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Abstract: The problems of gene regulatory network (GRN) reconstruction and the creation of disease
diagnostic effective systems based on genes expression data are some of the current directions of
modern bioinformatics. In this manuscript, we present the results of the research focused on the
evaluation of the effectiveness of the most used metrics to estimate the gene expression profiles’
proximity, which can be used to extract the groups of informative gene expression profiles while
taking into account the states of the investigated samples. Symmetry is very important in the field
of both genes’ and/or proteins’ interaction since it undergirds essentially all interactions between
molecular components in the GRN and extraction of gene expression profiles, which allows us to
identify how the investigated biological objects (disease, state of patients, etc.) contribute to the
further reconstruction of GRN in terms of both the symmetry and understanding the mechanism of
molecular element interaction in a biological organism. Within the framework of our research, we
have investigated the following metrics: Mutual information maximization (MIM) using various
methods of Shannon entropy calculation, Pearson’s χ2 test and correlation distance. The accuracy
of the investigated samples classification was used as the main quality criterion to evaluate the
appropriate metric effectiveness. The random forest classifier (RF) was used during the simulation
process. The research results have shown that results of the use of various methods of Shannon
entropy within the framework of the MIM metric disagree with each other. As a result, we have
proposed the modified mutual information maximization (MMIM) proximity metric based on the
joint use of various methods of Shannon entropy calculation and the Harrington desirability function.
The results of the simulation have also shown that the correlation proximity metric is less effective in
comparison to both the MMIM metric and Pearson’s χ2 test. Finally, we propose the hybrid proximity
metric (HPM) that considers both the MMIM metric and Pearson’s χ2 test. The proposed metric was
investigated within the framework of one-cluster structure effectiveness evaluation. To our mind, the
main benefit of the proposed HPM is in increasing the objectivity of mutually similar gene expression
profiles extraction due to the joint use of the various effective proximity metrics that can contradict
with each other when they are used alone.

Keywords: symmetry of molecular elements interactions; gene expression profiles; mutual informa-
tion maximization criterion; correlation distance; Pearson’s χ2 test; Harrington desirability index;
classification accuracy; hybrid proximity metric

1. Introduction

An analysis of gene expression experimental data allows concluding [1] that generally,
the human genome contains approximately 25,000 active genes (not zero expression values).
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Approximately, the same number of genes are inactive ones (zero expression values).
Which genes are currently active depends on the nature of the biological organism and its
current state. Therefore, processing gene expression data to extract genes that allow us to
adequately distinguish the studied biology objects is an important step of gene expression
data pre-processing. In this instance, symmetry plays a key role in the field of both
genes’ and/or proteins’ interaction since it undergirds essentially all interactions between
molecular components in the gene regulatory network and extraction of gene expression
profiles, which allows us to identify how the investigated biological objects (disease, state
of patients, etc.) contribute to the further reconstruction of the gene regulatory network
(GRN) in terms of both the symmetry and understanding the mechanism of molecular
element interaction in a biological organism. The step-by-step procedure of gene expression
data formation and processing for the purpose of GRN reconstruction and/or creation of a
diseases diagnostics system is presented in Figure 1 [2]. As can be seen, the implementation
of this process involves four stages: Performing the experiment; formation of an array
of gene expressions and removing unexpressed and low-expression genes for all studied
samples; statistical and entropic analysis of the obtained gene expression profiles in order
to identify mutually correlated genes that allow us to distinguish the investigated samples
with high resolution; reconstruction, validation and simulation of GRN or creation of a
disease diagnostic system.

Figure 1. Block-chart of a step-by-step procedure for the gene expression experimental data formation
and processing [2].

One of the most important steps of this procedure implementation is an extraction of
the mutually similar gene expression profiles in terms of the used proximity metric. The
gene expression profile, in this instance, means the vector of gene expressions, the values
of which are determined for various samples (or various conditions of the performed
experiment). The traditional proximity metrics (Euclidean, Manhattan, etc.) are not
effective in this case due to the high dimension of the gene expression profiles. Thus,
research focused on the evaluation of the gene expression profiles’ proximity metrics in
order to determine an optimal one in terms of appropriate quality criteria is an actual
problem in this subject area.

Lately, many scientific works have been devoted to solving the problem of assessing
the level of gene expression profiles’ informativeness in order to extract the most informa-
tive ones. Hence, in [3], the authors considered the technique of miRNA molecules extrac-
tion based on pairwise comparison of differentiated miRNA molecules. Approximately
2,744,989 raws out of 9,888,123 were read during the simulation process implementation.
As a result of the performed experiment, the authors allocated 2565 informative miRNA
molecules for further processing. A comparative analysis of various gene expression data
classification techniques to extract the most informative ones using errors of both the first
and second kind was considered in [4]. A review [5] presented a comparative analysis
of the various hybrid techniques used to select informative gene expression profiles for
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the purpose of solving the problem of classification of the biological objects investigated
for different types of cancer. The analysis of efficiency of various hybrid models of gene
expression profiles’ extraction by an estimation of the level of corresponding gene informa-
tiveness on the basis of the statistical analysis with application of the cluster analysis and
methods of data classification was executed. In the reviewed works, classification accuracy
was used as the criterion to evaluate the appropriate technique’s effectiveness. Various
combinations of data mining and machine learning techniques were analyzed in this re-
view. The following gene expression profiling filtering methods and appropriate proximity
metrics were considered by the authors in this work: Mutual information maximization
(MIM) [6,7], Phi-squared test [8], correlation-based feature selection [9,10], Laplacian and
Fisher score [11], information gain [12], Fisher criterion [13,14], minimum redundancy max-
imum relevance [15,16], probabilistic random function [17], Fisher–Markov selector [18]
and symmetrical uncertainty [19]. Within the framework of the authors’ research, the
classification techniques with the calculation of the classification quality criteria were used
to evaluate the appropriate proximity metrics’ effectiveness. Three stages were carried
out in all cases: Evaluation of the gene expression profiles’ proximity in terms of the used
metric, a grouping of the gene expression profiles using an appropriate clustering method,
and classification of the investigated samples that contained the allocated gene expression
profiles with the calculation of the classification accuracy. It should be noted that in most
cases, classification accuracy values varied within the range from 80% to 100%. However,
we would like to note that the highest classification accuracy was achieved in the cases of
the use of a small number of the most informative genes. Only in a few cases, the selected
number of genes exceeded 100 with high accuracy of the samples’ classification. The small
number of genes does not allow us to reconstruct a high-quality GRN, which can investi-
gate the nature of the system molecular elements’ interaction in different states in order
to achieve the following: To identify the group of genes that determine the appropriate
disease in the first stage; to determine the nature of their interactions with each other and
other system elements and the second stage; and finally, to determine the nature of the
impact of these genes expression changes on other network genes during the further gene
regulatory network simulation.

Additionally, the analysis of the techniques listed in [19] allows concluding that in
most instances, the parameters of the proposed algorithms were determined empirically. In
other words, the proposed techniques are not self-organizing. Undoubtedly, this fact is one
of the significant disadvantages of the hereinbefore listed methods. To our mind, improving
the objectivity of informative gene expression data extraction can be achieved based on
the application of the ensemble of data mining and machine learning techniques with
subsequent decision making on the basis of quantitative quality criteria applied to evaluate
the appropriate stage effectiveness [20,21]. Previous research [22–24] presented a partial
solution to the hereinbefore described problem. In these papers, the authors presented the
results of the research regarding the development of a hybrid model of gene expression
profiles extraction based on the joint application of quantitative statistical criteria, Shannon
entropy, the SOTA (self organizing tree algorithm) clustering algorithm and an ensemble of
binary classifiers. The final decision was made based on an analysis of the results of the
fuzzy inference system. However, the authors used only correlation distance as the gene
expression profiles proximity metric. Comparison of various metrics of gene expression
profiles’ proximity with an evaluation of their effectivity using quantitative quality criteria
was not considered in these works.

The goal of the research is the comparison of the most-used metrics of gene expression
profiles proximity followed by the formation of an optimal hybrid proximity metric (HPM)
based on quantitative criteria of the investigated samples’ classification.

2. Materials and Methods

Let the initial gene expressions dataset be presented as a matrix:

G = {eij}, i = 1, n; j = 1, m (1)
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where n and m are the number of genes and investigated samples, respectively.
In this case, the criterion for the formation of subsets of gene expression profiles can

be the objective function:

C(es, ep) = min f (es, ep) or C(es, ep) = max f (es, ep) (2)

where: es, ep are the s and p genes’ expression profiles, respectively; and f (·) is the similar-
ity function used to assess the proximity degree of gene expression profiles es, ep.

It is obvious that in this case the choice of method is determined by the similarity
function inherent in this method. Within the framework of our research, we consider the
following similarity functions: Mutual information maximization (MIM), Pearson’s χ2 test
and correlation distance.

2.1. Mutual Information Maximization Method

Formally, the mutual information of two vectors of discrete variables es and ep can be
estimated as follows [25]:

I(es, ep) = ∑
x∈es

∑
y∈ep

p(x, y)log2

(
p(x, y)

p(x)p(y)

)
(3)

where: p(x, y) is the function of the joint probability distribution in vectors es and ep; p(x)
and p(y) are the probability distribution functions of the vectors es and ep, respectively.

When applying the entropy theory, the mutual information can be expressed as follows [25]:

I(es, ep) = H(es) + H(ep)− H(es, ep) (4)

where: H(es), H(ep) and H(es, ep) are the entropies of vectors es, ep and joint entropy of
these vectors, respectively.

Entropy, in this case, can be defined as a measure of the system’s corresponding state
uncertainty and is calculated by Shannon’s formula [26]:

H(e) = −
m

∑
i=1

pi(e)log2 pi(e) (5)

where: m is the number of the investigated samples (length of the gene expression profile);
and pi(e) is the probability of implementation of the corresponding discrete value of the
i-th variable. In this case, the joint Shannon entropy is calculated by the formula:

H(es, ep) = −
m

∑
is=1

m

∑
ip=1

pi(es, ep)log2 pi(es, ep) (6)

where pi(es, ep) is the joint probability of the i-th value in the gene expression profiles es
and ep.

An analysis of literature resources [27–31] allows concluding that the existing methods
of the Shannon entropy calculation differ in the method of probability evaluation of the
implementing corresponding state of the system. and, in the general case, can be divided
into two groups. The first group of methods is based on estimating the frequencies of
appropriate state of the system. The methods of the second group involve the evaluation
of the entropy directly without the use of frequencies of the system’s corresponding states.
A block chart of the most common methods for estimating Shannon’s entropy is shown in
Figure 2.

The idea of the maximum likelihood (ML) method is based on the assumption that the
values of the expression vector of the corresponding gene are a priory discretized so that
each variable can take n values. Then, the probability of the i-th state implementation can
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be determined by a standard way as the frequency of the corresponding event pi = ni/n,
and the formula for calculating the Shannon entropy, in this case, takes the form:

HML(e) = −
m

∑
i=1

ni
n

log2
ni
n

(7)

Figure 2. Block chart of the methods of Shannon entropy evaluation.

The bias correction ML method takes into account the shift in Shannon’s entropy value
due to the presence of zero probabilities [27,28]. The formula for calculating Shannon’s
entropy in this case takes the form:

HBCML(e) = HML(e) +
n>0 − 1

2n
(8)

where n>0 is the number of samples with a non-zero frequency of the corresponding event.
The Chao–Shen method of calculating Shannon’s entropy is based on the integrated

application of the Horvitz–Thompson [29] and Good–Turing [30] methods. The probability
of occurrence of the value of the corresponding feature in this case is calculated as follows:

HCS(e) = −
m

∑
i=1

ni
n

log2
ni
n

1− (1− ni
n
)m

I(ni) (9)

where I(ni) = 1 if ni > 0, and I(ni) = 0 otherwise; m is the number of gene expression
values in the i-th cell; and m is the number of cells.

The James–Stein shrinkage estimator [27] involves the complex use of two models: a
high-dimensional model (the data vector contains a large number of attributes) with high
variance and small bias, and a low-dimensional model characterized by low variance and
high bias. The application of the method assumes the division of the feature vector into k
identical cells, and the probability in the i-th cell is calculated by the formula:

pJS
i = λpi + (1− λ)pML

i (10)

where: pi =
1
ni

is the target probability in the i-th cell (if all the features in this cell have

different values); ni is the number of features in this cell; and λ is the intensity parameter,
the value of which is determined as follows:

λ =
1−∑k

i=1(pML
i )2

(n− 1)∑k
i=1(pi − pML

i )2
(11)

where parameter n determines the number of features in the data of the investigated vector.
Shannon’s entropy, in this instance, is calculated by Formula (5).

The application of the Bayesian method to calculate Shannon’s entropy also involves
the breakdown of the data vector into k cells with an estimation of the probabilities of the
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investigated vector distribution π = πi
k
i=1, (∑k

i=1 πi = 1) and a priori formation of the
probability vector π with the following determination of conditional probabilities p(H|π)
and p(π|x) [31]:

H(x) =
∫

H(π)p(H|π)p(π|x)dx (12)

where p(π|x) means the probability value in the corresponding cell, provided that the
value x belongs to this cell:

p(π|x =
k

∏
j=1

p(πi|xj), where p(πi|xj) = πi, provided that xj ∈ i (13)

The conditional probability p(H|π) is determined by the Dirac function in accordance
with the condition:

p(H|π) = δ(H −
k

∑
i=1

πilog2π) (14)

In this instance, the nature of the probability distribution πi corresponds to the Dirich-
let distribution with the concentration parameter α:

p(π) ∝
k

∏
i=1

πα−1
i (15)

The final evaluation of the probability in the i-th cell by the Bayesian method at the
corresponding concentration parameter in this cell αi is performed in accordance with
the formula:

pBS
i =

ni + αi

n + ∑k
i=1 αi

(16)

A concentration parameter α in this case is determined in advance in accordance with the
data of Table 1. The value of Shannon’s entropy is calculated by the standard Formula (5).

Table 1. Varieties of the Bayesian method for estimating probabilities in cells at different values of
the concentration parameter α.

The Concentration Parameter α Values Method of the Probabilities Evaluation

0 Maximum Likelihood (ML)

1/2 Jeffreys (JF)

1 Laplace (LP)

1/n Schurmann–Grassberger (SG)

formila Minimax (MnM)

The MIM method assumes maximizing the function (2) in the case of maximum
similarity of the gene expression profiles es and ep.

2.2. Modified Mutual Information Maximization Proximity Metric

As was noted hereinbefore, the application of the MIM criterion assumes using vari-
ous methods of Shannon entropy evaluation and, for this reason, the obtained results can
disagree with each other. To solve this problem, we propose the modified mutual informa-
tion maximization (MMIM) proximity metric that is based on the use of the Harrington
desirability function [32], the equation and plot of which are presented below (Formula (17)
and Figure 3).

d = exp(−exp(−Y)) (17)
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Figure 3. Harrington desirability function.

The value of the non-dimensional parameter Y varies within the range from −2 (d = 0)
to 5 (d = 1). The intersection points of the function on the graph 0.63 = 1 − 1/e and
0.37 = 1/e correspond to the desirability boundaries within the range of the function
variation. The desirability value of 0.37 usually corresponds to the boundary of acceptable
values. Values within the range from 0.37 to 0.63 correspond to satisfactory desirability,
from 0.63 to 0.8—good desirability, above 0.8—excellent desirability. Below, we present
the algorithm (Algorithm 1) used to calculate the MMIM proximity metric based on the
Harrington desirability function.

The highest values of the generalized desirability index (MMIM) correspond to the
maximum value of mutual information considering the combination of Shannon entropy
estimation methods used during the simulation process.

2.3. A Method for Estimating the Gene Expression Profiles’ Proximity Based on Pearson’s χ2 Test

The statistical Pearson’s χ2 test allows us to test the hypothesis that the values of
gene expression profiles have the same distribution. Let the profile of the i-th gene be
represented by a vector of expression values: ei = (eij), j = 1, m, where m determines the
number of objects or conditions of the experiment performed to determine the expression
of the corresponding gene. Conceptually similar considerations can be adopted in structure
energy in the case of gene expression profiles’ value application. If the range of the
gene expression values’ variation [emin

i , emax
i ] is divided into k non-intersection intervals

[er
is, er

ip], r = 1, k, the number of gene expression values belonging to the corresponding
interval r, in this case, can be defined as follows: mr = ∑m

j=1[e
r
is < eij≤er

ip
].

The classical application of the Pearson’s χ2 test is focused on categorized data. Its
application assumes the following: At the first step, it is necessary to calculate the number
of objects that fall into the appropriate interval. Then, the expected number of objects in
the corresponding intervals is estimated using the probability evaluation of finding the
corresponding object into the appropriate interval: m′r = pr ·m. Pearson’s criterion χ2, in
this case, is calculated as follows:

χ2 =
k

∑
r=1

(mr −m′r)2

m′r
(18)

The conclusion regarding the acceptance or rejection of the hypothesis that the data
distribution corresponds to a certain distribution is made on the basis of comparing the
value of the calculated criterion with the boundary value at appropriate values of the
number of freedom degrees and the probability of the result obtained. If the calculated
value of the consistency criterion is greater than the boundary one, then the null hypothesis
concerning the incompliance of the data distribution to a given distribution is rejected.
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Algorithm 1: MMIM proximity metric values calculation.
Initialization:
Calculate: the values of the MIM proximity metrics for all pairs of gene expression
profiles using all methods of Shannon entropy evaluation. Formation of the
vectors of appropriate MIM proximity metrics values;

create the empty vector of MMIM proximity metric values;
set: iteration counter t = 1; iteration counter of the used metrics m = 1; length of

the MIM vectors n;
while t ≤ n do

Transforming the scales of the MIM vector values into Y scale as follows:

Y = a + b ·QC (19)

where a and b are the coefficients that are determined empirically considering
the boundary values of the appropriate vector:{

Ymin = a + b ·QCmin;
Ymax = a + b ·QCmax. (20)

while m ≤ mmax do
Calculation of Ym value for each of the used metrics by Equation (18);
Calculation of the partial desirabilities for each of the metrics:

dm = exp(−exp(−Ym))

m = m + 1;
end
Calculation of the MMIM metric value as geometric average of all partial
desirabilities:

MMIMt =
mmax

√
mmax

∏
m=1

dm

t = t + 1;
end
Return the vector of MMIM values.

When the gene expression data are used, the expression of the gene is proportional to
the amount of appropriate type of gene for a respective object. When comparing two gene
expression profiles, es and ep, the values of gene expressions in the first profile are taken as
expected, and in the second profile as calculated. Thus, the formula (20) for the consistency
criterion evaluation of the two gene expression profiles es and ep takes the form:

χ2 =
k

∑
r=1

(esj − epj)
2

esj
(21)

Smaller values of this criterion correspond to a greater degree of closeness of the
respective gene expression profiles.

2.4. A Method for Estimating the Gene Expression Profiles Proximity Based on the
Correlation Distance

When applying the correlation distance as the gene expression profiles proximity
metric, the degree of consistency of the gene expressions values that correspond to different
samples is estimated. As was noted hereinbefore, the main purpose of the data filtering
step implementation is to extract the gene expression profiles that allow us to identify
(classify) the investigated samples with the maximum accuracy. In this instance, we can
assume that the gene expression profiles should be correlated with each other, and the use
of a correlation distance may allow extracting the required number of the most correlated
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gene expression profiles. Since the vector of the gene expression profile is represented by
numerical values of gene expressions, it is reasonable to calculate the correlation distance
based on Pearson’s correlation:

dcor(es, ep) = 1−
∑m

j=1(esj − ēs)(epj − ēp)√
∑m

j=1(esj − ēs)2
√

∑m
j=1(epj − ēp)2

(22)

where ēs and ēp are the average values of the gene expression profiles es and ep, respectively.
It is obvious that in the case of a high correlation of gene expression profiles, the value

of this criterion is minimal.
The quality assesment of data classification using the appropriate proximity metric

was performed using the criterion that contains as the components errors of both the first
and second kind. The confusion matrix is presented in Table 2.

The classification accuracy was used as the main criterion to evaluate the appropriate
gene expression profiles’ proximity metric effectiveness:

ACC =
TP + TN

TP + FP + TN + FN
(23)

Table 2. Confusion matrix for the diagnosis and classification of tumors in patients examined for
lung cancer.

Real State of the Examined Objects
Results of the Objects Classification

Tumor Predicted Healthy

Tumor (1) True positives (TP) False negatives (FN)
Healthy (0) False positives (FP) True negatives (TN)

3. Experiment, Results and Discussion

The simulation procedure was performed on the basis of R software [33] using the
GSE19188 dataset that includes gene expression profiles of patients who were examined
for early-stage lung cancer [34]. The data were obtained using a DNA microchips ex-
periment and contained 156 microchips. The analysis of the data annotation has shown
that 65 microchips contained gene expression data of healthy patients, and 91 microchips
included the gene expression data of patients with lung cancer (mild form). In [23], the
authors presented the results of research concerning the complex application of methods of
hierarchical clustering and binary classification to identify the most informative profiles of
gene expression allowing high-precision identification of the investigated samples. A total
of 401 genes out of 54,675 were allocated during the simulation process with a classification
accuracy of 93.5%. This subset of gene expression profiles was used within the framework
of our research.

The main idea of the simulation performed within the framework of our research
was the following: Initially, one gene expression profile was randomly selected, to which
the nearest profile in terms of the used proximity metric was added. Then, the resulting
subset of gene expression profiles was increased by adding the next profile closest to
the first gene. Then, at each step, the number of genes in the subset gradually increased
by one. At each stage, binary classification of objects was performed using the random
forest (RF) classifier [35], the effectiveness of which for the binary classification of gene
expression profiles was proven in [23]. The RF classifier was implemented based on the
caret package [36] using the train() function with 10 estimators. The investigated samples
were broken up into two subsets, taking into account the class to which the appropriate
samples belong (healthy, tumor). Sixty percent of samples were used for the training of the
model and the remaining 40% were used for model testing.
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3.1. Evaluation of the MIM Method’s Effectiveness When Using Various Methods of Shannon
Entropy Calculation

Figure 4 shows the boxplots of the mutual information criterion values distribution
calculated for all pairs of gene expression profile combinations using various methods of
Shannon entropy calculation.

Figure 4. Visualization of the MIM proximity metrics values distribution, calculated using different
methods of the Shannon entropy evaluation.

The evaluation of the obtained vectors of the MI metric when using various methods of
Shannon entropy calculation concerning statistically distinguishing them from each other
using the Mann–Whitney U test showed that all vectors were statistically distinguished
from each other. The zero-hypothesis was rejected in all cases since the p-values in all cases
were significantly lower than 0.05 (2× 10−16). An analysis of the obtained diagrams also
allows us to conclude that when we have applied different methods of Shannon entropy
calculation, there were outliers that corresponded to the nearest gene expression profiles in
terms of the MIM proximity metric. However, we would like to note that the values of this
metrics differ when using different methods of Shannon entropy calculation. This fact can
certainly affect the classification results of the examined objects.

Figure 5 presents diagrams of the classification accuracy criterion distribution calcu-
lated by Formula (23) when the number of the nearest gene expression profiles stepwise
increases from 2 to 100.

The gene expression profiles, in this instance, were sorted from the minimum distance
value to the maximum one relative to the first gene expression profile in terms of the
used proximity metric. The analysis of the results allows concluding that as a result of
the application of various methods of Shannon’s entropy evaluation, which was used to
calculate the MIM proximity metric, the classification results do not agree with each other
in many cases. However, the range of the accuracy values’ variation in all cases corresponds
to the high quality of the sample classification. In this case, increasing the decision-making
objectivity regarding extraction of the most informative gene expression profiles is possible
using an ensemble of Shannon’s entropy estimators. Thus, there is a necessity to calculate
an MMIM proximity metric, which contains as the components the MIM metrics values
determined when using various methods of Shannon’s entropy calculation.
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Figure 5. Diagrams of the classification accuracy criterion values’ distribution when the objects
contained genes extracted by applying the MIM metric using different methods of Shannon’s en-
tropy estimating.

3.2. An Application and Comparison Analysis of the MMIM Proximity Metric, Pearson’s χ2 Test
and Correlation Distance

The simulation results concerning the evaluation of the classification accuracy criterion
distribution versus the number of the nearest gene expression profiles extracted using the
MMIM proximity metric, χ2 test and correlation distance are presented in Figure 6.
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Figure 6. Results of the simulation concerning the evaluation of the classification accuracy criterion
distribution versus the number of the nearest gene expression profiles extracted using the MMIM
criterion, χ2 test and correlation distance metric.

An analysis of the obtained results allows concluding that an application of the
MMIM proximity metric really contributes to increasing the objectivity of similar gene
expression profiles’ extraction. The extraction of gene expression profile groups allows us to
classify adequately and with high accuracy (99%) the examined objects. The increase of the
objectivity, in this case, is due to the correct use of a set of methods for calculating Shannon’s
entropy, the value of which is used for assessing the MIM values of the respective gene
expression profiles. The simulation results have also shown the lower efficiency of the
correlation distance metric compared with both the MMIM criterion and Pearson’s χ2 test
in terms of both the absolute value and sensitivity. As shown in Figure 6, the classification
accuracy values, when using the correlation proximity metric (Figure 6c), are varied
within the narrow range of about 0.95 classification accuracy value. When using other
proximity metrics (Figure 6a,b), in the case of a low number of gene expression profiles, the
classification accuracy values are varied chaotically within the larger range. This is natural,
since adding several gene expression profiles in this instance can significantly change the
classification results. When the number of genes is larger than 40 (approximately), the
classification accuracy values were varied around larger values compared to when we
applied the correlation proximity metric.

3.3. The Hybrid Metric of Gene Expression Profiles Proximity Evaluation

The simulation results presented hereinbefore regarding the evaluation of the different
gene expression profiles’ proximity metrics’ effectiveness create the preconditions for
calculating a hybrid metric that contains as the components different metrics, which
proved to be the most effective according to the previous evaluation results. The final
formation of the hybrid metric value within the framework of our research is carried out
using the Harrington desirability function in accordance with Algorithm 2.
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Algorithm 2: Hybrid metric of gene expression profiles proximity evaluation.
Initialization:
Formation: gene expression profiles dataset and vector of the used methods to

evaluate the gene expression profiles proximity;
set: the used methods iteration counter n = 1;
while n ≤ nmax do

Formation of a gene expression profiles distance matrix by applying the
appropriate proximity metric;

n = n+1;
end
Set: the parameters of the Harrington desirability function (a, b) taking into

account the appropriate proximity metric boundary values (in the case of the use
distance metric based on χ2 test, in Equations (18) and (19) the sign “+” is
changed to “-” );

Calculate: the hybrid metric of gene expression profiles’ proximity by applying
the stepwise procedure of Algorithm 1 considering the sign changing in the
instance of the χ2 test results application;

Formation a distance matrix of gene expression profiles in terms of the common
proximity metric (CPM);

Selection: two the nearest gene expression profiles;
set: the number of gene expression profiles iteration counter k = 2;
while k ≤ kmax do

Formation of a gene expression profiles distance matrix by applying the
appropriate proximity metric;

The samples’ classification by applying the RF classifier;
Calculation of the samples classification accuracy;

end
Return: the vector of the classification results (Accuracy).

Figure 7 shows the simulation results regarding the practical implementation of the
hereinbefore described procedure. As can be seen, an application of the proposed hybrid
proximity metric allows forming the subsets of gene expression profiles that corresponds
to the high classification accuracy of the investigated samples, which contain the extracted
gene expression profiles as attributes. The number of genes, in this case, depends on
the purpose of the current task. However, it should be noted that the examined simple
classification procedure can be implemented only in the presence of known classes. This
information is not always available. Therefore, in this case, it is reasonable to conduct
research to assess the effectiveness of the gene expression profiles’ clustering quality criteria,
calculated using the proposed hybrid proximity metric. This is the further perspective of
the authors’ research.

Figure 7. Results of the simulation regarding the application of the hybrid metric of gene expression
profiles’ proximity.



Symmetry 2021, 13, 1812 14 of 16

4. Conclusions

The research presented in this manuscript is devoted to comparative analysis of the
various effectiveness metrics of gene expression profiles’ proximity in order to extract
the most informative genes in terms of classification accuracy of the examined samples
containing the extracted genes as attributes. The three most used gene expression pro-
files’ proximity metrics were considered within the framework of the research: Mutual
information maximization, correlation distance and Pearson’s χ2 test. The GSE19188 gene
expression profiles dataset of patients who were examined for early-stage lung cancer was
used as the experimental data during the simulation process. Various methods of Shannon
entropy evaluation were considered within the framework of the mutual information
maximization criterion application. The results of the simulation have shown that the
sample classification accuracy differed when using various methods of Shannon entropy
calculation when the mutual information maximization criterion was calculated. To in-
crease the gene expression profiles’ extraction objectivity, we have proposed the modified
mutual information maximization criterion based on the complex use of various methods
of Shannon entropy calculation and the Harrington desirability function. Comparison
analysis of the simulation results has also shown the lower efficiency of the correlation
metric in comparison with both the modified mutual information maximization criterion
and the χ2 test in terms of both the absolute value and sensitivity. When using the corre-
lation distance metric the sample classification accuracy of objects that make up a subset
of data for testing was worse than the results obtained when using other gene expression
profiles’ proximity metrics. As a result, we have proposed a hybrid metric that contains
as the components different metrics, which proved to be the most effective according to
the previous evaluation results. The final formation of the hybrid metric value within the
framework of our research was carried out using the Harrington desirability function too.
To our mind, the main benefit of the proposed hybrid metric is in increasing the objectivity
of mutually similar gene expression profiles’ extraction due to the joint use of the various
effective proximity metrics, which can contradict each other when they are used alone.

An analysis of the simulation results has allowed us to conclude that an application
of the proposed hybrid proximity metric allows forming the subsets of gene expression
profiles that correspond to the high classification accuracy of the investigated samples that
contain the extracted gene expression profiles as attributes. The number of genes, in this
case, depends on the goal of the current task. We believe that the extraction of groups
of mutually correlated gene expression profiles contributes a further reconstruction of a
qualitative gene regulatory network in terms of both the symmetry and understanding
the mechanism of molecular element interaction in a biological organism at the stage of
simulation of the reconstructed gene network. We believe that the obtained results create
the conditions for further development of more effective hybrid models to extract gene
expression profiles based on joint use of the proposed proximity metrics, data mining
and machine learning techniques for creating the disease diagnostic systems and recon-
struction of adequate gene regulatory networks. This is the further perspective of the
authors’ research.
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RF Random Forest
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HPM Hybrid Proximity Metric
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