-16-

УДК: 546.683+546.48+546.81+661.691

Селезень А.О., асп.; Піскач Л.В., к.х.н., проф.

ВЗАЄМОДІЯ У КВАЗІПОТРІЙНІЙ СИСТЕМІ ТІ₂Se–CdSe–SnSe₂

Волинський національний університет імені Лесі Українки, Кафедра неорганічної та фізичної хімії, 43025, м. Луцьк e-mail: selezen.andrij@vnu.edu.ua

Досліджено характер фізико-хімічної взаємодії в системі Tl₂Se-CdSe-SnSe₂ методами РФА, ДТА та МСА. При 570 К в рівновазі знаходяться α -, β -, γ -, δ -, ε -, η -, σ -тверді розчини на основі Tl₂Se, CdSe, SnSe₂, Tl₄SnSe₄, Tl₂SnSe₃, Tl₂Sn₂Se₅ і HTM-Tl₂CdSnSe₄, що кристалізується в тетрагональній сингонії (ПГ I-42m). Побудовано поверхню ліквідусу даної системи, до складу якої входять поля первинної кристалізації усіх твердих розчинів, а також п'-твердий розчин на основі BTM-Tl₂CdSnSe₄. Ці поля розділені 21 моноваріантними кривими та 19 нонваріантними точками. В системі протікає шість нонваріантних процесів: три перитектичні $L U_I + \beta \leftrightarrow \delta + \sigma$, $Lu_2+\beta \leftrightarrow \sigma'+\gamma, Lu_3+\gamma \leftrightarrow \sigma'+\eta$ та три евтектичні $Le_1 \leftrightarrow \alpha+\beta+\delta, Le_2 \leftrightarrow \delta+\varepsilon+\sigma, Le_3 \leftrightarrow \varepsilon+\eta+\sigma$ та процеси, що пов'язані з фазовим переходом тетрарної фази σ ↔ σ ′. Двома квазібінарними перерізами Tl₄SnSe₄-CdSe та Tl₂SnSe₃-CdSe квазіпотрійна система Tl₂Se-CdSe-SnSe₂ тріангулююється на три вторинні квазіпотрійні підсистеми: Tl₂Se–CdSe–Tl₄SnSe₄, Tl₄SnSe₄–CdSe–Tl₂SnSe₃ та Tl₂SnSe₃-CdSe-SnSe₂, для яких побудовано просторові діаграми стану. В першій підсистемі протікає евтектичний процес E₁ при 592 К; в другій підсистемі – перитектичний U₁ при 680 К евтектичний Е2 при 665 К процеси. В третій підсистемі мають місце: та два перитектичні U₂ при 775 К та U₃ при 696 К та евтектичний E₃ при 643 К процеси; при 623 К знаходиться площина, що пов'язана з твердофазним розпадом сполуки $Tl_2Sn_2Se_5$: $\eta \leftrightarrow \varepsilon + \gamma$.

Ключові слова: фазові рівноваги; політермічні перерізи; поверхня ліквідусу; просторова фазова діаграма.

Квазіпотрійна система Tl₂Se-CdSe-SnSe₂ утворена сполуками, більшість з яких є напівпровідниковими матеріалами та термелектричні, проявляють нелінійнооптичні властивості та інші [1-7]. Існування твердих розчинів в цій системі дає можливість керувати параметрами цих фаз. Крім того, тетрарна сполука Tl₂CdSnSe₄ цієї системи нецентросиметрична [8] та є прямозонним напівпровідником з р-типом провідності [9]. Взаємодію між Tl₂SnSe₃ та CdSe, представлено інконгруентний де характер утворення Tl₂CdSnSe₄ при 860 К наведено у роботі [8]. Вона існує у двох модифікаціях: НТ-модифікація (до 687 К) належить до тетрагональної сингонії (ПГ І-42*m*). Також досліджено ізотермічний переріз системи Tl₂Se-CdSe-SnSe₂, що показує рівноваги при 570 К [10]. В середині системи при наявності семи однофазних налічується п'ять двофазних та п'ять трифазних областей.

Діаграма стану системи $Tl_2Se-CdSe$ наводиться в [11, 12]. В роботі [11] вона є евтектичного типу з координатами евтектичної точки 10 мол. % та 626 К. В [12] є дані про утворення при 581 К конгруентної сполуки $Tl_{16}Cd_3Se_{11}$ при складі 27.3 мол. % CdSe.

Діаграма стану системи Tl₂Se-SnSe₂ вивчалася в [13-16]. В [13] вказується на утворення конгруентних сполук: Tl₄SnSe₄ (718 К), Tl₂SnSe₃ (735 К) та інконгруентної Tl₂Sn₂Se₅ (732)К), яка твердофазно при 655 К. Згідно з [14] розкладається сполука Tl₂SnSe₃ плавиться конгруентно при 745 К, а Tl₄SnSe₄ та Tl₂Sn₂Se₅ – інконгруентно при 693 К та 733 К відповідно. За даними [15] сполуки Tl₃₀SnSe₁₇, Tl₄SnSe₄ та Tl₄Sn₃Se₈ плавляться конгруентно при 663, 699 та 749 К відповідно, а Tl_2SnSe_3 та $Tl_2Sn_2Se_5$ – інконгруентно при 714 К і 745 К (друга розкладається при 636 К). У роботі [16] -17-

стверджується, що сполука Tl₄SnSe₄ володіє областю гомогенності до 1 мол. % при 423 К.

Дослідження системи $CdSe-SnSe_2$ проводились в [17]. В роботі вказується на можливість існування потрійної сполуки складу $CdSnSe_3$. Згідно [18] діаграма стану є евтектичного типу. Положення евтектичної точки 78 мол. % $SnSe_2$ та 893 К, на основі вихідних сполук є незначна розчинніть при температурі 823 К: на основі CdSe 1 мол. % $SnSe_2$, на основі $SnSe_2$ – менше, ніж 0,5 мол. % CdSe.

Так як бінарні сполуки Tl₂Se, CdSe і SnSe₂ плавляться конгруентно та володіють вузькими областями гомогенності, що включають стехіометричний склад, тому можуть виступати компонентами квазіпотрійної системи Tl₂Se–CdSe–SnSe₂.

Експериментальна частина

Сплави синтезували у муфельній печі МП-60 із простих речовин талію, кадмію, олова та селену з вмістом основної речовини не менше 99,99 мас. % у вакуумованих до тиску 10^{-3} мм.рт.ст. кварцових ампулах. Максимальна температура синтезу складала 1170-1550 К залежно від складу зразків у системі. Всі сплави гомогенізували при 570 К протягом 250 год, після чого проводилось їх загартування у 20 %-ий водний розчин NaCl.

Ідентифікацію усіх сполук та дослідження одержаних сплавів здійснювали за допомогою методів рентгенофазового (РФА), мікроструктурного (МСА) та диференційного термічного (ДТА) аналізів.

Рентгенофазовий аналіз проводився на дифрактометрі ДРОН 4-13 (Си Кαвипромінювання, інтервал 10°≤2Θ≤80°, крок – 0,05°, експозиція – 5 с у точці). Розрахунок кристалохімічних параметрів за дифрактограмами зразків проводився методом Рітвельда за допомогою програми WinCSD [20].

Диференційно-термічний аналіз (ДТА) проводили на приладі «Термодент ПР-04» з автоматизованим управлінням з використанням комбінованої Pt-Pt/Rh термопари та Al₂O₃ як еталону.

Мікроструктурний аналіз (МСА) здійснювали, використовуючи установку Leica VMHT Auto.

Результати та їх обговорення

Досліджено вісім політермічних підтверджено перерізів, при 570 К існування α -, β -, γ -, δ -, ε -твердих розчинів на основі Tl₂Se, CdSe, SnSe₂, Tl₄SnSe₄, Tl₂SnSe₃ та виявлено твердофазну розчинність (η -, σ -, σ '-розчини) на основі Tl₂Sn₂Se₅ і HT та BT модифікацій Tl₂CdSnSe₄ відповідно. HTM (σ) кристалізується в тетрагональній сингонії (ПГ I-42m). Побудовано поверхню ліквідусу, а також просторову діаграму стану у вигляді трьох вторинних квазіпотрійних підсистем Tl₂Se–CdSe–Tl₄SnSe₄, Tl₄SnSe₄-CdSe-Tl₂SnSe₃ Tl₂SnSe₃-CdSe-SnSe₂, та ЩО утворені тріангулюючими квазібінарними Tl₄SnSe₄–CdSe, Tl₂SnSe₃-CdSe та обмежуючими перерізами системи.

Переріз Tl₂Se–CdSe

Оскільки у літературі наведено різні результати рівноваг в системі Tl_2Se —CdSe, то для уточнення останніх проводилося дослідження взаємодії між Tl_2Se та CdSe (Рис. 1).

системи Tl₂Se–CdSe.

На дифрактограмах досліджених зразків спостерігається дві системи рефлексів, що відповідають твердим розчинам на основі вихідних сполук Tl₂Se i CdSe та засвідчують відсутність сполуки Tl₁₆Cd₃Se₁₁, про яку повідомлено у роботі [12].

Діаграма стану системи Tl₂Se–CdSe (Рис. 2) належить до IV-го типу за Розебомом (евтектичного: $L_e \leftrightarrow \alpha + \beta$) з координатами евтектичної точки 13 мол. % CdSe при 622 K, що підтверджує результати роботи [11].

Тверді розчини на основі компонентів Tl₂Se (α) та CdSe (β) знаходяться в межах 7 та ~3 мол. % відповідно при температурі відпалу (570 К).

Переріз Tl₄SnSe₄–CdSe

Переріз Tl₄SnSe₄–CdSe є квазібінарним евтектичного типу ($L_e \leftrightarrow \delta + \beta$) з координатами евтектики 15 мол. % CdSe при 703 К (Рис. 3). Тверді розчини на основі компонентів Tl₄SnSe₄ (δ) та CdSe (β) складають 10 та ~3 мол. % відповідно при 570 К.

Рис. 3. Діаграма стану системи $Tl_4SnSe_4 - CdSe$.

Переріз A–SnSe₂ (A='Tl₂CdSe₂')

Політермічний переріз A—SnSe₂ (A — зразок складу 50 мол. % Tl₂Se/ 50 мол. % CdSe) перетинає два квазібінарні перерізи Tl₄SnSe₄—CdSe та Tl₂SnSe₃—CdSe і є двофазною рівновагою в інтервалі 50-100 мол. % SnSe₂ в квазіпотрійній системі (Рис. 4).

Ліквідусом є криві, що відповідають початку кристалізації β - та γ -твердих розчинів на основі CdSe та SnSe₂ відповідно.

Нижче первинної кристалізації цих фаз проходить вторинна кристалізація: бінарних евтектичних ($\alpha+\beta$, $\beta+\delta$) та перитектичної ($\beta+\sigma', \beta+\sigma$) сумішей, що починаються в e_1 , e_6 , p_2 та поле сумісної кристалізації $\beta+\gamma$ твердих розчинів, після їх первинної кристалізації.

Солідусом перерізу третинна € кристалізація, що представлена горизонталями при температурах 592, 680 К, двом які відповідають потрійним нонваріантним процесам: евтектичному E_1 та перитектичному U₁ процесам. Горизонталь при 775 К є з'єднуючою прямою потрійного нонваріантного процесу U_2 (Табл. 1). Додатково солідусом € криві, шо відповідають завершенню кристалізації подвійних евтектик e_1 та e_6 (вище температур E_1 та U_1) та граничного γ -твердого розчину вище температури U_2 . Нижче солідусу сплави є трифазними: в межах 0-33,3 мол. % SnSe₂ знаходяться α -, β - та δ -тверді розчини, від 33,3 до 50 мол. % SnSe₂ β-, δ- та σ-тверді розчини. Горизонталь при 687 К відповідає -19-

поліморфному перетворенню тетрарної сполуки *σ*↔*σ′*.

Переріз В–С

 $(B{='}Tl_{1.9}Cd_{0.05}Se_{1.00}', C{='}Cd_{0.5}Sn_{0.95}Se_{1.95}')$

На політермічному перерізі В–С (ізоконцентрата 5 мол. % CdSe) ліквідус складається з п'яти областей первинної кристалізації α -, δ -, ε -, η -, γ -твердих розчинів на основі Tl₂Se, Tl₄SnSe₄, Tl₂SnSe₃, Tl₂Sn₂Se₅ та SnSe₂ (Рис. 5).

Нижче від первинної проходить вторинні кристалізації фаз в першій половині перерізу до горизонталей при 592 К ($\alpha+\beta$, $\alpha+\delta$, $\beta+\delta$), 680 К ($\beta+\delta$), 665 К ($\delta+\sigma$, $\varepsilon+\sigma$, $\delta+\sigma$),; в другій половині – при 643 К ($\varepsilon+\sigma$, $\varepsilon+\eta$, $\eta+\sigma$), 696 К ($\eta+\sigma', \gamma+\sigma'$), та 775 К ($\gamma+\beta$). Два поля вторинної кристалізації $\delta+\sigma'$ додаються через поліморфізм Tl₂CdSnSe₄.

Горизонталі при вище зазначених температурах складають солідус системи та належать потрійним нонваріантним процесам E_1, U_1, E_2, E_3, U_3 та U_2 відповідно (рівняння нонваріантних процесів наведено в табл. 1). Також солідусом e лінії закінчення кристалізації суміші сплавів трьох подвійних евтектик e_1 , e_6 , e_7 та із з'єднуючих прямих потрійних перитектик $U_1 - U_3$, вище температур протікання цих нонваріантних процесів. Нижче солідусу знаходиться шість областей третинної кристалізації $\alpha + \beta + \delta$. δ + β + σ , δ + σ + ε , ε + σ + η , η + σ '+ γ , яка при 687 К переходить в $\eta+\sigma+\gamma$ та $\sigma'+\beta+\gamma$, що як і попередня при 687 К перетворюється в

 $\sigma + \beta + \gamma$. Однак при 623 К твердий розчин на основі Tl₂Sn₂Se₅ твердофазно розпадається на суміш твердих розчинів на основі Tl₂SnSe₃ та SnSe₂ ($\eta \leftrightarrow \varepsilon + \gamma$).

Переріз Tl₂Sn₂Se₅–CdSe

Політермічний переріз $Tl_2Sn_2Se_5$ —CdSe (Рис. 6) є неквазібінарним так як $Tl_2Sn_2Se_5$ утворюється інконгруентно та твердофазно розкладається. У квазіпотрійній системі Tl_2Se —CdSe—SnSe₂ він перетинає об'єми кристалізації підсистеми Tl_2SnSe_3 —CdSe— SnSe₂.

Ліквідус описується двома кривими первинної кристалізації γ - та β -твердих розчинів на основі SnSe₂ та CdSe, нижче яких вторинно кристалізуються: $\eta + \gamma$, $\gamma + \sigma'$, $\beta + \gamma$.

Солідусом є горизонталі при 696 та 775 K. шо належать потрійним перитектичним процесам U_3 та U_2 (див. табл. 1). Додатково солідусом є лінії закінчення кристалізації η , $\sigma' + \gamma$ та β твердих розчинів вище відповідних нонваріантних процесів. Нижче солідусу дві трифазні області $\eta + \sigma' + \gamma$ та $\sigma' + \beta + \gamma$ обмежені та розділені невеликими одно- та двофазними областями: η , $\sigma' + \gamma$ та β . Фазове перетворення при 687 К сполуки Tl₂CdSnSe₄ перетинає три i3 п′яти підсолідусних полів і додає ще дві області: $\eta + \sigma + \gamma$ Ta $\sigma + \beta + \gamma$ трифазних рівноваг. Додатково в першій половині цього перерізу, як і в попередньому, горизонталь при 623 К відповідає твердофазному розпаду Tl₂Sn₂Se₅ на Tl₂SnSe₃ та SnSe₂. Тому під полем η -20-

створюється поле $\varepsilon + \gamma$, а під полем $\eta + \sigma + \gamma -$ поле $\varepsilon + \sigma + \gamma$.

Переріз Tl₂Sn₂Se₅-Tl₂CdSnSe₄

Політермічний переріз $Tl_2Sn_2Se_5$ -- $Tl_2CdSnSe_4$ (Рис. 7) неквазібінарний та знаходиться в тій же підсистемі (Tl_2SnSe_3 --CdSe--SnSe_2), що і попередній.

Рис. 7. Діаграма стану політермічного перерізу Tl₂Sn₂Se₅–Tl₂CdSnSe₄.

Його ліквідус аналогічно до попереднього перерізу показує наявність первинної кристалізації γ- та β-твердих розчинів на основі SnSe2 та CdSe, нижче якої проходить вторинна кристалізація бінарних перитектичних ($\gamma + \eta$, $\beta + \sigma'$) сумішей, що починаються в p_1 та p_2 та поле сумісної кристалізації $\gamma + \beta$ твердих розчинів, після їх кристалізації. первинної При 687 K проходить фазове перетворення $\sigma \leftrightarrow \sigma'$.

Солідус описується перерізу горизонталлю при температурі 696 К (відповідає перитектиці U_3 , а даний переріз є прямою цього потрійного з'єднуючою перитектичного процесу), нижче якої сплави двофазні до горизонталі при 623 К, що пов'язана з твердофазним розпадом $\eta \leftrightarrow \varepsilon + \gamma$. Нижче цієї температури сплави € трифазними.

Переріз Tl₄SnSe₄–Tl₂CdSnSe₄

Політермічний переріз Tl_4SnSe_4 - $Tl_2CdSnSe_4$ (Рис. 8) неквазібінарний та є з'єднуючою прямою потрійного перитектичного процесу U_1 ($L+\beta \leftrightarrow \delta+\sigma$) та перетинає поля кристалізації підсистеми Tl₄SnSe₄-Tl₂SnSe₃-CdSe.

Нижче ліквідусу первинно кристалізуються δ - та β - тверді розчини на основі Tl₄SnSe₄ та CdSe, вторинно – евтектична (δ + β) та перитектична (β + σ ′, а далі β + σ) суміші до температури 680 К, нижче якої зразки є двофазними (δ + σ ′). При 687 К має місце фазовий перехід Tl₂CdSnSe₄.

На основі Tl_4SnSe_4 в квазіпотрійній системі $Tl_2Se-CdSe-SnSe_2$ найбільший твердий розчин (при 570 К близько 7 мол. % по цьому перерізу).

Переріз Tl₂Se–Tl₂CdSnSe₄

Політермічний Tl₂Seпереріз Tl₂CdSnSe₄ (рис. 9) перетинає квазібінарний переріз Tl₄SnSe₄-CdSe. Ліквідус складається з двох областей, які відповідають початку кристалізації α - та β -твердих розчинів на основі Tl₂Se i CdSe, нижче яких знаходяться вторинні кристалізації сумішей бінарних сплавів $\alpha+\beta$, $\beta+\delta$ та дві області ($\beta+\sigma'$ *i* $\beta+\sigma$), розділені фазовим перетворенням що сполуки Tl₂CdSnSe₄, починають ЩО кристалізуватися при температурах евтектик e_1 , e_6 та перитектики p_2 .

Солідус перерізу представлений горизонталями при 592 та 680 К, які належать потрійним евтектичному E_1 та перитектичному U_1 процесам (див. Табл.1).

Додатково солідусом є лінії, що відділяють α - та $\sigma' i \sigma$ -тверді розчини вище температур цих нонваріантних процесів.

Нижче солідусу сплави трифазні, розділені двофазним полем вторинної кристалізації евтектичної суміші δ+β та обмежені α -, α + β , $\sigma' i \sigma$ -твердими розчинами. Розчинність на основі Tl₂Se та Tl₂CdSnSe₄ незначна та сягає 1-2 мол. %.

Поверхня ліквідусу системи Tl₂Se–CdSe–SnSe₂

Поверхня ліквідусу системи Tl₂Se-CdSe-SnSe₂ (Рис. 10) побудована за даними досліджень вищепредставлених лев'яти перерізів (Tl₂Se–CdSe, Tl₄SnSe₄–CdSe, 'Tl₂CdSe₃'-SnSe₂, Tl₂SnSe₃–CdSe [9], 'Tl₃₈CdSe₂₀'-'CdSn₁₉Se₃₉', Tl₄SnSe₄-Tl₂CdSnSe₄, $Tl_2Sn_2Se_5$ -CdSe, Tl₂Sn₂Se₅-Tl₂CdSnSe₄ та Tl₂Se-Tl₂CdSnSe₄), а також за літературними даними [12,17,19] по обмежуючих діаграмах досліджуваної квазіпотрійної системи.

Рис. 10. Поверхня ліквідусу системи Tl₂Se-CdSe-SnSe₂.

Проекція поверхні ліквідусу складається із восьми полів первинної кристалізації фаз: α -, β -, γ -, δ -, ε -, η -, σ' -, σ -твердих розчинів на основі Tl₂Se, CdSe, SnSe₂, Tl₄SnSe₄, Tl₂SnSe₃

та НТ і ВТ модифікацій Tl₂CdSnSe₄. В квазіпотрійній системі ці поля розділені 21 моноваріантними кривими та 19 нонваріантними точками (Табл. 1). У Табл. 1 не представлені нонваріантні процеси, пов'язані з фазовим перетворенням тетрарної

фази Tl₂CdSnSe₄ які на рис. 10-13 зображені ізотермами *a-b*, *c-d* при 687 К.

№ п.п.	Нонваріантна точка	Нонваріантний процес	Т, К
1	p_1	$Lp_1 + \gamma \leftrightarrow \eta$	732
2	p_2	$Lp_2 + \beta \leftrightarrow \sigma'$	860
3	<i>e</i> ₁	$Le_1 \leftrightarrow \alpha + \beta$	622
4	<i>e</i> ₂	$Le_2 \leftrightarrow \alpha + \delta$	633
5	e ₃	$Le_3 \leftrightarrow \delta + \varepsilon$	693
6	e_4	$Le_4 \leftrightarrow \varepsilon + \eta$	694
7	<i>e</i> ₅	$Le_5 \leftrightarrow \gamma + \beta$	891
8	e_6	$Le_6 \leftrightarrow \delta + \beta$	703
9	<i>e</i> ₇	$Le_7 \leftrightarrow \varepsilon + \sigma'$	720
10	U_1	$L_{U_I} + \beta \leftrightarrow \delta + \sigma$	680
11	U_2	$L_{U_2} + \beta \leftrightarrow \sigma' + \gamma$	775
12	U_3	$L_{U_3} + \gamma \leftrightarrow \eta + \sigma'$	696
13	E_{I}	$L_{E_{I}} \leftrightarrow \alpha + \beta + \delta$	592
14	E_2	$LE_2 \leftrightarrow \delta + \varepsilon + \sigma$	665
15	E_3	$L_{E_3} \leftrightarrow \varepsilon + \gamma + \beta$	643

Таблиця 1. Нонваріантні процеси в квазіпотрійній системі Tl₂Se-CdSe-SnSe₂

Система $Tl_2Se-CdSe-SnSe_2$ тріангулюється квазібінарними перерізами Tl_4SnSe_4-CdSe та Tl_2SnSe_3-CdSe на три підсистеми: $Tl_2Se-CdSe-Tl_4SnSe_4$, $Tl_4SnSe_4-CdSe-Tl_2SnSe_3$ та $Tl_2SnSe_3-CdSe-SnSe_2$, через що можна розглянути взаємодію у кожній із них окремо.

Просторова діаграма стану підсистеми Tl₂Se-CdSe-Tl₄SnSe₄

В підсистемі Tl₂Se–CdSe–Tl₄SnSe₄ ліквідус описаний полями (Рис. 11), що відповідають первинній кристалізації твердих

розчинів на основі сполук: Tl₂Se ($Tl_2Se \cdot e_1 - E_1 - e_2 - Tl_2Se$), CdSe ($CdSe \cdot e_1 - E_1 - e_6 - CdSe$) та Tl₄SnSe₄ ($Tl_4SnSe_4 - e_2 - E_1 - e_6 - Tl_4SnSe_4$).

Однофазні об'єми у цій просторовій діаграмі, що відповідають граничним α -, β - та δ -твердим розчинам, виділені темним сірим кольором.

Нижче первинної проходить вторинна кристалізація сплавів, що починається з бінарних евтектик e_1 , e_2 , e_6 обмежуючих систем і завершується потрійним евтектичним нонваріантним процесом при 592 К ($L \leftrightarrow \alpha + \beta + \delta$). -23-

Рис. 11. Просторова діаграма стану підсистеми Tl₂Se-CdSe-Tl₄SnSe₄.

Просторова діаграма стану підсистеми Tl₄SnSe₄–CdSe–Tl₂SnSe₃

В підсистемі Tl_4SnSe_4 -CdSe- Tl_2SnSe_3 (Рис. 12) є п'ять полів первинної кристалізації — тверді розчини на основі сполук: Tl₄SnSe₄ ($Tl_4SnSe_4 - e_3 - E_2 - e_6 - Tl_4SnSe_4$), CdSe ($CdSe - e_6 - U_1 - p_2 - CdSe$), Tl₂SnSe₃ ($Tl_2SnSe_3 - e_3 - E_2 - e_7 - Tl_2SnSe_3$) та Tl₂CdSnSe₄, що розділене ізотермою *a-b*, яка відповідає фазовому переходу цієї сполуки ($p_2 - a - b - e_7 - p_2$, $a - U_1 - E_2 - b - a$).

Рис. 12. Просторова діаграма стану підсистеми Tl₄SnSe₄-CdSe-Tl₂SnSe₃.

Об'єми, що відповідають граничним δ -, β -, ε - *та* σ -твердим розчинам, на діаграмі є світло сірого кольору.

Моноваріантні криві, що є початком вторинної кристалізації сплавів, виходять з перитектичної точки p_2 , та трьох евтектичних e_1 , e_2 , e_6 та закінчують кристалізуватися (p_2

та e_6) в потрійній перитектичній точці U_1 , де проходить нонваріантний процес $L+\beta\leftrightarrow\delta+\sigma$, а далі в евтектичній E_2 , куди сходяться потрійний U_1 і бінарні e_3 та e_7 , за реакцією: $L\leftrightarrow\delta+\varepsilon+\sigma$.

-24-

Просторова діаграма стану підсистеми Tl₂SnSe₃-CdSe-SnSe₂

Ліквідус підсистеми Tl₂SnSe₃-CdSe-SnSe₂ (Рис. 13) описується п'ятьма полями, що відповідають первинній кристалізації твердих розчинів на основі сполук: Tl₂SnSe₃ ($Tl_2SnSe_3-e_4-U_3-e_6-Tl_2SnSe_3$), Tl₂Sn₂Se₅ ($p_1-e_4-E_3-U_3-p_1$), SnSe₂ ($SnSe_2-e_5-U_2-U_3-p_1-SnSe_2$), CdSe ($CdSe-e_5-U_2-p_2-CdSe$) та Tl₂CdSnSe₄ (два поля, що розділяються ізотермою c-d: $p_2-U_2-d-c-e_7-p_2$, $c-d-U_3-E_3-c$).

Об'єми граничних δ-, β- γ- та σ-твердих розчинів виділені сірим кольором.

Нижче первинної проходить вторинна кристалізація двох перитектик p_1 і p_2 та трьох

евтектик e_5 , e_4 та e_7 , а також поля спільної вторинної кристалізації частини рідини від перитектичних нонваріантних процесів U_2 та U_3 .

Отже, для цієї підсистеми є характерні два перитектичні U_2 ($L+\beta\leftrightarrow\sigma'+\gamma$) та U_3 ($L+\gamma\leftrightarrow\eta+\sigma'$) та евтектичний E_3 ($L\leftrightarrow\varepsilon+\eta+\sigma$) нонваріантні процеси, що представлені в просторі діаграми кольоровими площинами. Через твердофазний розпад сполуки Tl₂Sn₂Se₅ ($\eta\leftrightarrow\varepsilon+\gamma$) при 623 К існує ще площина, нижче якої у рівновазі перебувають ε -, σ - та γ -тверді розчини.

Рис. 13. Просторова діаграма стану підсистеми Tl₂SnSe₃-CdSe-SnSe₂.

Висновки

Досліджено фазові рівноваги в системі $Tl_2Se-CdSe-SnSe_2$ методами РФА, ДТА та MCA. Побудовано поверхню ліквідусу за результатами дослідження дев'яти політермічних перерізів, два з яких Tl_4SnSe_4-CdSe та Tl_2SnSe_3-CdSe є квазібінарними і тріангулюють досліджувану систему на три незалежні підсистеми $Tl_2Se-CdSe-Tl_4SnSe_4$, $Tl_4SnSe_4-CdSe-Tl_2SnSe_3$ та Tl_2SnSe_3-CdSe SnSe₂. Для кожної з цих підсистем представлена просторова діаграма.

Список використаних джерел

1. Römermann F., Feutelais Y., Fries S. G., Blachnik R.. Phase diagram experimental investigation and

thermodynamic assessment of the thallium–selenium system. *Intermetallics*. 2000, 8(1), 53–65. Doi: 10.1016/s0966-9795(99)00068-0.

2. Vassiliev V.P., Minaev V.S., Batyunya L.P. Thermodynamic properties, phase diagrams and glassformation of thallium chalcogenides. *Chalcogenide Lett.* 2013, 10(11), 485–507.

3. Махній В.П., Павлюк М.Ф., Семенишин Ю.І. Структурні та люмінесцентні властивості шарів α-CdSe. *Науковий вісник Чернівецького університету.* Фізика. 1998, 29, 98–104.

4. Photovoltaics Report. Fraunhofer institute for solar energy systems ISE. Freiburg, 22 June 2012. [Електронний ресурс]. Режим доступу: https://web.archive.org/web/20121105154721/http:// www.ise.fraunhofer.de/de/downloads/pdf-

files/aktuelles/photovoltaics-report.pdf.

5. Busch G., Frohlich C., Hulliger F., Steimeier E. Structur, elektrische und thermoelektrische Eigenschaften von SnSe₂. *Helv. Phys. Acta.* 1961, 34(40), 359–368.

6. Малаховська Т.О., Глух О.С., Сабов М.Ю., Барчій І.Є., Переш Є.Ю. Термоелектричні властивості монокристалів сполук Tl₄SnS₄(Se₄) та Tl₂SnS₃(Se₃). *Укр. хім. журн.* 2009, 75(5), 25–27.

7. Козьма А.А., Переш С.Ю., Барчій І.Є., Сабов М.Ю., Беца В.В., Цигика В.В. Термоелектричні властивості евтектичних сплавів систем TlBiSe₂–SnSe₂ (Tl₂SnSe₃, Tl₄SnSe₄) і Tl₄SnSe₄–Tl₉BiSe₆. *Укр. хім. журн.* 2011, 77(9), 23–26.

8. Selezen A.O., Piskach L.V., Parasyuk O.V., Olekseyuk I.D. The Tl_2SnSe_3 -CdSe System and the Crystal Structure of the $Tl_2CdSnSe_4$ Compound. *J. Phase Equilib. Diffus.* 2019, 40, 797–801. Doi: 10.1007/s11669-019-00770-8.

9. Tuan V.Vu, Lavrentyev A.A., Gabrelian B.V., Selezen A.O., Piskach L.V., Myronchuk G.L., Denysyuk M., Tkach V.A., Phamh Kh.D., Khyzhun O.Y. Crystal growth, electronic and optical properties of Tl₂CdSnSe₄, a recently discovered prospective semiconductor for application in thin film solar cells and optoelectronics. *Optical Materials*. 2021, 111, 110656. Doi: 10.1016/j.optmat.2020.110656.

10. Selezen A.O., Olekseyuk I.D., Myronchuk G.L., Smitiukh O.V., Piskach L.V. Synthesis and structure of the new semiconductor compounds $Tl_2B^{II}D^{IV}X_4$ (B^{II} -Cd, Hg; D^{IV} - Si, Ge; X-Se, Te) and isothermal sections of the Tl_2 Se-CdSe-Ge(Sn)Se₂ systems at 570 K. *Journal of Solid State Chemistry*. 2020, 289, 121422. Doi: 10.1016/j.jssc.2020.121422.

11. Guseinov F.H., Babanly M.B., Kuliev A.A. Phase equilibria and intermolecular interaction in the TISe

Стаття надійшла до редакції: 31.10.2023.

 (Tl_2Se) -CdSe systems. *Inorg. Chem.* 1981, 26(1), 215–217.

12. Mucha I., Wiglusz K. Phase studies on the quasibinary thallium(I) selenide–cadmium selenide system. *Thermochimica Acta*. 2011, 526(1), 107–110. Doi: 10.1016/j.tca.2011.09.002.

13. Gotuk A.A. Issledovanie fazovikh ravnovesii i termodinamicheskikh svoistv sistem, obrazovannikh khalkogenidami talliya i olova (svintsa): *Avtoref. dis. kand. khim. nauk*: 02.00.01, *Baku*, 1978.

14. Houenou P., Eholie R. Etude du systeme SnSe₂– Tl₂Se. *C. R. Acad. Sc. Paris.* 1976, 283(16), 731–733. 16. Mucha I, Wiglusz K, Sztuba Z, Gaweł W. Solidliquid equilibria in the quasi-binary thallium(I) selenide-tin(IV) selenide system. *Calphad-Computer Coupling of Phase Diagrams and Thermochemistry*. 2009, 33, 545–549. Doi: 10.1016/j.calphad.2009.02.002.

15. Староста В.І. Взаємодія в системах $Tl_2S(Se)$ – Si(Ge,Sn)S₂(Se₂) та одержання монокристалів складних халькогенідів: *Автореф. дис. … канд. хім. наук*: 02.00.01, *Ужгород*, 1984.

16. Піскач Л.В., Парасюк О.В., Олексеюк І.Д., Галаган В.Я. Система CdSe-Ga₂Se₃-SnSe₂. *Фізика і хімія твердого тіла*. 2002, 3(1), 25–32.

17. Kraus W., Nolze G. POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. *J. Appl. Cryst.* 1996, 29, 301–303. Doi: 10.1107/S0021889895014920.

INTERACTION IN THE QUASI-TERNARY Tl₂Se-CdSe-SnSe₂ SYSTEM

Selezen A.O., Piskach L.V.

Lesya Ukrainka Volyn National University, 43025, Lutsk, Voli Ave 13 e-mail: selezen.andrij@vnu.edu.ua

The nature of physicochemical interaction in the Tl₂Se–CdSe–SnSe₂ system was investigated by X-ray diffraction, DTA and microstructure methods. The system at 570 K contains α -, β -, γ -, δ -, ε -, η -, σ -solid solution ranges of Tl₂Se, CdSe, SnSe₂, Tl₄SnSe₄, Tl₂SnSe₃, Tl₂Sn₂Se₅ and a low-temperature modification of the quaternary compound Tl₂CdSnSe₄ that crystallizes in the tetragonal *SG 1*-42*m*. The liquidus surface projection of this system includes the fields of the primary crystallization of all solid solutions, and η' -solid solution ranges of HT-modification of Tl₂CdSnSe₄. These fields are separated by 21 monovariant curves and 19 nonvariant points. Six nonvariant processes occur in this system: three peritectic $LU_1+\beta \leftrightarrow \delta+\sigma$, $LU_2+\beta \leftrightarrow \sigma'+\gamma$, $LU_3+\gamma \leftrightarrow \sigma'+\eta$ and three eutectic $LE_1 \leftrightarrow \alpha+\beta+\delta$, $LE_2 \leftrightarrow \delta+\varepsilon+\sigma$, $LE_3 \leftrightarrow \varepsilon+\eta+\sigma$ and the processes associated with the phase transition of the quaternary phase $\sigma \leftrightarrow \sigma'$. Two quasi-binary sections Tl₄SnSe₄–CdSe and Tl₂SnSe₃–CdSe triangulate the quasi-ternary Tl₂Se–CdSe–SnSe₂ system into three subsystems, Tl₂Se–

-26-

CdSe–Tl₄SnSe₄, Tl₄SnSe₄–CdSe–Tl₂SnSe₃, and Tl₂SnSe₃–CdSe–SnSe₂, for which spatial state diagrams were plotted. The eutectic process E_1 takes place in the first subsystem at 592 K; the second subsystem features peritectic process U₁ at 680 K and eutectic process E₂ at 665 K. Two peritectic processes U₂ at 775 K and U₃ at 696 K and the eutectic process E₃ at 643 K take place in the third subsystem; the plane at 623 K is associated with the solid-phase decomposition of the Tl₂Sn₂Se₅ compound by reaction $\eta \leftrightarrow \epsilon + \gamma$.

Keywords: phase equilibria; polythermal sections; liquidus surface; spatial state diagrams.

References

1. Römermann F., Feutelais Y., Fries S. G., Blachnik R.. Phase diagram experimental investigation and thermodynamic assessment of the thallium-selenium system. *Intermetallics*. 2000, 8(1), 53–65. Doi: 10.1016/s0966-9795(99)00068-0.

2. Vassiliev V.P., Minaev V.S., Batyunya L.P. Thermodynamic properties, phase diagrams and glassformation of thallium chalcogenides. *Chalcogenide Lett.* 2013, 10(11), 485–507.

3. Makhnii V.P., Pavliuk M.F., Semenyshyn Yu.I. Strukturni ta liuminestsentni vlastyvosti shariv α–CdSe. *Naukovyi visnyk Chernivetskoho universytetu. Fizyka.* 1998, 29, 98–104 (in Ukr.).

4. Photovoltaics Report. Fraunhofer institute for solar energy systems ISE. Freiburg, 22 June 2012. [Elektronnyi resurs]. Rezhym dostupu:

https://web.archive.org/web/20121105154721/http://www.ise.fraunhofer.de/de/downloads/pdf-

files/aktuelles/photovoltaics-report.pdf.

5. Busch G., Frohlich C., Hulliger F., Steimeier E. Structur, elektrische und thermoelektrische Eigenschaften von SnSe₂. *Helv. Phys. Acta.* 1961, 34(40), 359–368.

6. Malakhovska T.O., Hlukh O.S., Sabov M.Iu., Barchii I.Ie., Peresh Ye.Iu. Termoelektrychni vlastyvosti monokrystaliv spoluk $Tl_4SnS_4(Se_4)$ ta $Tl_2SnS_3(Se_3)$. *Ukr. khim. zhurn.* 2009, 75(5), 25–27 (in Ukr.).

7. Kozma A.A., Peresh Ye.Iu., Barchii I.Ie., Sabov M.Iu., Betsa V.V., Tsyhyka V.V. Termoelektrychni vlastyvosti evtektychnykh splaviv system TlBiSe₂–SnSe₂ (Tl₂SnSe₃, Tl₄SnSe₄) i Tl₄SnSe₄–Tl₉BiSe₆. *Ukr. khim. zhurn.* 2011, 77(9), 23–26 (in Ukr.).

8. Selezen A.O., Piskach L.V., Parasyuk O.V., Olekseyuk I.D. The Tl₂SnSe₃-CdSe System and the Crystal Structure of the Tl₂CdSnSe₄ Compound. *J. Phase Equilib. Diffus.* 2019, 40, 797–801. Doi: 10.1007/s11669-019-00770-8.

9. Tuan V.Vu, Lavrentyev A.A., Gabrelian B.V., Selezen A.O., Piskach L.V., Myronchuk G.L., Denysyuk M., Tkach V.A., Phamh Kh.D., Khyzhun O.Y. Crystal growth, electronic and optical properties of Tl₂CdSnSe₄, a recently discovered prospective semiconductor for application in thin film solar cells and optoelectronics. *Optical Materials*. 2021, 111, 110656. Doi: 10.1016/j.optmat.2020.110656.

10. Selezen A.O., Olekseyuk I.D., Myronchuk G.L., Smitiukh O.V., Piskach L.V. Synthesis and structure of the new semiconductor compounds $Tl_2B^{II}D^{IV}X_4$ (B^{II} –Cd, Hg; D^{IV} –Si, Ge; X–Se, Te) and isothermal sections of the Tl_2 Se–CdSe-Ge(Sn)Se₂ systems at 570 K. *Journal of Solid State Chemistry*. 2020, 289, 121422. Doi: 10.1016/j.jssc.2020.121422.

11. Guseinov F.H., Babanly M.B., Kuliev A.A. Phase equilibria and intermolecular interaction in the TlSe (Tl_2Se) -CdSe systems. *Inorg. Chem.* 1981, 26(1), 215–217.

12. Mucha I., Wiglusz K. Phase studies on the quasi-binary thallium(I) selenide-cadmium selenide system. *Thermochimica Acta*. 2011, 526(1), 107–110. Doi: 10.1016/j.tca.2011.09.002.

13. Gotuk A.A. Issledovanie fazovikh ravnovesii i termodinamicheskikh svoistv sistem, obrazovannikh khalkogenidami talliya i olova (svintsa): Avtoref. dis. kand. khim. nauk: 02.00.01, Baku, 1978.

14. Houenou P., Eholie R. Etude du systeme SnSe₂–Tl₂Se. *C. R. Acad. Sc. Paris.* 1976, 283(16), 731–733. 16. Mucha I, Wiglusz K, Sztuba Z, Gaweł W. Solid-liquid equilibria in the quasi-binary thallium(I) selenide-tin(IV) selenide system. *Calphad-Computer Coupling of Phase Diagrams and Thermochemistry.* 2009, 33, 545–549. Doi: 10.1016/j.calphad.2009.02.002.

15. Starosta V.I. Vzaiemodiia v systemakh $Tl_2S(Se)$ –Si(Ge,Sn)S₂(Se₂) ta oderzhannia monokrystaliv skladnykh khalkohenidiv: *Avtoref. dys. ... kand. khim. nauk*: 02.00.01, *Uzhhorod*, 1984 (in Ukr.).

16. Piskach L.V., Parasiuk O.V., Olekseiuk I.D., Halahan V.Ia. Systema CdSe-Ga₂Se₃-SnSe₂. *Fizyka i khimiia tverdoho tila*. 2002, 3(1), 25–32 (in Ukr.).

17. Kraus W., Nolze G. POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. *J. Appl. Cryst.* 1996, 29, 301–303. Doi: 10.1107/S0021889895014920.