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Abstract
Landslides are a significant geological phenomenon with the potential for catastrophic consequences. There are numerous 
potential causes of landslides, including both natural and man-made ones. Their growing frequency raises alarm due to the 
often catastrophic consequences of these events. The monitoring of regions prone to landslides is a multifaceted undertak-
ing that involves the use of several technologies and approaches, such as geospatial technology and modeling. The primary 
objective of this work is to construct a spatial analysis model for a region in north-western Romania that is susceptible 
to landslides. A case study was conducted to estimate the susceptibility of landslides in a monitored region located near 
Sighetu Marmației, Romania. To achieve this objective, a combination of several technologies and approaches were used, 
such as remote sensing, land surveying, aerial photogrammetry, geographic information systems, and spatial modeling. 
The research region underwent landslide susceptibility evaluation by processing geo-information data using Geographic 
Information Systems (GIS) and developing a prediction model based on the MaxEnt (Maximum Entropy) approach. The 
research’s distinctive contribution is integrating geo-information data acquired from the hazardous site utilizing geomatics 
methods into a novel geo-monitoring system. The research offers valuable insights into the monitoring of landslides, adding 
to the current body of literature by introducing an expanded paradigm. The study’s theoretical and practical implications 
might be valuable for professionals, local authorities, emergency response agencies, and other parties involved in mitigating 
the danger of landslides.
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Introduction

Landslides are the most common natural catastrophes world-
wide, resulting in human fatalities, damage of structures, and 
significant economic disruptions (Dai et al. 2002a). Land-
slides are geological events that may occur naturally or as 
a result of human activities. They include the downward 
displacement of material caused by instability (Dai et al. 
2002a; Larsen 2008).

Most types of mass movements usually involve shallow 
debris that can fall quickly or slowly. If the movement is 

fast, it can cause serious damage, but if the movement is 
slow, it is possible to take steps to prevent the damage (Dai 
et al. 2002a). Landslides can be triggered by prolonged and 
intensified rains, earthquakes or volcanoes (Larsen 2008). 
Other landslides are also aided by rock degradation and soil 
erosion, thus having a direct impact on slope stability (Gon-
zalez Ollauri and Mickovski 2017). The susceptibility of a 
given area to landslides can be determined and described 
based on hazard zoning (Rossi et al. 2010).

Reported landslides are usually understated, for various 
reasons (Kirschbaum et al. 2015; Froude and Petley 2018) 
and thus total rates are likely underreported. Infrastructure 
is also frequently affected, with damages exceeding a billion 
annually in the US alone (Dale et al. 2001).

The frequent occurrence of disaster phenomena is 
increasingly associated with the effects of climate change. 
Climate change is predicted to increase the rate of landslides 
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due to more frequent and stronger storms (Dale et al. 2001), 
which historically correlate with increased landslides 
(Kirschbaum and Stanley 2018). However, the long-term 
implications of respective landslides, mass removal and 
translocation of soil, initiation of succession in the first 
place (Walker and Shiels 2012) and implications of poten-
tial future developments due to increased storm intensity/
precipitation (Jakob and Lambert 2009) require a strong 
understanding of how these ecosystems respond and recover 
from landslides.

Numerous studies address the assessment of hazards 
and the monitoring of these risks (Alimohammadlou 
et al. 2013; Dai et al. 2002b; Sim et al. 2022; Alcántara-
Ayala and Sassa 2023). Still unsolved, nevertheless, is 
the complex problem of studying an effective monitor-
ing system that combines a variety of approaches and 
technologies. As the number of disasters in the surround-
ing regions rises, it is necessary to step up research and 
promote cooperation with specialists in the impacted 
countries.

This study aims to provide a comprehensive system for 
monitoring landslides occurring on the north-western border 
of Romania. The system utilizes geomatics technology and 
does geospatial analysis to construct a prediction model using 
the MaxEnt approach (https:// pro. arcgis. com/ en/ pro- app/ lat-
est/ tool- refer ence/ spati al- stati stics/ how- prese nce- only- predi 
ction- works. htm).

To conduct the empirical study, a project was chosen 
aimed at geo-monitoring landslides in the cross-border region 
of Romania, focusing on the area of Sighetu Marmației 
municipality.

The paper first emphasizes the monitoring steps used 
in the project to underscore the intricacy of the research 
activities that resulted in the development of a compre-
hensive system for monitoring landslides in the cross-
border region. Next, the research proceeds by doing a 
geospatial analysis. This involves selecting a specific 
location within the project for the empirical investiga-
tion and constructing a geospatial model using the Max-
Ent approach.

The paper is divided into four sections (Kalmar 2023): 
“Introduction” section which comprises a part dedicated 
to theoretical frame of landslides monitoring. Next, the 
section dedicated to “Materials and methods”, by empha-
sizing the monitoring stages that led to the development of 
a comprehensive system for monitoring landslides in the 
cross-border region. The investigation then proceeds with 
a geospatial analysis and modeling exhibited in “Conclu-
sion” section. The results, indicate that integrating geomat-
ics technology and geospatial analysis techniques is the 
most effective strategy for enhancing landslide monitoring 
efficacy.

Landslide susceptibility and monitoring methods 
and technologies

Determining factors of landslides

The natural causes of landslides are investigated based on 
the scale at which they occur in a given location (Abedin 
et al. 2020). The factors that are examined at the local level 
include terrain conditions and physical processes. On the 
other hand, the analysis at the regional level encompasses 
geological, geomorphological, climatic, and hydrologi-
cal factors, as well as land cover. These factors contribute 
to the identification of derived sub-factors such as slope, 
terrain profile and curvature, geological composition, 
humidity, and depth of fragmentation. The lithology of 
the land and the plant cover are significant factors that 
contribute to the increased instability of the slopes. Large 
amounts of rain, the actions of different geological, chemi-
cal, or underground water forces, and earthquakes are all 
immediate triggers that have a big effect on the occur-
rence of landslides (Nanehkaran et al. 2023). One of the 
key anthropogenic elements is the unsustainable manner 
in which human activities are carried out. These factors 
include road development, mineral extraction, abandoned 
mines, and toxic industrial activity, among others. Man-
made interventions often result in deforestation, which in 
turn leads to soil instability and the occurrence of land-
slides (Sharma and Ram 2014). These dangers often result 
in disastrous consequences. Under these circumstances, 
understanding the vulnerability of an area to landslides is 
of utmost importance for all parties concerned with iden-
tifying the causes and subsequently mitigating the impacts 
of these events (Prasad et al. 2016).

Methods of landslide susceptibility analysis

The interest in mapping and predicting regions prone 
to landslides is of utmost importance for both regional 
development practitioners and catastrophe risk reduction 
specialists. Landslide risk monitoring is a complex issue 
that involves the integration of several approaches and 
procedures to detect, map, model, and communicate the 
causes and impacts of landslides. Furthermore, to mitigate 
potential future landslides and develop appropriate land 
use policies, it is essential to study the impacted areas 
using several methodologies (Jurchescu et al. 2023). These 
methodologies have the capability to produce risk maps 
that serve as the foundation for decision-making on local 
and regional plans. The study and modeling of landslide 
risk susceptibility may be conducted using heuristic and 
statistical–probabilistic approaches, such as the maximum 
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entropy model. Heuristic approaches are simple models 
that may be readily used in a GIS setting and are utilized 
for multicriteria analysis or physical linearity (Umer et al. 
2022). Examination of the maximum entropy model is a 
commonly used technique for determining the probabil-
ity distribution of high-risk locations within a wider set 
of investigated areas. It enables the analysis of elements 
that impact the distribution in a given region, specifically 
regarding the vulnerability of landslides (Park and Bera 
2009). This is accomplished by establishing a direct rela-
tionship between the geographical location of a region and 
the causative elements that may influence its distribution. 
MaxEnt is a machine learning model that uses the Bayes-
ian rule to assess the likelihood of landslides occurring 
in a certain location (Shahzad et al. 2022). It does this 
by analyzing the indicators of the geological environment 
of previously observed landslides in the training dataset. 
The method utilizes the locations of landslides and the 
Gibbs distribution to compute the probability distribution 
function (PDF) for landslides. This is done by employing 
Bayes’ rule instead of utilizing a discriminative technique 
(Liu et al. 2022). The presence-only nature of the model 
might be seen as a benefit compared to other techniques, 
especially when dealing with little data and regions that 
are distant and difficult to visit (Konowalik and Nosol 
2021). This trait is of utmost importance in landslide 
research since it is impossible to rule out the possibility 
that a location without landslides may nevertheless have 
a high potential for landslide occurrences (Samia et al. 
2017). This approach does not require extensive or highly 
accurate research data. It may use both continuous and 
categorical variables, and it can also be used to assess the 
significance of conditioning factors without any previous 
assumptions (Lam et al. 2020). This technique was devel-
oped based on the idea of maximum entropy. It guarantees 
that the most accurate estimate meets all the limitations on 
the unknown probability, as described by the relationship 
between landslide incidence data and their conditioning 
variables (Chang et al. 2020). Therefore, the most suitable 
landslide probability density function (PDF) (Florsheim 
and Nichols 2013) chosen for the unknown distribution 
should possess the highest level of entropy, indicating the 
most amount of information.

Geomatics Monitoring Technologies

To guarantee the acquisition of precise and pertinent infor-
mation, it is necessary to integrate analytical monitoring 
techniques with other methods and technologies. These addi-
tional resources not only provide the required information 
but also facilitate the processing of data gathered from the 
field. Several geomatic approaches are used for the purpose 
of landslide monitoring (Albattah et al. 2021; Artese et al. 

2014). InSAR, also known as synthetic radar interferometry, 
is a method that utilizes radar data to quantify changes in 
the Earth’s surface (Magyar et al. 2021). While it offers pre-
cise and comprehensive data, the expenses associated with 
it might be substantial. GPS (Global Positioning System)-
based monitoring devices may provide precise information 
on ground movements, but they may be influenced by certain 
air conditions or impediments (Ma et al. 2012). Photogram-
metry and remote sensing involve using aerial or satellite 
pictures to generate three-dimensional models and identify 
changes in topography. This method is both cost-efficient 
and accessible. Unmanned Aerial Vehicles (UAVs) ensure 
high-resolution imagery and are capable of being deployed 
rapidly at low costs (Yao et al. 2019). Landslide detection 
and monitoring may be facilitated by its utility. Sensor-based 
remote monitoring systems use sensors to continuously 
monitor surface deformations, enabling real-time detec-
tion of landslides and providing valuable information. The 
selection of a geomatic technique for landslide monitoring 
often depends on the specific requirements of the monitoring 
project (Kalmar et al. 2022; Rădulescu et al. 2021; Măran 
and Herbei 2021; Kalynych et al. 2022). The selection pro-
cedure will be guided by factors such as the size of the area 
of interest, the required level of resolution and accuracy, 
financial limitations, ease of access, and the possible risk 
posed by the landslide. It is typical to employ numerous 
technologies together to get a full knowledge of landslide 
dynamics (Scaioni 2015). Table 1 presents the pros and cons 
of comparing various technologies employed in monitoring 
landslides, each with its own set of benefits and limitations. 
When selecting a monitoring technique for studying land-
slide features, it is important to take into account elements 
such as cost, precision, accuracy, and the capability for real-
time monitoring. By combining these geospatial tools, we 
may get significant insights into monitoring landslides and 
effectively develop systems for monitoring.

Materials and methods

Landslides are prevalent in the border region encompassing 
Ukraine, Hungary, Romania, and Slovakia (Magyar et al. 
2021; Kalmar et al. 2022; Rădulescu et al. 2021; Măran and 
Herbei 2021; Kalynych et al. 2022). In the present circum-
stances, where the local and global significance of the envi-
ronmental consequences of human activity is paramount, 
the development of efficient informational and technical 
systems for monitoring areas prone to landslides is impera-
tive. Consequently, cross-border initiatives serve as valuable 
instruments in the advancement of projects that seek to ana-
lyze and oversee potential avalanche scenarios (Rădulescu 
et al. 2021). The monitoring of landslides investigation was 
carried out in the course of the GeoSES project (Magyar 
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et al. 2021; Kalmar et al. 2022; Rădulescu et al. 2021; Măran 
and Herbei 2021; Kalynych et al. 2022). A comprehensive 
geomonitoring system was constructed as a component of 
the project to monitor landslides in this area. By analyzing 
the deformation history of the persistent scatterers, regions 
displaying significant subsidence or deformation were iden-
tified. This study highlights, first, the context in which the 
monitoring activities took place and the characteristics of the 
study area, and then the monitoring stages applied within the 
project. The study highlights the complexity of the research 
activities that led to the realization of an integrated land-
slide monitoring system of land in the cross-border area. The 
research continues by carrying out a geospatial analysis by 
selecting a location within the project using GIS and geo-
spatial modeling based on the Maxent method.

Presentation of the context in which landslide 
monitoring activities were carried out

Cross-border cooperation (CBC) is a key element of EU 
policy towards its neighbors, supporting sustainable devel-
opment along the EU’s external borders and addressing 
common challenges beyond these borders (https:// neigh 
bourh ood- enlar gement. ec. europa. eu/ europ ean- neigh bourh 
ood- policy/ cross- border- coope ration_ en). The cross-border 
project “Extension of the operational “Space Emergency 
System” towards monitoring of dangerous natural and man-
made geo-processes in the HU-SK-RO-UA cross-border 
region” (Project GeoSES 2021), acronym GeoSES, was 
carried out in the interval December 1, 2019 and December 
31, 2022. The project was part of the 2nd Call for Propos-
als, ENI Cross-border Cooperation Programme, 2014–2020, 
Hungary, Slovakia, Romania–Ukraine. The initiator and 

leader of the project was the State University “Uzhhorod 
National University,” Ukraine, with partners P1. Pavol Jozef 
Šafárik University in Košice, Slovakia, P2. Technical Uni-
versity of Cluj-Napoca, Romania, P3. Budapest University 
of Technology and Economics and P4. Self-government of 
Szabolcs-Szatmár-Bereg County, Hungary. The role of the 
Romanian partner in the project was to monitor the most 
important landslides in the cross-border area of Romania 
and Ukraine, more precisely in the area of the Municipality 
of Sighetu Marmației.

Characteristics of the study area

Geomorphologically, Sighetu Marmației municipality is 
located in the Maramureș Depression, which has a com-
plex origin: tectonic, volcanic, and differentiated erosion. 
Morphometrically, the municipality of Sighetu Marmației 
belongs to the lower level, namely the Vad-Sighet depres-
sion, formed at the confluence of the Tisza, Iza, and 
Ronișoara rivers. From a geomorphological point of view, 
the area belongs to the lower terraces of the Iza and Tisza 
rivers in the northern part, the Mara-Săpânța Piedmont in 
the center, and in the southwestern part, the Igniș Moun-
tains. Geographically, Solovan Hill is located south of the 
Iza River, with the town of Sighetu Marmației to the north 
and east, Vadu Izei with Valea Șugaului to the southeast, 
and Iapa-Valea Hotarului with Valea Iepei to the northwest 
(Fig. 1).

Geologically, the area has a foundation made up of forma-
tions that belong to the Neozoic age, respectively Eocene, 
Tortonian and Sarmatian, and over the latter are Quaternary 
age deposits (Pleistocene and Holocene) (Fig. 2). Of inter-
est in the research of landslides are the Neogene (Badenian) 

Table 1  Comparison between geomatic technologies for landslides monitoring

Technology Advantages Disadvantages

Interferometric synthetic aperture 
radar (InSAR)

Capability to cover large areas and provide data even 
through cloud cover and at night

Very high resolution and accurate measurement of 
ground displacement

Capable of detecting subtle movements over time

Requires expertise in data interpretation
Less effective in areas with dense vegetation
Historical data is dependent on satellite overpass 

times and availability

Global positioning system (GPS) Global coverage
High precision and accuracy in real-time monitoring
Provides both horizontal and vertical displacement 

data

Needs a direct line of sight to satellites, which certain 
terrains may make difficult. Can be expensive for 
setting up multiple high-precision units subject to 
atmospheric factors causing signal deterioration

Photogrammetry Can be used to produce high-resolution maps and 3D 
models from photographs

Adaptable and suitable for use with terrestrial cam-
eras, airplanes, or UAVs (drones)

Requires overlapping photographs and thus more 
intensive data processing

Can be affected by weather and lighting conditions

Unmanned aerial vehicles (UAV) Lower operational costs than manned aircraft
High flexibility in data acquisition and can be 

deployed rapidly
High-resolution imagery and capability for frequent 

monitoring

Limited by battery life, payload, and sometimes regu-
latory restrictions

Coverage area is smaller compared to satellite-based 
methods

Sensitive to weather conditions

https://neighbourhood-enlargement.ec.europa.eu/european-neighbourhood-policy/cross-border-cooperation_en
https://neighbourhood-enlargement.ec.europa.eu/european-neighbourhood-policy/cross-border-cooperation_en
https://neighbourhood-enlargement.ec.europa.eu/european-neighbourhood-policy/cross-border-cooperation_en
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clay and marl deposits. In order to create a framework for 
the study area, in terms of view of landslides, the research 
of the bibliography shows us that reactivated and primary 
landslides are present in the area (Zaharia 2022). The slope 
of the study area is between 0% and 90%, being a submon-
tane area (Fig. 3). The statistics obtained after processing the 
relief and slope maps are presented in Fig. 4 which displays a 
Statistical relief map: Minimum altitude—250 m, Maximum 
altitude—1221 m, Average altitude—538.9 m, respectively 

Fig. 4b with a map of statistical slopes: minimum slope—0°, 
maximum slope—70.7°, average slope—8.9°.

Operation flow of landslide monitoring activities 
and monitoring system development

Geo-information and remote sensing are effective instru-
ments for enhancing operational tactics in the prevention 
of natural hazards and supporting research and operations 

Fig. 1  Relief map, digital 
elevation model (Var. 1-DEM), 
Sighetu Marmației Municipal-
ity, study area of the work 
(Source: GeoSES Project (Pro-
ject GeoSES 2021))

Fig. 2  Map of lithography (Var. 
4—Geological map), Sighetu 
Marmației Municipality, study 
area of the work (Source: Geo-
SES Project (Project GeoSES 
2021))
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focused on disasters. The use of advanced Earth observa-
tion methods and geomatics technology is crucial for the 
examination of natural hazards and their corresponding 
calamities (Manfré et al. 2012). Hazard and risk assess-
ments are performed at several levels of study, spanning 
from a global scale to a village level. Each level has 

distinct goals for inventorying and specific geographic data 
requirements for hazards, environmental data, triggers, and 
vulnerable items. Utilizing spatial data in the examination 
and simulation of different categories of dangers is among 
the most beneficial implementations of geoinformatics in 
the monitoring of hazards (Senanayake et al. 2020; Hsiena 

Fig. 3  Map of slopes (Var. 
2—Slope), Sighetu Marmației 
Municipality, study area of the 
work (Source: GeoSES Project 
(Project GeoSES 2021))

Fig. 4  Statistics obtained after processing relief (a), (Fig. 1) and slope (b) (Fig. 3) maps, Sighetu Marmației Municipality, study area of the work 
(Source: GeoSES Project (Project GeoSES 2021))
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and Shengb 2011). The GeoSES Monitoring System was 
developed by following these procedures, which included 
using geoinformation data (Rădulescu et al. 2023). To 
implement this system, the following tasks were under-
taken, as presented in Fig. 5.

Description of monitoring stages

Phase A Identification and selection of landslides in the 
study area

Common techniques used to identify areas susceptible to 
landslides include analyzing the history of landslides in the 
area as well as using InSAR satellite technologies to identify 
land changes in real-time. Thus:

A1. Interferometric studies/collecting satellite images/
InSAR, satellite-based radar imagery.

The initial documentation was based on data provided by 
the specialists of Budapest University of Technology and 
Economics, partners in the project, following consultation 
of information obtained through developing satellite Earth 
observation technology, interferometric synthetic aperture 

radar (InSAR), which has the characteristic of component 
of surface deformations with high accuracy, independent of 
time of day and weather (Florsheim and Nichols 2013). In 
order to establish the locations that present the greatest dan-
ger of landslides they have used the technique of Persistent 
Scatterer Interferometry. For this purpose vv-polarized, IW-
acquisition mode complex SAR images from the Sentinel-1 
mission, namely Sentinel-1A and B (S1AB) satellites of the 
ESA Copernicus Earth Observation programme were used. 
As a result, the aforementioned partners provided us with a 
map of the locations most exposed to landslides in the area 
(Fig. 6).

A2. The study of the history of landslides. Studies on 
existing documents, geological maps, geotechnical 
studies.

The documentation continued by consulting existing doc-
umentation, geological maps, geological and geotechnical 
studies, older risk maps, data provided by the Emergency 
Services in the area, etc. The geological research (Zaharia 
2022) done previously confirmed the existence of formations 
of these phenomena of soil instability on the surface, favor-
ing the production of landslides.

Fig. 5  The landslide monitoring 
system (Source: GeoSES Pro-
ject (Project GeoSES 2021))
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A3. Creation of a database of dangerous sites, from the 
point of view of landslides in the region adjacent to the 
Tisza River based on the data resulting from stages A1 
and A2 and choosing the locations that will be monitored.

Based on the interferometry results, the numerous land-
slides produced on the slopes or at the foot of Solovan Hill, 
where Sighetu Marmației Municipality is located, were 
further investigated. Around 120 locations have been iden-
tified that present these instability phenomena, with the 
great majority located on the northern slope of Solovan 
Hill (Fig. 7). Georeferencing all of the identified locations 
helped create the database with these locations. Within the 
project, six of these locations were chosen (Fig. 8), which 
were monitored. Among these locations, a case study was 
selected for this study for one of the most serious situa-
tions, in which a landslide on Valea Cufundoasă street, on 

the slope belonging to Solovan Hill (Fig. 9), produced the 
destruction of a household in the year 2000. In this area, 
four landmarks (the Ground Control Point) (Fig. 10) were 
selected in the field that served to calibrate all the measure-
ments carried out.

Phase B, Conducting field studies, Carrying out the 
monitoring of landslides in the Tisza River valley, the 
mentioned area, by performing four cycles of geodetic 
measurements using the following methods: UAV aerial 
photogrammetry, GNSS observation, high precision trigo-
nometric leveling and geometric and their comparative 
study. Then, the UAH, RO, and SK partners have performed 
four cycles of measurement, each through geodetic/geo-
graphic methods and techniques (GNSS—Global Naviga-
tion Satellite Systems; TLS—Terrestrial Laser Scanning; 

Fig. 6  Localization of the areas 
most exposed to landslides in 
the area of Sighetu Marmației 
Municipality and its surround-
ings, according to data provided 
on the basis of satellite meas-
urements

Fig. 7  Land layout of landslides 
in the area of Sighetu Marmației 
Municipality, 120 identified 
cases (Source: GeoSES Project 
(Project GeoSES 2021))
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ALS—Aerial Laser Scanning; UAV—Unmanned Aerial 
Vehicle; high-precision leveling). These methods were 
used for geo-monitoring of landslides in the study areas. 
The results and information were collected into a central 
database of our main partner. The next step was to config-
ure the GIS system from the joint databases with the goal 
of presenting 3D variable visual models of Earth’s surface 

deformations (landslides and mudflows) from the target 
areas of the HU-SK-RO-UA cross-border region, as well 
as the development of risk maps with monitoring results 
that will allow timely implementation of measures aimed at 
localization of dangerous phenomena and preventing their 
progressing negative development.

Fig. 8  Land layout of the six monitored locations and territorial positioning of location Valea Cufundoasă (location 5), (the selected case study) 
(Source: GeoSES Project (Project GeoSES 2021))

Fig. 9  Landslide located on 
Valea Cufundoasă Street, 
Sighetu Marmației Municipal-
ity (Source: GeoSES Project 
(Project GeoSES 2021))
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B1. Technology and tools verification stage.
The technologies and tools used within the GeoSES 

Project, for the monitoring of landslides, the case pre-
sented, were the following (Kalmar et al. 2022; Rădulescu 
et al. 2021; Măran and Herbei 2021; Kalynych et al. 2022; 
Project GeoSES 2021): Trigonometric level using Total 
Stations, Leica TS02plus total station, 3″; 2. GNSS tech-
nology with Leica GS 08 plus and GNSS RTK L1L2 HI-
TARGET V90; 3. UAV aerial photogrammetry, instru-
ments used, DJI Phantom 4 and DJI Matrix 210 RTK V2;

B2. Field stage, four cycles
The monitoring of landslides in the study area was car-

ried out through four cycles (Dai et al. 2002b; Alcántara-
Ayala and Sassa 2023; https:// pro. arcgis. com/ en/ pro- app/ 
latest/ tool- refer ence/ spati al- stati stics/ how- prese nce- only- 
predi ction- works. htm; Kalmar 2023) as follows, Cycle 
“0”, 29–30.07.2020; Cycle “1”, 13–14.04.2021; Cycle “2”, 
22–23.06.2021; Cycle “3”, 25–26.10.2021B2. Field stage, 
4 cycles.

B3. Final measurements, confirmation of result.
After the last cycle (Cycle “3”), at an interval of 1 month, 

another test was carried out, re-measuring the measurements 
for all six locations to validate the final results. The test 
was carried out using several monitoring methods, includ-
ing high-precision geometric middle leveling. As a result of 
the data processing, the final results of the entire monitoring 
process were confirmed and communicated, virtually vali-
dating the entire process.

Phase C. Primary field data processing The operating 
flow in the use of UAV technology, for the purpose of 
monitoring landslides, through the four previously men-
tioned cycles was as follows, field operations:

1. Delimitation of the operating area, respectively of the 
monitored area; 2. Selection of the GCP (Ground Control 
Points) control points and stationing them with the GNSS 
antenna in order to determine the coordinates; 3. Establish-
ment of the flight plan and setting up of the instrument for 
proper flight; 4. Flight performance.

The Agisoft Photoscan Professional software was used 
for the processing of the images taken and consisted of the 
following steps; 5. Downloading data to the computer and 
Saving file work AGISOFT; 6. Adding photos to AGISOFT; 
7. Align the pictures; 8. Formation of the Point Cloud; 9. 
Settings for achieving the dense cloud of dots; 10. Mesh 
realization and 11. Mesh realization settings; 12. Creation 
of texture; 13. Presentation of the model with texture; 14. 
Tiled model; 15. Realization DEM; 16. Processing DEM; 
17. Realization Orthomosaic; 18. Processing Orthomosaic; 
19. Orthophotoplan Processing; 20. DEM exported; 21. 
Simultaneous presentation of Orthophotoplan and DEM;

Results

The research in Phase D (as shown in Fig. 5) included using 
GIS technology to analyze field data. Additionally, Max-
Ent open-source software was used to model the data and 

Fig. 10  GCP installed in the 
monitoring area on Valea 
Cufundoasă Street, Sighetu 
Marmației Municipality 
(Source: GeoSES Project (Pro-
ject GeoSES 2021))

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-presence-only-prediction-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-presence-only-prediction-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-presence-only-prediction-works.htm
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forecast the likelihood of landslides in the chosen case study 
location. The development of spatial models for landslides 
included a two-step process of geospatial investigation and 
modeling:

Phase D1. Collecting data from the field using GIS 
technology,

Phase D2. Generating landslide risk maps in the operat-
ing area using the MaxEnt model, divided into three steps 
as follows:

Step 1. The creation of the spatial database was carried 
out with the help of the ArcGIS Pro program.

Step 2. Carrying out a spatial analysis by defining the 
variables of the model in the monitored area,

Step 3. Using the MaxeEnt model for prediction of land-
slide susceptibility and the development of a landslide risk 
map.

The following software was used for the processing and 
analysis of the data:

ArcGIS Pro 2.7.0; QGIS 3.4.5; 4. ArcGIS Online: ESRI 
for data processing in GIS; Google Earth for global spatial 
analysis; MaxEnt software.

Collecting data from the field using GIS technology 
(Phase D1)

After importing the data collected from the field, for exam-
ple Orthophotoplans and DEMs, cycle “0” and cycle “1”, 
location 5 (analyzed in the work), this steps is shown in 
Figs. 11, 12.

Generating landslides risk maps in the operating 
area using MaxEnt model (Phase D2)

Divided in:

Fig. 11  Phase D1. Import of 
data pairs, Orthophotoplans 
(top) and DEMs (bottom), cycle 
“0” and cycle “1”, location 
5 (Source:  GeoSES Project 
(Project GeoSES 2021))
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Step 1. The creation of the spatial database was carried 
out with the help of the ArcGIS Pro program(Table 2).

Step 2. Carrying out a spatial analysis by defining the 
variables of the model in the monitored area

First, a network of rectangular polygons 50 × 50 cm in size 
was created (Fig. 9), allowing for data generalization and 

analysis of altitude differences acquired using the “Compute 
Change Raster” tool. The following statistical analyses, namely 
Hot Spot Analysis and Cluster and Outlier Analysis, were car-
ried out to clearly show the deformations (Figs. 13, 14, 15).

Hot Spot Analysis uses the Getis-Ord Gi* tool (Getis 
and Ord 1992; Getis 2008) to analyze the statistical proper-
ties of spatial characteristics in a data set. This analytical tool 

Fig. 12  Images of the four monitoring cycles carried out in the field, a Cycle “0”, b Cycle “1”, c Cycle “2”, d Cycle “3” (Source: by Authors)

Table 2  Step 1. The creation 
of the spatial database was 
carried out with the help of 
the ArcGIS Pro program, the 
database model used was File 
Geodatabase by ESRI. (Source: 
GeoSES Project (Project 
GeoSES 2021))

Object id Shape_
Length

Shape area  (m2) Cycle 1–Cycle 0 (mm) Cycle 1–Cycle 0 (mm)

1 2 0,25 −6.666895866 −14.09787600
2 2 0,25 −5.952194691 −14.43882751
3 2 0,25 −5.616335392 −12.65750027
4 2 0,25 −7.48741436 −11.96144485
5 2 0,25 −9.361927032 −12.04567146
6 2 0,25 −9.453142166 −12.29409885
7 2 0,25 −9.717493057 −12.62853527
8 2 0,25 −9.933078766 −12.92991352
9 2 0,25 −10.02090454 −13.17184258
10 2 0,25 −6.666895866 −14.43882751
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examines the spatial grouping of elements with high or low 
values. Each element is analyzed in relation to the neighboring 
elements, determining whether an element with a high value 
is surrounded by others with high values (or vice versa for 

low values). The Getis-Ord Gi* tool calculates Z scores and 
p-values to establish the statistical significance of these spatial 
groupings, helping to identify hot spot and cold spot areas 
with values that differ significantly from a random pattern. 

Fig. 13  Step 2. Spatial analysis. a Calculation of deformations by subtracting the average values of the centralized altitude in a rectangular net-
work of 50 × 50 cm, (Source: GeoSES Project (Project GeoSES 2021))

Fig. 14  Step 2. Spatial analysis, b hot spot analysis (statistical indicator Getis-Ord Gi*), a Cycle “1”—Cycle “0”, b Cycle “3”—Cycle “2” 
(Source: GeoSES Project (Project GeoSES 2021))
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The Statistic Getis-Ord indicator, statistically G∗
i
 * (1 and 2, 3) 

being a score, is given by the relationship:

where xj,wi,j represents the attribute value for the charac-
teristic j and the spatial weight between the characteristics 
i and j, respectively, and n is equal to the total number of 
characteristics and:

respectively

Interpretation of results: the Gi* statistical indica-
tor obtained for each feature in the data set is a Z score. 
In the case of statistically significant positive Z scores, the 
higher the Z score, the greater the intensity of the group-
ing of large values (Hot Spot). In the case of statistically 

(1)
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significant negative Z scores, the lower the Z score, the more 
pronounced the intensity of the grouping of small values 
(Cold Spot).

Cluster and Outlier Analysis (Anselin Local Moran’s 
I) (Getis and Ord 1992; Getis 2008).

Based on a set of spatial characteristics (Feature Class) 
that contains a field of analysis, the Cluster & Outlier 
analysis methodology identifies spatials of characteristics 
with high or low values. This tool also detects features that 
have atypical values. The procedure involves calculating a 
value using the statistical indicator Anselin Local Moran’s 
I. A z score, a pseudo value p, and a code indicating the 
cluster type for each statistically significant feature are 
also calculated. The z scores and pseudo p values reflect 
the statistical significance of the calculated index values. 
In general, the Local Moran’s statistical indicator Ii(4and5) 
of spatial association is obtained from the relationship:

where xi is an attribute for the i feature, and X  is the mean of 
the corresponding attribute, wi,j is the spatial weight between 
feature i and j, and:

(4)Ii =
xi − X

S2
i

n
∑

j=1
j≠i

wi,j

(

xj − X

)

Fig. 15  Step 2. Spatial analysis, c. cluster analysis and outlier (statistical index Anselin Local Moran’s I), a Cycle “1”–Cycle “0”, b Cycle “3”–
Cycle “2” (Source: GeoSES Project (Dai et al. 2002b))
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with n equations to the total number of characteristics.
The ZIi (6) score for statistics is calculated as:

where

Interpretation of results
A positive value for statistical indicator I indicates 

that a feature is near other characteristics with similar 
attribute values, whether high or low, thus indicating 
the existence of a cluster. On the other hand, a negative 
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value for indicator I signals that a feature is near other 
characteristics with different values, signaling a potential 
anomaly. In both cases, the p value associated with the 
characteristic must be small enough to certify the statis-
tical significance of the cluster or atypical values. The 
statistical indicator Anselin Local Moran’s I (I) is a rela-
tive measure and can only be interpreted in the context 
of the z score or calculated p values. The cluster/atypi-
cal values field resulting from the analysis distinguishes 
between a statistically significant cluster of high values 
(HH: High–High), a low-value cluster (LL: Low–Low), 
atypic values in which a high value is surrounded mainly 
by low values, and atypic values where a low value is pri-
marily surrounded by higher values. (LH: Low–High). The 
statistical significance is set at a 95% confidence level. In 
the absence of the FDR (False Discovery Rate) correction, 
characteristics with p values less than 0.05 are considered 
statistically significant. Following the FDR correction, this 
threshold for p values is adjusted to better reflect the 95% 
confidence level in the context of multiple tests. Results 
of the cluster analysis for the study area can be visualized 
in Fig. 15. For a better visualization of the analysis results 
a 3D scene was generated (Fig. 16). The spatial analysis 
outputs (Valjarević et al. 2023; Pradhan and Youssef 2010) 
enabled generation of deformation maps, deformation dis-
tribution histogram and deformation, including, GI_Bin 

Fig. 16  Step 3. d. 3D scene generation. Deformation classification and analysis through a 3D scene (Source: GeoSES Project (Project GeoSES 
2021)
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methodology Moran’s scatterplot presented in Fig. 17a.1, 
a.2; b.1,b.2; c1,c.2.

Step 3. Using MaxEnt model for prediction of landslides 
susceptibility and development of landslide risk map

The MaxEnt model, based on the statistical–physical 
principle of entropy maximization (Herbei and Nemes 2012; 
Pressé et al. 2013; Dewar 2009; Catani et al. 2005) derived 
from information theory, provides a model of medium com-
plexity and high accuracy, making it useful for the spatial 
modeling of landslides. Model development requires a set 
of independent variables and a sample of the dependent 

variable. Here we combine landslide data from heuristic 
models and use a similar correlative approach to statistical 
methods for landslides (Boitor et al. 2019). The model can 
easily be used for landslide prediction. To create the spatial 
distribution map and to make predictions about the risk of 
landslides, we used the MaxEnt program, which estimates 
the occurrence of a phenomenon based on a sample with 
known locations and a set of explanatory variables using 
the principle of maximum entropy. More specifically, in 
this case, the software models the studied phenomenon by 
expressing the probability of occurrence of the depend-
ent variable in each pixel (of the GIS map) based on a 

Fig. 17  Step 4. Results, a deformation map, Cycle, a.1 “1”–Cycle 
“0”, a.2. Cycle “3”–Cycle “2”, Location 5, b deformation distribution 
histogram, b.1 “1”–Cycle “0”, b.2 Cycle “3”– Cycle “2”, d Defor-

mation Analysis, GI_Bin Methodology Moran’s Scatterplot, c.1 “1”–
Cycle “0”, c.2 Cycle “3”–Cycle “2” (Source: GeoSES Project (Pro-
ject GeoSES 2021))
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calculation that sums up the conditions necessary for the 
triggering and production of landslides. The result can be 
interpreted as a probability of the occurrence of the depend-
ent variable, in this case, landslides. The alternative hypoth-
esis of the research was that the occurrence of landslides 
has a specific spatial distribution, correlated with a series 
of variables such as those shown in the maps below. The 
null hypothesis assumes that the distribution of landslides 
has a random spatial structure. The resolution of all rasters 
used for modeling was 15 m, most of which were generated 

by geoprocessing from the digital terrain elevation model. 
The following data sources were exploited through digiti-
zation and geoprocessing (Kalmar et al. 2022; Rădulescu 
et  al. 2021; Măran and Herbei 2021; Project GeoSES 
2021): topographic map at scale 1: 25,000 Geological map 
1: 200,000; orthophoto plans from 2005, 2008, and 2012; 
Vector data taken from Romania’s INSPIRE geoportal Satel-
lite images (Landsat 8); Data taken from the Living Atlas of 
the World. All variables were integrated into a geodatabase 
developed using the ArcGIS Pro program. Landslides were 

Fig. 18  Var. 3—The exposure 
of the slopes, Sighetu Marmației 
Municipality, study area of the 
work (Source: GeoSES Project 
(Project GeoSES 2021))

Fig. 19  Var. 5—relief energy, 
Sighetu Marmației Municipal-
ity, study area of the work 
(Source: GeoSES Project (Pro-
ject GeoSES 2021))
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incorporated into the model as a set of points representing 
the centroid of the mapped landslide polygons. After map-
ping the sample that represents the dependent variable, the 
data necessary for the geoprocessing of the explanatory vari-
ables was acquired. Through digitization, the level curves 
with the 10-m equidistance and the altitude elevations were 
taken on the 1:25,000 topographic map, building a land ele-
vation model with a resolution of 15 m. From the geological 
map at a scale of 1:200,000, the geological structure was 
generated in vector format, and then a raster with a resolu-
tion of 15 m was generated by geoprocessing. Also, through 
geoprocessing, starting from the land elevation model, sev-
eral variables are presented below in the form of the eight 
variables generated by geoprocessing, in the form of a 

thematic map presented for Sighetu Marmației Municipal-
ity, the study area of the work, are as follows: Fig. 1. Relief 
map, Digital Elevation model (Var. 1—DEM), Fig. 3. Map 
of slopes (Var. 2—Slope), Fig. 18. Var. 3—The exposure of 
the slopes, Fig. 2. Map of lithography (Var. 4—Geological 
map), Fig. 19. Var. 5—Relief energy, Fig. 20. Var. 6—The 
curvature of the slopes, Fig. 21. Var. 7—Distance from the 
hydrographic network, Fig. 22. Var. 8—NDVI.

These were incorporated into the MaxEnt software gen-
erating a landslide risk map in ArcGIS Pro. Table 3 presents 
the analysis of the contribution of the explanatory variables 
to the model, Fig. 23. Present the principle of using the eight 
variables/thematic maps through the MaxEnt software and 
generating the landslide risk map in Arc GIS Pro, also in 

Fig. 20  Var. 6—the curvature of 
the slopes, Sighetu Marmației 
Municipality, study area of the 
work (Source: GeoSES Project 
(Project GeoSES 2021))

Fig. 21  Var. 7—distance from 
the hydrographic network, 
Sighetu Marmației Municipal-
ity, study area of the work, 
(Source: GeoSES Project (Pro-
ject GeoSES 2021))
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Fig. 24. shows the performance model for Landslide Predic-
tions in Sighetu Marmației municipality.

For model verification, a diagnostic test was performed 
that used 25% of the original sample data, with the remain-
ing 75% of the data being used for model generation. The 
main result of this statistical modeling process is the map 
of susceptibility to landslides in the municipality of Sighetu 
Marmației and its surroundings. The chance of landslides 
was estimated in three classes: low, medium, and high prob-
ability. This study used landslide risk modeling based on 
the probability of new landslides starting from a sample of 
older (stabilized) and active landslides. The Maxent software 
simulates the examined phenomena by expressing the likeli-
hood of the dependent variable occurring in each pixel (of 
the GIS map) based on a computation that sums together the 
circumstances required for landslide triggering and genera-
tion. The outcome might be regarded as a likelihood of the 
dependent variable, in this instance, landslides, occurring.

The sensitivity test was performed by analyzing 
the thresholds of the ROC and AUC curves. Receiver 

Operating Characteristic (ROC) curves and Area Under 
the Curve (AUC) values are valuable for assessing the accu-
racy of development susceptibility maps in landslide models 
(Yu et al. 2021). The ROC curve is constructed by graphing 
the true positive rate, also known as sensitivity in machine 
learning, versus the false positive rate, which is calculated 
using 1-specificity, at different threshold choices (Wen-Geng 
et al. 2023). In principle, a higher AUC value, closer to 1, 
indicates a bigger area under the curve and suggests greater 
accuracy of the prediction model. On the other hand, a lower 
AUC value indicates worse accuracy. An AUC of 1.0 sig-
nifies an impeccable classifier model. The AUC test is a 
diagnostic test that can be scientifically interpreted as fol-
lows: 0.90–1 = excellent; 0.80–0.90 = good; 0.70–0.80 = fair; 
0.60–0.70 = weak; 0.50–0.60 = failure. The AUC test, in the 
case of the selected model, has values above the threshold 
of 0.90, which indicates excellent results for the predic-
tive capacity regarding the risk of landslides. The accuracy 
of training data and verification data is 97.6% and 94.3%, 
respectively (Fig. 24).

The result of this workflow is the landslide map (Fig. 25), 
which indicates the susceptibility to landslides through three 
classes (low, medium, and high risk). It can be seen that the 
risk of landslides is high in the case of steep slopes and areas 
occupied by rocks from the Cenozoic era, the Neogene geo-
logical period, and the Miocene period. This period began 
23 million years ago and ended 5.3 million years ago. These 
rocks are deposits of clays, marls, and sandstones that are 
very prone to landslides. It can also be observed that the 
northern and eastern sides are more prone to landslides com-
pared to the southern or western ones. As can be seen from 
the landslide risk map generated (Fig. 26), following data 
processing with MaxEnt, for the Municipality of Sighetu 
Marmației and the surrounding areas, the entire area at the 

Fig. 22  Var. 8—NDVI, Sighetu 
Marmației Municipality, study 
area of the work (Source: Geo-
SES Project (Project GeoSES 
2021))

Table 3  Analysis of the contribution of explanatory variables to the 
model (Source: GeoSES Project (Project GeoSES 2021))

Variable code Contribution to model Position

V1 16.2947 3
V2 35.7730 1
V3 6.1782 5
V4 22.7949 2
V5 15.6407 4
V6 0.1910 8
V7 2.8135 6
V8 0.3140 7



 Environmental Earth Sciences          (2024) 83:341   341  Page 20 of 24

foot of Solovan Hill, including the one studied in the Valea 
Cufundoasă Street, is strongly exposed. However, for the 
monitoring interval through four cycles (2020–2021), five of 

the locations, among which the one presented in the paper, 
were found to be stabilized landslides. However, the Câm-
pul Negru-Malec area, relatively recently deforested, was 

Fig. 23  The principle of using the eight variables/thematic maps through the MaxEnt software and generating the landslide risk map in Arc GIS 
Pro (Source: GeoSES Project (Project GeoSES 2021))

Fig. 24  Performance model 
for landslide predictions in 
the Sighetu Marmației Area 
(Source: GeoSES Project (Dai 
et al. 2002b; Kalmar 2023))
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found to be unstable, with spatial displacement values of a 
maximum of 140 mm.

Conclusion

The combination of Geomatics methods (GNSS, Trigono-
metric leveling, Geometric leveling, Laser scanner, UAV 
Aerial Photogrammetry, and Lidar Scanning) in the land-
slide monitoring activities represents the only alternative 

to retrieve terrain data for the various operation campaigns. 
However, this action depends on the natural conditions exist-
ing in the field at the time of the measurements. Thus, a very 
rugged relief limits the use of Geometric leveling, and the 
existence of rich vegetation or the mere growth of vegetation 
between measurement cycles can lead to errors in the results 
obtained by UAV technology.

GIS use in the domain of natural disaster prevention and 
mitigation has shown itself to be the most efficient method of 
risk management, particularly in the realm of environmental 

Fig. 25  Landslide map for the 
study area (Location 5, Valea 
Cufundoasă Street, Sighetu 
Marmației) and vicinity 
(Source: GeoSES Project (Pro-
ject GeoSES 2021))

Fig. 26  Landslide risk map 
for the study area (Location 
5, Valea Cufundoasă Street, 
Sighetu Marmației) and vicinity 
(Source: GeoSES Project (Pro-
ject GeoSES 2021))
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monitoring. However, it remains an innovative undertaking. 
Monitoring regions susceptible to landslides is crucial in 
land management due to the significant financial and safety 
risks associated with landslides.

Landslide susceptibility mapping is a crucial initial 
stage in evaluating the potential risk of future landslides. 
Creating a reliable landslide susceptibility map demands a 
unified framework capable of integrating numerous envi-
ronmental parameters. In this investigation, the adaptabil-
ity of maximum entropy modeling was evaluated for its 
potential in landslide susceptibility mapping, despite its 
limited exploration in this particular context.

The MaxEnt open-source software was used for mod-
eling. A diagnostic test was run on 25% of the original sam-
ple data for model verification, with the remaining 75% of 
the data utilized for model creation. The main result of this 
statistical modeling process is the map of susceptibility to 
landslides in the municipality of Sighetu-Marmației and its 
surroundings. The probability of landslides was assessed 
into three categories.: low, medium and high probability. 
This study used landslide risk modeling based on the prob-
ability of new landslides starting from a sample of older 
(stabilized) and active landslides.

In our study, MaxEnt modeling has produced excellent 
results, with the accuracy of training data and verification 
data reaching 97.6% and 94.3%, respectively. This finding 
is highly promising, demonstrating the MaxEnt method’s 
ability, when combined with spatial analysis based on GIS, 
to offer a strong forecast of landslide susceptibility. Moreo-
ver, the model’s results were obtained by creating risk maps 
in the research region, which is crucial for effective disas-
ter management. Hence, it motivates us to persist in our 
research endeavors. Furthermore, in order to secure data 
and increase the accuracy of predictions regarding the risk 
of disasters, geo-monitoring of hazards will have to combine 
the collection, storage, and processing of data with advanced 
IT (information technology) as Blockchain or IoT (Internet 
of Things).

The field slide monitoring activity is part of the research 
theme of the collective authors of the paper, focused on 
static and cinematic monitoring of buildings and land. In 
this regard, the research work of the collective of authors 
of this article will continue through the following actions:

• Creation of technological models for monitoring land-
slides, for each type in particular.

• Tracking the behavior over time, the evolution of land-
slides, dives, and mass collapses from the surface under 
the effect of underground voids produced by mining 
activity in a particular area, activity currently suspended 
and mostly unpreserved and unprotected area.

• Creation, completion, and updating of landslide risk 
maps.
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