 29(11), 4833–4839. Doi: 10.1021/acs.chemmater.7b00767.

9. He Q., Qian T., Zai J., Qiao Q., Huang S., Li Y., Wang M. Efficient Ag₈GeS₆ counter electrode prepared from nanocrystal ink for dye-sensitized solar cells. *J. Mater. Chem. A.* 2015, 3, 20359–20365. Doi: 10.1039/C5TA05304H.

10. Li Z., Liu C., Zhang X., Zhang Z., Guo W., Shen L., Zhang L., Long Y. An easily prepared Ag₈GeS₆ nanocrystal and its role on the performance enhancement of polymer solar cells. *Organic Electronics*. 2017, 45, 247–255. Doi: 10.1016/j.orgel.2017.03.029.

11. Olekseiuk I.D., Kohut Yu.M., Fedorchuk A.O., Piskach L.V., Horhut H.P., Parasiuk O.V. Systema Ag₂S–GeS₂ ta krystalichna struktura Ag₂GeS₃. *Nauk. visnyk Volyn. nats. un-t im. Lesi Ukrainky.* 2010, 16, 25–33 (in Ukr.).

12. Abbasova V.A., Alverdiyev I.J., Rahimoglu E., Mirzoyeva R.J., Babanly M.B. Phase relations in the $Cu_8GeS_6-Ag_8GeS_6$ system and some properties of solid solutions. *Azerbaijan chemical journal*. 2017, 2, 25–29. 13. Eulenberger G. Die Kristallstruktur der Tieftemperaturmodifikation von Ag_8GeS_6 . *Monatsh. Chem.* 1977, 108, 901–913. Doi: 10.1007/BF00898056.

14. Momma K., Izumi F. VESTA 3 for three-dimen-sional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* 2011, 44, 1272–1276. Doi: 10.1107/S0021889811038970.

15. Gao L., Lee M.-H., Zhang J. Metal-cation substitutions induced the enhancement of second harmonic generation in A_8BS_6 (A = Cu, and Ag; B = Si, Ge, and Sn). *New J. Chem.* 2019, 43, 3719–3724. Doi: 10.1039/C8NJ06270F.

16. Altomare A., Cuocci C., Giacovazzo, C. Moliterni A., Rizzi R., Corriero N., Falcicchio A. EXPO2013: a kit of tools for phasing crystal structures from powder data. *J. Appl. Crystallogr.* 2013, 46, 1231–1235. Doi: 10.1107/S0021889813013113.