ВИЗНАЧЕННЯ ВМІСТУ ФОТОНЕЙТРОНІВ У ГАЛЬМІВНОМУ ВИПРОМІНЮВАННІ МІКРОТРОНА М-30 АКТИВАЦІЙНИМИ ДЕТЕКТОРАМИ

О.О. Парлаг, О.І. Лендел, В.М. Головей, В.Т. Маслюк, Т.Й. Маринець, М.М. Биров

Інститут електронної фізики НАН України, вул. Університетська, 21, Ужгород, 88017 e-mail: parlag@mail.uzhgorod.ua

Представлено результати вимірів вмісту фотонейтронів у пучку гальмівного випромінювання мікротрона М-30, утворених внаслідок взаємодії прискорених електронів з танталовою мішенню. Для визначення вмісту фотонів, теплових і швидких нейтронів застосовано активаційні детектори з алюмінію, а також оксидів ванадію та мангану.

Ключові слова: мікротрон, танталова мішень, гальмівне випромінювання, високоенергетичні фотони, фотонейтрони, теплові та швидкі нейтрони, активаційні детектори, гамма-спектрометрія.

Вступ

При дослідженні характеристик фотоядерних реакцій [1] та їх практичному використанні, зокрема, при виробництві радіоізотопів, контролі ядерних матеріалів, трансмутації відпрацьованого ядерного палива тощо [2-4] широко застосовують пучки гальмівного випромінювання електронних прискорювачів.

Гальмівне випромінювання одночасно містить високоенергетичні гамма-кванти і фотонейтрони (теплові та швидкі) [5], розділити які практично неможливо. Характерною особливістю таких пучків є різке переважання в них гамма-квантів.

Електронний прискорювач з енергією до 30 МеВ, яка перевищує значення критичної енергії при гальмуванні електронів у важких металах та енергію максимуму гігантського резонансу V перерізах фотоядерних реакцій, явля€ собою універсальне джерело випромінювання: первинного - електронного, вторинного - гальмівного і нейтронного. Нейтрони виникають у процесі перетворення е→ $\gamma \rightarrow n$.

При взаємодії електронів з енергією від одиниць до десятків MeB з металічною мішенню окрім утворення гальмівного

відбуваються випромінювання ядерні реакції типу (e,e'n)-, (у,n)- (у,2n)-, (у,3n)-, (у,p+n). Переріз електрон-ядерної реакції у разів менший від сотні перерізу фоторозщеплення. Основний внесок у вихід нейтронів в даній енергетичній області дає (ү,n)-реакція. Вихід нейтронів за рахунок (γ ,2n)-, (γ ,3n)-, (γ ,p+n)- та інших реакцій менш імовірний, оскільки вони можуть відбуватися при енергіях, які у 2-3 перевищують енергію рази зв'язку нейтронів [6]. У випадку легких ядер зі енергією зв'язку значною реакціями множинного утворення частинок можна знехтувати. Для середніх ядер вихід нейтронів за рахунок вищезгаданих реакцій не перевищує декількох процентів. Однак у випадку важких ядер, для яких енергія зв'язку мала, внесок у вихід нейтронів (наприклад, для (у,2n)-реакції) може становити до 30 %.

Вихід нейтронів визначається потоком гальмівного випромінювання та сумарним перерізом реакцій, що призводить до вильоту нейтронів. Ці величини, а, отже, і кількість нейтронів, утворених в мішені на один електрон, що падає, залежать від енергії електрона, матеріалу, товщини і конструкції мішені.

Ha рис. 1 приведені результати розрахунків енергетичних спектрів утворених нейтронів, при взаємодії електронів з танталовою (Та) мішенню товщиною 4,09 мм [7]. Для порівняння на ж рисунку приведено цьому спектр нейтронів поділу ізотопу²⁵²Сf [8].

На рис. 2 представлені залежності виходу фотонейтронів від енергії електронів для танталової мішені [7, 9 - 11].

Незважаючи на малий вміст у пучку теплових та швидких нейтронів, вони для низки ізотопів дають суттєвий внесок у фотоядерні реакції. Особливо це стосується реакцій фотоподілу [12]. Тому виникає нагальна потреба визначення вмісту фотонейтронів у пучку гальмівного випромінювання при проведенні експериментальних досліджень.

Для визначення вмісту теплових та швидких нейтронів зазвичай застосовують активаційний метод, який є найбільш придатним для дослідження полів змішаного випромінювання [13, 14].

Метою даної роботи є визначення вмісту фотонейтронів (теплових і швидких) та високоенергетичних фотонів у пучку гальмівного випромінювання мікротрона М-30 для конкретної геометрії експерименту активаційними детекторами.

Рис. 1 Енергетичний спектр фотонейтронів, утворених при взаємодії електронів з танталовою мішенню [7].

Методики та результати експериментальних досліджень

Експеримент було виконано на електронному прискорювачі ІЕФ НАН України – мікротроні М-30 [1] при максимальній енергії електронів 15,3 МеВ.

Для одержання гальмівного випромінювання використовували танталову мішень.

енергія електронів, МеВ

Рис. 2. Енергетична залежність виходу фотонейтронів для танталової мішені [7, 9 - 11].

Пороги (γ ,n)-, (γ ,2n)-, (γ ,3n)- реакцій для ізотопу ¹⁸¹Та, природна розповсюдженість якого складає 99.988 %, становлять 7,58; 14,22 та 22,13 МеВ, відповідно [15].

Та-мішень товщиною 1мм розміщували на віддалі 10 мм від вузла виводу мікротрона. За таких умов утворювалася максимальна кількість високоенергетичних гамма-квантів та мінімальна кількість фотонейтронів [16] для області енергій гігантського дипольного резонансу.

Енергію електронів визначали шляхом вимірювання магнітного поля мікротрона методом ядерного магнітного резонансу і частоти електромагнітної хвилі магнетрона. Нестабільність енергії електронів в процесі експерименту не перевищувала 0.04 МеВ. Кількість електронів контролювали за допомогою монітора вторинної емісії, прокаліброваного по циліндру Фарадея [17].

Визначення вмісту фотонейтронів в пучку гальмівного випромінювання мікротрона М-30 проводили активаційним методом, тобто шляхом реєстрації гамма-випромінювання продуктів активації ядер матеріалів активаційних детекторів.

Основною вимогою до матеріалу, з якого складається активаційний детектор для застосування у дозиметрії змішаного випромінювання, є наявність в його складі ізотопів елементів, у наведеній активності яких присутні чіткі і рознесені за енергією гамма-лінії, що можуть бути використані для аналітичних потреб. Ці лінії мають просто виокремлюватися у гамма-спектрі на фоні ліній, утворених за каналами реакцій (γ , γ)-, (γ ,n)- при опроміненні детектора високоенергетичними фотонами та реакцій (n,n')-, (n_{th} , γ)-, (n,n)- при опроміненні нейтронами.

При виконанні експериментальних досліджень як матеріал активаційного детектора застосовано елементарні речовини або їх сполуки, кожна з яких містила щонайменше один ізотоп, продукти активації якого утворюються за каналами (γ,n) -, (n_{th},γ) -, (n,p)-, (n,α) -реакцій і є мітками наявності у пучку гамма-квантів та теплових і швидких нейтронів.

Активаційні детектори з металічного алюмінію і оксидів марганцю або ванадію та сумішей MnO_2+A1 і $A1+V_2O_5$ розміщували у стандартних контейнерах з кальки, які мали форму квадратів з стороною 14 мм. Контейнери встановлювали вздовж осі пучка на відстані 120 мм від гальмівної мішені (рис. 3).

Опромінення активаційних детекторів проводили при струмі пучка 7 мкА на

протязі 600 с. Інтегральна доза становила 2,67·10¹⁶ електронів. Виміри здійснювали через 60 с після закінчення опромінення. Їх тривалість становила 600 с.

Ядерно-фізичні [1, 18-20] характеристики ізотопів, що входили до складу активаційних детекторів, наведено у табл. 1.

Рис. 3. Вигляд установки для опромінення активаційних детекторів у пучку гальмівного випромінювання.

Дослідження наведеної активності детекторів проводили методом напівпровідникової гамма-спектрометрії [1].

Виміри гамма-спектрів здійснювали на спектрометричному комплексі СЕГ-40Ge-1К з Ge(Li)-детектором об'ємом 100 см³. Фрагменти гамма-спектрів продуктів активації вищезгаданих детекторів наведені на рис. 4.

Для розрахунку залежності абсолютної ефективності (є) від енергії гамма-квантів використано напівемпіричне співвідношення [21]:

$$ln \varepsilon = a_1 ln E/E_0 + a_2 (ln E/E_0)^2 + a_3 (ln E/E_0)^3 - a_4/E^{\gamma}$$
(1)

з параметрами: $a_1 = 2,57$; $a_2 = -0,575$; $a_3 = 0,0307$; $a_4 = 3,72 \ 10^8$; $\gamma = 4,69$; $E_0 = 1$ кеВ.

При проведені гамма-спектрометричних вимірів було враховано геометричні розміри поверхні активаційного детектора, що випромінює гамма-кванти, площі ефективної поверхні детектора, віддаль від джерела до поверхні детектора (тобто було введено поправку на ефективний тілесний кут захоплення гамма-випромінювання поверхнею детектора).

Таблиця 1

Ядерно-фізичні характеристики ізотопів, що входять у склад матеріалів активаційних детекторів, та продуктів їх активації [1, 18-20]

Ізотоп	Розпов-	Тип	Реакції	Продук-	Пороги	Ефек-	Періоди	Енергії	Квантов
	сюдже-	випро-		ТИ	реакцій,	тивні	напіврозпаду	аналітичних	ий вихід
	ність	мінюван-		реакцій	MeB	перері-		гамма-ліній,	гамма-
	ізотопа,	ня, що		_		зи,		кеВ	ліній, %
	%	активує				Барн			
		детектор							
⁵⁵ Mn	100	γ	(γ,n)	⁵⁴ Mn	10,23	0,036	312,05	834,848	99,98
			-				доби		
⁵¹ V	99,75	n _{th}	(n,γ)	52 V	-	4,9	3,43 хв.	1434,06	100
⁵⁵ Mn	100	n _{th}	(n,γ)	⁵⁶ Mn	-	13,3	2,579 год.	846,75	98,9
			-					1810,721	27,2
²⁷ Al	100	n _{th}	(n,γ)	^{28}Al	-	0,231	2,2414 хв.	1778,85	100
²⁷ Al	100	n _f	(n,p)	²⁷ Mg	1,828	0,048	9,462 хв.	843,76	71,8
								1014,44	28,0

Рис. 4. Фрагмент гамма-спектру продуктів активації детектора, який складається з суміші $MnO_2+Al_{Met.}$ ($T_{ondow.}=10 \text{ xB}$. $T_{oxor.}=1 \text{ xB}$. $T_{BHM.}=10 \text{ xB}$.).

Теплові (En < 0,05 eB) нейтрони у пучку гальмівного випромінювання визначали за активністю радіоізотопів ²⁸Al, ⁵²V, ⁵⁶Mn, а швидкі (4,5 MeB \leq En \leq 9,2 MeB [20]) – за активністю ²⁷Mg. Ефективний поріг реакції ²⁷Al(n,p)²⁷Mg становить ~ 4,5 MeB [14].

Визначення вмісту високоенергетичних фотонів також здійснювали активаційним методом [22, 23], тобто шляхом реєстрації гамма-випромінювання радіо-

Рис. 5. Фрагмент гамма-спектру продуктів активації детектора, який складається з суміші $Al_{met.}+V_2O_5$ ($T_{onpom.}=10 \text{ xB.} T_{oxor.}=1 \text{ xB.} T_{BHM.}=10 \text{ xB.}$).

ізотопу ⁵⁴Мп, утвореного за каналом (у,п)-реакції (табл. 1). Цю реакцію можна використати для області енергій від порогу (10,23 МеВ) до 18 МеВ (тобто до максимальної енергії фотонів за винятком енергії зв'язку нейтрона (7,27 МеВ [6]) в ізотопі, на якому відбувається реакція). Однак ⁵⁴Мп може утворюватися за каналом реакції 55 Mn(n,2n) 54 Mn, переріз якої у ~ 20 разів більший за переріз (у,п)-реакції, а поріг становить ~ 12,5 МеВ [24], але максимальна енергія нейтронів, що випромінює танталова мішень, не перевищує ~ 12 MeB.

Густину потоку φ_{ef} високоенергетич-

них фотонів, теплових і швидких нейтронів з енергією $E > E_{ef}$ визначали за формулою

$$\varphi_{ef} = I/\sigma_{ef} \,, \tag{2}$$

де σ_{ef} – ефективний переріз активації; *I* – швидкість реакції активації (активаційний інтеграл).

$$I = A_0 / N \cdot [1 - exp(-\lambda \cdot t_a)], \qquad (3)$$

де A_0 – питома активність радіонукліду, утвореного в активаційному детекторі, на момент закінчення опромінення; t_a – час опромінення; N – питома кількість ядер ізотопу – елементу активаційного детектора:

$$N = \eta \cdot N_A / M, \tag{4}$$

де N_A – число Авогадро (6.023·10²³); η – розповсюдженість ізотопу в природній суміші; M – молярна маса.

Питому активність *А*₀ радіонукліду на момент закінчення опромінення визначали

за формулою

$$A_0 = (S \cdot k_p \cdot k_g / \varepsilon \cdot p \cdot m) \cdot [\lambda \cdot t_m / exp(1 - \lambda \cdot t_m)] \cdot exp(\lambda \cdot t_c),$$
(5)

де S – інтенсивність фотопіка продукту активації; ε – ефективність реєстрації гамма-квантів; p – вихід гамма-квантів на один розпад; k_p і k_g – поправки на самопоглинання та геометрію вимірів елементів активаційних детекторів; m – маса елемента активаційного детектора; t_m – час виміру; t_c – час витримки після активації; λ – стала розпаду радіонукліда ($\lambda = ln2/T_{1/2}$, де $T_{1/2}$ – період напіврозпаду радіонукліда).

При розрахунках для ізотопу ⁵⁴Mn, утвореного за каналом (ү,n)-реакції, використовували значення інтегрального перерізу.

Усереднені значення питомої активності, швидкості реакції та густини потоку частинок, яка приведена до 1 мкА, для продуктів реакцій - елементів активаційних детекторів, представлені в табл. 2.

Таблиця 2

Продукти	²⁸ Al	52 V	⁵⁶ Mn	²⁷ Mg	⁵⁴ Mn
активації					
Тип випро-	Теплові	Теплові	Теплові	Швидкі	Фотони
мінювання, що	En < 0,05 eB	En < 0,05 eB	En < 0,05 eB	$4,5 \leq En \leq 9,2 \text{ MeB}$	12,25≤ Eγ≤15,3 MeB
вимірюється					
Питома	2,396	7,081	0,431	0,1755	0,2439
активність,	,	,	,	,	,
(Бк/г)					
Швидкість	6,971E-23	1,40E-21	4,919E-21	1,251E-23	5,271E-18
реакції, (с ⁻¹)	,	,	,	,	
Густина потоку	4,319E+1	5,698E+1	5,290E+1	3,66E+1	1,025E+7
(частинка /		,		,	
см ² ·с ¹) до 1мкА					

Середні значення питомої активності, швидкості реакції та густини потоку частинок

Сумарна похибка вимірів не перевищувала 20 %. Похибки значень питомої кількості ядер ізотопів – елементів активаційних детекторів та значень інтегрального потоку електронів становили ~ 10 %.

Висновки

Проведено експериментальне дослідження вмісту високоенергетичних гамма-квантів та фотонейтронів (теплових і

швилких) V пучку гальмівного випромінювання мікротрона М-30, утвореного при взаємодії прискорених електронів (Ее = 15,3 МеВ) з танталовою мішенню товщиною 1 мм. Отримано експериментальні значення питомої активності в активаційних детекторах, визначені на момент закінчення опромінення, і відповідні значення швидкості протікання реакції (активаційного інтегралу) та густини потоку фотонів (12,25 MeB \leq E $\gamma \leq$ 15,3 MeB), теплових (En < 0.05 eB) і швидких $(4,5 \text{ MeB} \leq \text{En} \leq 9,2 \text{ MeB})$ нейтронів, приведених до 1 мкА, для описаної геометрії експерименту (в точці розташування активаційних детекторів).

Результати аналізу вмісту домішкових теплових та швидких нейтронів у пучку гальмівного випромінювання мікротрона М-30 дозволять підвищити достовірність визначення характеристик фотоядерних реакцій при проведені експериментальних досліджень.

Встановлено можливість використання Мп, як матеріалу активаційного детектору, для одночасного визначення вмісту гамма-квантів і теплових нейтронів [25], а суміші Мп і Аl для одночасного визначення гамма-квантів, теплових та швидких нейтронів у гальмівному випромінюванні мікротрона [26].

Робота виконана згідно договору № X-1-257 проведення на науково-дослідних робіт та створення науково-технічної продукції «Створення тканино-еквівалентних матеріалів для нейтронної та змішаної реакторної дозиметрії».

Література

- Парлаг О.О., Маслюк В.Т., Пуга П.П., Головей В.М. Каталог гамма-спектрів продуктів активації хімічних елементів гальмівним випромінюванням мікротрона. – К.: Наукова думка. - 2008. – 184 с.
- Malykhina T.V., Torgovkin A.A., Torgovkin A.V. et al. The research of mixed x,n-radiation field at photonuclear isotopes production // Problems of Atomic Science and Technology. Ser. Nucl. Phys. Invest. – 2008. – V. 50, № 5. – P. 184-188.
- Каретников М.Д., Козлов Л.Н., Мелешко Е.А. и др. Экспериментальный стенд для измерения выхода нейтронов из ядерных материалов под действием тормозного излучения (фотоядерный метод) // ПТЭ. 2009. № 5. С. 38-46.
- Лютиков И.А. Трансмутация атомных ядер в интенсивных потоках γ-квантов // Автореф. дисс. канд. физ.-мат. наук. НИИЯФ МГУ им. Д.В. Скобельцына. – Москва. - 2006. – 24 с.

- Ковалёв В.П. Вторичные излучения ускорителей электронов – М.: Атомиздат. – 1979. – С.61.
- Беланова Т.С., Игнатюк А.Б., Пащенко А.Б., Пляскин В.И. Радиационный захват нейтронов. Справочник // М.: Энергоатомиздат. – 1986. - 247 с.
- Heredia R.D., Blanco J.G., Leitner M.S. Validación del código MCNP4B en el transporte acoplado de fotones, electrones y neutrones // http://msantana.web.cern.ch/msantana/T hesis.html
- McCall R.C., Jenkins T.M., Shore R.A. Ttransport of accelerator produced neutrons in a concrete room // SLAC-PUB-2214. October 1978. – 10 p.
- Barber W.C., George W.D. Neutron yields from target bombarded by electron // Phys Rev C – 1959. – V. 116, N 6. – P. 1551–1559.
- 10. Berger M.J., Seltzer S.M. Bremsstrahlung and photoneutron from thick tungsten and tantalum targets // Phys Rev C – 1970. – V. 2, N 2. – P. 621-631.
- Seltcer S.M., Berger M.J. Photoneutron production in thick targets // Phys Rev C. - 1973. - V. 7, N 2. - P. 858-861.

- Парлаг О.О., Маслюк В.Т., Лендел О.І., Пилипченко В.А. Особливості виміру кумулятивних виходів уламків фотоподілу актинідних ядер // Наук. вісник Ужгород. ун-ту. Сер. Фізика. - 2002. - № 11. – С. 171-176.
- Крамер-Агеев Е.А., Трошин В.С., Тихонов Е.Г. Активационные методы спектрометрии нейтронов. - М.: Атомиздат. - 1976. – 232 с.
- 14. Negoita C.C. Measurement of neutron flux spectra in a tungsten benchmark by neutron foil activation method // Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften. Institut fur Kernund Teilchenphysik Fachrichtung Physik Mathematik Fakultat und Natur-wissenschaften Der Technischen Universitat Dresden. - 2004. 115 p.
- Varlamov A.V., Varlamov V.V., Rudenko D.S., Stepanov M.E. Atlas of Giant Dipole Resonances: Parameters and Graphs of Photonuclear Reaction Cross Sections. INDC(NDS)-394, IAEA NDS, 1999, pp. 1-311. http://cdfe.sinp. msu.ru/ publications/atlas.pdf
- 16. Petwal V.C., Senecha V.K., Subbaiah K.V. et al. Optimization studies of photo-neutron production in high Z metallic targets using high energy electron beam for ADS and transmutation // PRAMANA Journal of Physics – 2007. – V. 68, N 2. – P. 235 – 241.
- Романюк Н.И., Лямаев В.И., Плакош Ю.Ю. и др. Пульт управления микротроном М-30 на базе персонального компьютера // Тез. докл.
 "VII конф. по физике высоких энергий, ядерной физике и ускорителям" Харьков. 2009. С. 119-120.
- Decay Radiation Search. Decay radiation database version of 10/25/2010. http://www.nndc.bnl.gov/nudat2/indx_d ec.js
- 19. Таблица р- 9.4. Активационный анализ на тепловых нейтронах / Новый справочник химика и технолога. http://chemanalytica.com/book/novyy_s

pravochnik_khimika_i_tekhnologa/ 03_analiticheskaya_khimiya_chast_II/52 70 (2008).

- 20. Furuta M., Shimizu T., Hayashi H. et al. Measurements of activation cross sections of (n,p)- and-(n,a) reactions in the energy range of 3.5-5.9 MeV using a deuterium gas target // An. Nucl. En. -2008. - V. 35. - P. 1652.
- Лендєл О.І, Парлаг О.О., Маслюк В.Т. Напівемпіричне описання абсолютної ефективності Ge(Li)- та HPGe- детекторів для фотоподільних експериментів // Наук. вісник Ужгородського ун-ту. Серія Фізика. – 2009. – № 25. – С. 95-99.
- Hirayama H., Nakamura T. Measurement of bremsstrahlung spectra produced in iron and tungsten targets by 15 MeV electrons with activation detectors // Nucl. Sci.Eng. 1973. V. 50. P. 248-256.
- Tran Duc Thiep, Truong Thi An, Tran Dinh Phu, Phan Viet Cuong Activation method for measurement of bremsstrahlung photon flux produced by electron accelerator // Part. Nucl. Lett. - 2005. - V. 2 (127), N. 4. -P. 53-59.
- 24. Iwasaki S., Than Win, Matsuyama S., Odano N. Measurement of (n,2n) cross-sections for Sc, Mn, Cr and In between 12 and 19 MeV with activation technique// Report: JAERI Conf. Proc. -1997. – N. 97. – P. 5.
- 25. Парлаг О.О., Головей В.М., Довбня А.М. та інш. Спосіб роздільного визначення вмісту гамма-квантів та теплових нейтронів у гальмівному випромінюванні електронних прискорювачів // Пат. України на корисну модель № 50868 від 25.06.2010.
- 26. Парлаг О.О., Головей В.М., Довбня А.М. та інш. Спосіб роздільного одночасного визначення вмісту високоенергетичних фотонів та теплових і швидких нейтронів у гальмівному випромінюванні електронних прискорювачів // Пат. України на корисну модель № 54921 від 25.11.2010.

DETERMINATION OF PHOTONEUTRONS CONTENT IN MICROTRON M-30 BREMSSTRAHLUNG BY ACTIVATION DETECTORS

O.A. Parlag, A.I. Legyel, V.M. Holovey, V.T. Maslyuk, T.I. Marinec, M.M. Birov

Institute of Electron Physics, Ukr. Nat. Acad. Sci. Universytetska Str., 21, Uzhhorod, 88017 e-mail: parlag@mail.uzhgorod.ua

The results of photoneutrons measurements in the bremsstrahlung from interaction of electron beam from microtron M-30 with Ta target are presented. Activation detectors containing Al, V and Mn were used to determine the content of photons, thermal and fast neutrons.

Key words: microtron, Ta-target, bremsstrahlung, highenergy photons, photoneutrons, thermal and fast neutrons, activation detectors, gamma-spectrometry.

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ФОТОНЕЙТРОНОВ В ТОРМОЗНОМ ИЗЛУЧЕНИИ МИКРОТРОНА М-30 АКТИВАЦИОННЫМИ ДЕТЕКТОРАМИ

О.А. Парлаг, А.И. Лендьел, В.М. Головей, В.Т. Маслюк, Т.Й. Маринец, М.М. Биров

Институт электронной физики НАН Украины ул. Университетская, 21, Ужгород, 88017 e-mail: parlag@mail.uzhgorod.ua

Представлены результаты измерения содержания фотонейтронов в пучке тормозного излучения микротрона М-30, полученные в результате взаимодействия ускоренных электронов с танталовой мишенью. Для определения содержания фотонов, тепловых и быстрых нейтронов применялись активационные детекторы, содержащие алюминий, а также оксиды ванадия и марганца.

Ключевые слова: микротрон, танталовая мишень, тормозное излучение, высокоэнергетические фотоны, фотонейтроны, тепловые и быстрые нейтроны, активационные детекторы, гамма-спектрометрия.