

The issue of journal contains:

Proceedings of the VII Correspondence International Scientific and Practical Conference

SCIENCE OF POST-INDUSTRIAL SOCIETY: GLOBALIZATION AND TRANSFORMATION PROCESSES

held on July 5th, 2024 by

ISSN 2710-3056

РОЗДІЛ XV. XIMIЯ, XIMIЧНА ТА БІОІНЖЕНЕРІЯ

ABSTRACT

DOI 10.36074/grail-of-science.05.07.2024.035

MODERN NITRIDE CATALYSTS

Anton Kozma 🗓

Ph. D. in Chemistry,

Associate Professor at the Department of Physical and Colloid Chemistry *Uzhhorod National University, Ukraine*

Due to their many valuable physicochemical properties, nitride materials are of great interest to researchers [1-3]. In a recently published review [2], scientists from the University of Virginia (USA) note that catalysts based on transition metal nitrides mark a new era in the production of hydrogen as an environmentally friendly and versatile energy source.

The catalytic systems Pt/TiN and Au/TiN can be used for hydrogen production reactions [3]. The use of titanium nitride TiN in these materials saves expensive metal catalysts, such as platinum and gold. At the same time, complex Pt/TiN and Au/TiN catalysts are characterized by competitive efficiency. For example, they exhibit an extremely promising volcano-like trend between the electrochemical activity of the hydrogen production reaction and the energy of H₂ binding [3].

Another promising catalyst is gallium nitride GaN. Nanowires of this material, with the addition of silver as a co-catalyst, allow the synthesis of urea from carbon dioxide and nitrate. Such a catalyst can be used in solar panels because the high efficiency of urea formation is achieved by exposure to sunlight [4].

Catalysts based on carbon nitride g-CN with Ru and Rh impurities allow both carbon dioxide reduction and hydrogen production [5].

To catalyze the sulfur reduction reaction in lithium-sulfur batteries as next-generation energy storage devices, heterostructures of carbon nitride C_3N_4 and boron nitride BN together with systems of the MeN₄ type, where Me is vanadium, molybdenum, or tungsten, are promising [6].

Photocatalysts with high potential for practical use include the aforementioned C_3N_4 carbon nitride [7-9]. The calculated quantum efficiency of photocatalytic hydrogen generation on optimized C_3N_4 samples using solar radiation is close to 30 %, which is considered to be a very high value [8]. The heterostructure of the composition α -MnO₂@B/Og-C₃N₄/d-Ti₃C₂, formed with the participation of C_3N_4 carbon nitride, is promising for the photocatalytic production of hydrogen peroxide and molecular hydrogen from ethanol solutions [9].

Scientists from the L.V. Pisarzhevskii Institute of Physical Chemistry (Kyiv) and other Ukrainian research institutions make a significant contribution to the study of nitride catalysts [10; 11]. Thus, Korzhak *et al.* found [10] that graphitic carbon nitride (CGCN) has high photocatalytic activity during the chemoselective conversion of furfural to furfuryl alcohol. This process is activated by visible light using the electron-donating substrates methanol—water and ethanol—water. Some co-catalysts, such as

230

Pd/SiO₂ (to a slightly worse extent) and PdCl₂ (to a significantly better extent), allow to increase the rate of chemical conversion. This is due to the formation of an active CGCN/Pd⁰ composite catalyst in the presence of PdCl₂. Instead, in the alternative CGCN-Pd/SiO₂ composite, the photogenerated charges are separated worse. The optimal catalyst is characterized by a high quantum yield of furfural reduction (56 % at 405 nm) [10].

Crystalline graphite-like carbon nitride also allows for the efficient generation of hydrogen from aqueous acetonitrile solutions of benzyl alcohol under the influence of visible light [11]. This process is more active if the electron donating capacity of the substituent in benzyl alcohol is increased. In this case, the substituent must occupy a paraposition in the molecule of the alcohol in question. The quantum yield reaches 22 % at a light wavelength of 405 nm and allows for the highest rate of hydrogen release from 4-methoxybenzyl alcohol in the presence of hydrochloric acid [11].

Thus, the considered nitride catalysts are promising for use in various chemical transformations, in particular for the efficient production of hydrogen fuel.

References:

- [1] Kozma, A. (2020). Thermodynamic, thermal and elastic properties of titanium nitride TiN: comparison of various data and determination of the most reliable values. *Technology Transfer: Fundamental Principles and Innovative Technical Solutions*, 4, 14-17. https://doi.org/10.21303/2585-6847.2020.001475
- [2] Lei Shi & Huiyuan Zhu (2024). Transition-metal nitrides: Pioneering a new era in the hydrogen evolution reaction. *Chem Catalysis*, 4(2), 100919. https://doi.org/10.1016/j.checat.2024.100919
- [3] Mou, H., Jeong, J.J., Lamimichhane, B. *et al.* (2024). Trends in electrocatalytic activity and stability of transition-metal nitrides. *Chem Catalysis*, 4(2), 100867. https://doi.org/10.1016/j.checat.2023.100867
- [4] Wan Jae Dong, Jan Paul Menzel, Zhengwei Ye *et al.* (2024). Photoelectrochemical Urea Synthesis from Nitrate and Carbon Dioxide on GaN Nanowires. *ACS Catal.*, 14(4), 2588-2596. https://doi.org/10.1021/acscatal.3c04264
- [5] Ghoshal, S. & Sarkar, P. (2024). Computational Screening of Suitable Adatom to Enhance CO₂ Electroreduction on Noble-Metal Based Dual-Atom Catalysts. *J. Phys. Chem. C*, 128(6), 2392-2405. https://doi.org/10.1021/acs.jpcc.3c05794
- [6] Haikuan Liang, Zhihao Zeng, Zhengping Qiao *et al.* (2024). The heterointerface effect to boost the catalytic performance of single atom catalysts for sulfur conversion in lithium—sulfur batteries. *Phys. Chem. Chem. Phys.*, 26, 5858-5867. https://doi.org/10.1039/D3CP05883B
- [7] Козьма, А.А. (2024). Деякі аспекти сучасного фотокаталізу. *Scientific Collection «InterConf+»*, 46(205), 407-414. https://doi.org/10.51582/interconf.19-20.06.2024.038
- [8] Mandal, R. & Bhattacharyya, S. (2024). Optimizing Porosity and Heteroatom Functionalities in Amorphous Carbon-Rich g- C_3N_4 for Dual-Mode Photocatalysis through Solar to Green Hydrogen and Chemical Energy Conversion. *J. Phys. Chem. C*, 128(6), 2338-2351. https://doi.org/10.1021/acs.jpcc.3c06896
- [9] Mishra, Bh.P., Das, S., Biswal, L., Acharya, L., Sahu, J. & Parida, K. (2024). MXene Schottky Functionalized Z-scheme Ternary Heterostructure for Enhanced Photocatalytic H₂O₂ Production and H₂ Evolution. *J. Phys. Chem. C*, 128(5), 1921-1935. https://doi.org/10.1021/acs.jpcc.3c06435

- [10] Korzhak, G.V., Stara, T.R., Kutsenko, O.S. *et al.* (2023). Chemoselective Photocatalytic Reduction of Furfural to Furfuryl Alcohol Under the Influence of Visible Light with the Participation of Nanocrystalline Carbon Nitride and Palladium Co-Catalysts. *Theor. Exp. Chem.*, 59, 268-275. https://doi.org/10.1007/s11237-024-09785-w
- [11] Shvalagin, V.V., Korzhak, G.V. & Kuchmiy, S.Y. (2023). Photocatalytic Hydrogen Evolution from Solutions of Benzyl Alcohols Under the Action of Visible Light with the Participation of Crystalline Graphite-Like Carbon Nitride. *Theor. Exp. Chem.*, 59, 32-37. https://doi.org/10.1007/s11237-023-09762-9

СУЧАСНІ НІТРИДНІ КАТАЛІЗАТОРИ

Козьма Антон Антонович

канд. хім. наук, доцент кафедри фізичної та колоїдної хімії Державний вищий навчальний заклад «Ужгородський національний університет», Україна

The scientific periodical

GRAIL OF SCIENCENº 41 (July, 2024)

with the proceedings of the VII Correspondence International Scientific and Practical Conference «Science of post-industrial society: globalization and transformation processes» held on July 5th, 2024 by NGO European Scientific Platform (Vinnytsia, Ukraine) and LLC International Centre Corporative Management (Vienna, Austria).

Journal's frequency: monthly

All materials are reviewed. The editorial office did not always agree with the position of authors. Authors are responsible for the accuracy of the material.

Contacts of the editorial offices:

1. 21037, Ukraine, Vinnytsia, Zodchykh str. 18, office 81; NGO «European Scientific Platform» [Owner of the journal] Tel.: +38 098 1948380; +38 098 1526044 E-mail: info@ukrlogos.in.ua Certificate of the subject of the publishing business: ∠JK № 7172 of 21.10.2020.

2. 24004, Ukraine, Mohyliv-Podilskyi, Nezalezhnosti avenue 301, office 117; SI «Institution of Scientific and Technical Integration and Cooperation» [Owner of the journal]

3. 1110, Österreich, Wien, Simmeringer Hauptstraße 24; LLC «International Centre Corporative Management» E-mail: rachael.a@iccm.org

Sighed for publication 05.07.2024.
Format 70×100/16. Offset paper.
Arial & Open Sans typefaces.
Digital printing. Circulation of 100 copies.
Conventionally printed sheets 28,6.

Order № 24/007.
Printed from the finished original layout.

Publisher [printed copies]: LLC «UKRLOGOS Group». 21037, Ukraine, Vinnytsia, Zodchykh str. 18, office 81. Certificate of the subject of the publishing business: ДК № 7860 of 22.06.2023.

Наукове періодичне видання

ГРААЛЬ НАУКИ

№ 41 (липень, 2024)

за матеріалами VII Міжнародної науковопрактичної конференції «Science of postindustrial society: globalization and transformation processes», що проводилася 5 липня 2024 року ГО «Європейська наукова платформа» (Вінниця, Україна) та ТОВ «International Centre Corporative Management» (Відень, Австрія).

Щомісячне видання

Всі матеріали пройшли рецензування. Редакція не завжди поділяє позицію авторів. За точність викладеного матеріалу відповідальність несуть автори.

Контактна інформація редакції:

21037, Україна, м. Вінниця, вул. Зодчих, 18/81;
 ГО «Європейська наукова платформа» [еласник журналу].
 Тел.: +38 098 1948380; +38 098 1526044
 Е-mail: info@ukrlogos.in.ua
 Свідоцтво суб'єкта видавничої справи: ДК № 7172 від 21.10.2020.

2. 24004 Україна, м. Могилів-Подільський, пр-т. Незалежності, 301/117; НУ «Інститут науково-технічної інтеграції та співпраці» *[власник журналу]*.

3. 1110, Österreich, Wien, Simmeringer Hauptstraße 24; LLC «International Centre Corporative Management» E-mail: rachael.a@iccm.org

Підписано до друку 05.07.2024. Формат 70×100/16. Папір офсетний. Гарнітура Arial & Open Sans. Цифровий друк. Тираж: 100 примірників. Умовно-друк. арк. 28,6.

Замовлення № 24/007. Віддруковано з готового оригінал-макету.

Виготовлювач [друкованої продукції]: ТОВ «УКРЛОГОС Груп»
21037, Україна, м. Вінниця, вул. Зодчих, 18, офіс 81.
Свідоцтво суб'єкта видавничої справи:
ДК № 7860 від 22.06.2023.