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In the work, the technology of modeling, optimization and prediction of spectral
characteristics of thin films based on Raman spectroscopy with the use of artifi-
cial intelligence was developed. Modern machine learning methods are imple-
mented, including ensemble algorithms (random forest, gradient boosting) and
neural networks, which ensures high accuracy of forecasts and automation of
spectrum analysis. An innovative approach includes the use of the Voight pro-
file, which combines Lorentzian and Gaussian components, allowing to describe
accurately the width and shape of the peaks for approximation, taking into ac-
count the physicochemical parameters of the films and the influence of experi-
mental conditions. The task is caused by the growing requirements for the accu-
racy of material analysis in the fields of optoelectronics, photocatalysis and sen-
sor systems, where Raman spectroscopy is an indispensable tool. Traditional
data processing methods are limited by the complexity of the interaction of light
with the material, and the integration of Al allows you to overcome these diffi-
culties, optimizing analysis and prediction. The proposed technology combines
physical modeling of spectra with Al-prediction, which allows accurate con-
sideration of the effects of defects, inhomogeneities, and absorption. Algorithms
for model optimization with minimization of root mean square error and selec-
tion of the best model for specific problems have been implemented. Additional
optimization of the model takes into account the influence of the film thickness
due to the absorption coefficient and the suppression of unwanted reactions with
the help of buffer gases (Ne, Ar). The developed approach provides reduction of
time and resources for experimental research, automation of spectrum analysis
and development of new materials. The application of Al methods allows ob-
taining highly accurate results even with a small amount of experimental data.
The prospects for technology development include the integration of multilayer
structures, consideration of material anisotropy, and detailed modeling of defects
in films. Additionally, it can be adapted to analyze different types of materials,
such as organic films or hybrid structures. Software enhancements can include
automation of spectrum fitting, optimization of film parameters, and machine
learning-based property prediction with large data sets. This opens up new op-
portunities for research in the physico-chemistry of materials and the develop-
ment of intelligent analysis systems.

Keywords: Raman spectroscopy, thin films, modelling, machine learning, spectral
analysis, optimization, neural networks, physicochemical properties.

Introduction

Raman spectroscopy is one of the most powerful methods for studying molecular
structures and properties of materials, especially thin films. Its uniqueness lies in the
ability to obtain information about the chemical composition, structure, defects and
other physical and chemical characteristics without destroying the sample. Thin films of
metal oxides are widely used in optoelectronics, photocatalysis and sensor technologies
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due to their unique properties. At the same time, the formation of such films is accom-
panied by the appearance of defects, inhomogeneities and other structural features,
which complicates their analysis.

Traditional methods of processing spectral data often do not take into account the
complexity of the interaction of light with the material, as well as the influence of ex-
perimental conditions. This limits the accuracy of the results and requires the develop-
ment of new approaches that can integrate analytical models with modern forecasting
methods such as machine learning. The paper proposes a complex technology for
modeling Raman spectra of thin films, which combines physical modeling and optimi-
zation with prediction based on artificial intelligence.

The main problem in the analysis of Raman spectra of thin films is their high com-
plexity caused by several factors. First, the intensity of Raman lines depends on the
energy distribution of laser radiation and the molecular structure of the sample, in-
cluding features such as defects and vacancies. Secondly, the thickness of the film and
its heterogeneity significantly affect the absorption, scattering and diffusion of light,
which makes it difficult to describe accurately the processes. Third, experimental condi-
tions, such as the type of gas environment or noise level, introduce additional errors that
are difficult to account for with traditional methods. Solving these problems requires
developing models that are able to combine physical understanding of processes with
machine learning algorithms to improve accuracy and speed of analysis. Optimizing
film formation processes and minimizing defects is also an important aspect, which re-
quires taking into account experimental conditions and film parameters. The approach
proposed in the work integrates modern machine learning methods for modeling and
forecasting the spectral characteristics of thin films, which was previously implemented
mostly through analytical models. The uniqueness lies in the use of three different algo-
rithms — random forest, gradient boosting and neural network — which provide flexi-
bility in choosing the best model depending on the type of data and the complexity of
dependencies. For the first time, the automated determination of the optimal model
based on the minimization of the mean square error (MSE) was implemented, which al-
lows to increase the accuracy of forecasts without the need for manual adjustment of pa-
rameters. The use of a neural network provides the possibility of considering nonlinear
relationships in the data, which is especially important for complex film structures and
their spectra.

The developed model is a universal tool for spectroscopic analysis in Raman
spectroscopy, but it can also be adapted for interferometry, infrared analysis and other
types of spectrometry. Its flexibility is provided by the integration of physical modeling
and machine learning methods, which allows analyzing spectra even in difficult condi-
tions. For interferometry, it is necessary to take into account the specifics of interference
signals, and for infrared analysis, the specifics of molecular vibrations and absorption.

The model demonstrates high accuracy of forecasts and automation of data pro-
cessing, which are key advantages for the analysis of multicomponent mixtures, deter-
mination of physicochemical parameters of materials and development of new materi-
als. Applications include optoelectronics, chemistry, medicine, and sensor technology.
Adaptation to other types of spectrometry is possible through the modification of
mathematical models and algorithms, which allows to expand the limits of its application.

The practical significance of the proposed approach lies in the ability to predict ac-
curately the spectral characteristics of materials, which significantly reduces time and
resources for experimental research. Automating model selection simplifies data analy-
sis for non-machine learning experts. The use of algorithms allows efficient work even
with small data sets, which is typical for spectral studies. The implementation of such
an approach can find application in the optimization of thin film production technolo-
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gies, the development of new materials, and the analysis of physicochemical properties
of samples in the fields of optoelectronics, photocatalysis, and sensor technologies.

Literature review

The literature review for the development of a complex model-based technology
using machine learning for the analysis of Raman spectra covers various aspects such as
spectral data processing, application of machine learning for analysis, and data visua-
lization.

Article [1] highlights the current achievements of deep learning (DL) in spectral
analysis, focusing on solving the problems of insufficient data, interpretability of
models and adaptation of DL to the specifics of spectroscopy. Transfer learning, data
augmentation, and adversarial networks are reviewed, and the importance of combining
DL with expert knowledge to improve outcomes is highlighted. The work [2] analyzes
the use of support vector methods (SVM) for the classification of near infrared radia-
tion (NIR). Attention is focused on optimization of regularization parameters and ker-
nels to reduce classification errors. Methods of visualization of support vectors in the
subspaces of the main components are also proposed, which improves the interpretation
of models. Work [3] investigates joint decision-making systems by humans and artifi-
cial intelligence through numerical channels, developing rules to take into account the
reliability of channels and increase their number in the system. [4] presents a platform
for creating algorithms for the classification of spectroscopic data using long-wave in-
frared (LWIR) and Raman spectroscopy. It is based on 1D convolutional neural net-
works, which demonstrate a classification accuracy of over 90 %, even under low sig-
nal-to-noise conditions. The article [5] focuses on the application of machine learning
for the identification and analysis of illegal substances using Raman spectroscopy.
Genetic algorithms are used to reduce the dimensionality of the data and neural net-
works are used to predict concentrations, which provides higher accuracy compared
to standard methods. In [6] convolutional neural networks (CNN) are used for auto-
matic classification of spectra without pre-processing. On the basis of RRUFF spec-
tra, high accuracy is achieved, which exceeds the results of other popular methods, in
particular, SVM.

Paper [7] analyzes the application of DL to model spectral data, highlighting
its ability to reveal complex relationships that are not available to classical me-
thods. The advantages of DL, including the automation of analysis and modeling,
are described, and the limitations, such as the need for large amounts of data and
the difficulty of interpreting the results, are discussed. The advances in machine
learning in the chemical sciences, including molecular property prediction, synthe-
sis optimization, and reactivity analysis, are summarized in [8]. The prospects of
creating more accurate models for the development of new materials and molecules
are emphasized, which will contribute to increasing the efficiency of scientific re-
search and reducing costs. Work [9] describes the application of modeling and si-
mulation for spectroscopic studies, in particular Raman and infrared spectroscopy.
The possibilities of predicting the behavior of systems and assessing the impact of
changes based on atomistic methods are studied, which allows linking the structure
of materials with their spectral characteristics. An automatic curve fitting algorithm
for parametric spectral models that does not require manual tuning and has potential
for applications such as calibration transfer is reviewed in [10]. Paper [11] describes
indirect hard modeling (IHM) for the analysis of complex spectra with overlapping
components. The method automatically determines peak parameters related to mo-
lecular interactions, simplifying analysis even for inexperienced users. This allows
IHM to be used in ATR-IR and Raman spectroscopy spectra.
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Article [12] discusses the use of CNNs for parallel processing tasks such as image
segmentation and high-speed computing. The analysis of the spectral characteristics of
the network graph, including the Kirchhoff index, graph energy, and spectral radius, is
emphasized, which optimizes segmentation and improves diagnostic accuracy. In [13]
it is described a neural network for evaluating the quality of alpha spectra, which al-
lows detection of degradation due to calibration or extraneous impurities. The model
uses expert knowledge to automate the evaluation process. The paper [14] presents
a platform for the classification of spectroscopic data from LWIR and Raman spectrosco-
py using 1D-CNN. High classification accuracy (more than 90 %) is achieved even un-
der low signal-to-noise conditions. In [15], a synthetic data set was developed for testing
machine learning models in spectroscopy. Analysis of eight neural network architec-
tures showed an accuracy of more than 98 %, although complex artifacts such as peak
overlap caused errors. The importance of ReLU-activations in classification was high-
lighted, and the more complex components of the network turned out to be ineffective.
The paper [16] investigated the emission spectra of an overvoltage discharge between
zinc electrodes in air and nitrogen at different pressures. Microexplosions on the surface
of the electrodes introduce zinc vapor into the discharge, which contributes to the for-
mation of molecules and clusters of zinc, its oxides and nitrides in the plasma, which al-
lows the synthesis of nanostructured films of zinc, oxide and nitride of zinc on glass or
quartz substrates. In work [17], the plasma parameters in the nanosecond range based on
a mixture of helium and zinc vapor for the synthesis of micro- and nanostructures were
studied. Numerical modeling of the Boltzmann kinetic equation made it possible to cal-
culate plasma parameters such as mobility, temperature, electron density, and ener-
gy losses.

The literature review proves that Raman spectroscopy and machine learning for
spectrum processing are actively developing and finding applications in science and in-
dustry. Raman spectroscopy is an important method for analyzing the molecular struc-
ture and defects of materials, in particular thin films of metal oxides. The development
of a complex model that combines physical modeling of processes with modern Al algo-
rithms will improve analysis methods and allow optimizing the composition and struc-
ture of films for optoelectronics, photocatalysis and sensor technologies.

To implement the tasks, [18] was additionally developed — a guide for data analy-
sis using Python, which focuses on the use of Pandas, NumPy and IPython libraries for
data processing and analysis. The book contains examples of real data and methods of
data wrangling. And [19], which evaluated the effectiveness of libraries for data visuali-
zation in Python, such as Matplotlib, Seaborn, Plotly, Bokeh, Altair, and ggplot. The re-
sults show that Matplotlib, Seaborn, and Plotly are the most popular, with different
preferences for complex graphs, simplified plotting, and interactive visualizations.

Research methods

For the precise analysis of thin films using Raman spectroscopy, the mathematical
model must take into account:

o the intensity of the Raman lines is determined by the energy distribution of the
laser radiation and the molecular structure of the sample;

o film parameters — thickness, chemical composition, structure, presence of va-
cancies and other defects;

o the interaction of light with the material — includes the phenomena of scattering,
absorption and diffusion of light in the film.

In this work, the intensities of Raman lines using the Voight profile, which de-
scribes the width and shape of the spectral lines, as well as the influence of the energy
distribution of the laser beam through the Gaussian profile, are taken into account
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during the development of the modeling technology. The film parameters include the
chemical composition, the corresponding spectral peaks, the film thickness due to the ex-
ponential absorption of the intensity, and defects affecting the amplitude of the spectral
lines. The model accounts for the interaction of light with the material due to the ab-
sorption effect, which depends on the absorption coefficient, and the effect of buffer
gases (Ne, Ar), which suppress unwanted chemical reactions. Machine learning methods
have been implemented to predict spectral characteristics and optimize model parame-
ters using random forests, gradient boosting, and neural networks, with the minimiza-
tion of root mean square error.

The code does not take into account the distribution of laser energy in three-
dimensional space and the effect of its power on the spectrum. Film anisotropy, model-
ing of multilayer structures, vacancies or dislocations are not included. Also, light scat-
tering at film boundaries, light diffusion, temperature effect on the spectrum and the ef-
fect of fluctuations in external parameters such as pressure or temperature are not con-
sidered. In addition, there are no methods for noise correction in experimental data.

Mathematical foundations. Basic mathematical models for describing Raman
spectroscopy contain a number of steps. Let’s consider popular approaches in more detail.

1. Basic equations of Raman spectroscopy.

e Raman signal intensity. The intensity of IR Raman scattering is described by the
expression:

do
Ir = IgK (L —ve)* —n,
R = loK(vg —vs) 10

where 1, — intensity of incident laser radiation; K — a constant that depends on the
experimental setup; vy — the frequency of laser radiation; v — the frequency of

the Raman line; 3_:2 — differential cross section of Raman scattering; n — the con-

centration of molecules interacting with the laser.
e Calculation of Raman peaks shift. The frequency vg for oscillations is de-

fined as:

1 |k

Vg =—,[—,
2\ p

where k — strength of elastic connection; p — the reduced mass of atoms participat-

ing in oscillations.
o Absorption of laser radiation in a film. The laser radiation intensity 1(z) at the

depth z in the film is described by:
1(z) = 1ge™"%,

where o is the absorption coefficient of the film.
2. Model for a multilayer structure. If the film consists of several layers (for
example, defect zones or different crystallinity), the IR signal is summed:

e =3 1 = 1K (v — v ) 39 p g2
R—z R,I_ZO (Vg l)s,|) dine )
i=1 i=1

where N — number of layers; o; — the absorption coefficient for the i-th layer; n; —
the concentration of active molecules in the i-th layer.

Midcnapoonuil HayKoeo-mexHiuHull HcypHal
Ipobnemu xepysanns ma ingpopmamuxu, 2025, Ne 2 103



3. Influence of defects and nanostructures.
e Model of defects in the film. Defects, such as oxygen vacancies in WO3, change

vibrational frequencies due to local changes in elastic forces:

Avg = Uisdeal _chjefect,
where L% _ frequency for ideal structure; v _ the frequency for the defect

region.
e Peak width calculation. The width of the Raman peaks I" depends on the size of
the nanostructures:

C
I'=I'y+—,
07y

where Ty — peak width for a large crystal; C — a constant that takes into account the

material of the film; d — the average size of nanoclusters.

4. Numerical modeling and implementation. To calculate the intensity, the Monte
Carlo method is often used to simulate laser penetration and absorption in a multilayer
film. Fitting of experimental data is usually implemented using nonlinear regression to
determine parameters o, n, Avg and I' from experimental spectra. In order to visu-

alize the results, maps of the distribution of intensities in the film are constructed for the
analysis of the local structure.

Modeling technology and software implementation. In this work, computer
modeling technology is implemented in the Python programming environment (SciPy,
NumPy, Scipy, Sklearn, Pandas, and Matplotlib libraries), and the program structure
contains a number of components. Let’s consider in detail the main components of
the model.

e Raman spectrum generation. The total intensity of the spectrum consists of indi-
vidual peaks, which are described by Lorentz or Voight profiles:

N
I(vs) = Z li (vs),
i=1

where [;(vg) is the intensity of the i-th peak.
Profiles of Lorents and Voits:

(o)D) = A Re| WOZ(2)
1+T’

where
(vs —vg i)+ i
o2 '

These profiles are implemented programmatically with corresponding functions:

def lorentzian(nu_s, nu_0, gamma, amplitude):
return amplitude / (1 + ((nu_s - nu_0) / gamma) ** 2)
def voigt_profile(nu_s, nu_0, gamma, sigma, amplitude):
z =((nu_s - nu_0) + 1j * gamma) / (sigma * np.sqrt(2))
return amplitude * np.real(wofz(z)) / (sigma * np.sqrt(2 * np.pi))
def total_spectrum(nu_s):
sigma = 10e12 # Gaussian width for Voigt profile
return (voigt_profile(nu_s, nu_peak_1, gamma_1, sigma, amplitude_1) +
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voigt_profile(nu_s, nu_peak_2, gamma_2, sigma, amplitude_2) +
voigt_profile(nu_s, nu_peak_3, gamma_3, sigma, amplitude_3))
e Laser beam energy distribution. The laser_profile function models the laser ener-
gy distribution using a Gaussian profile, using the equation to describe the laser radia-
tion intensity as a function of the distance r from the beam center:

)
P(r)=Ry-e \*/,
where Ry — laser power, o — beam width. The parameter r is used to model the
energy distribution of the laser beam using a Gaussian profile. Programmatically im-
plemented by a function
def laser_profile(r):
return laser_power * np.exp(-(r / beam_width) ** 2)

o Effect of film thickness. The intensity is modified using the absorption coeffi-
cient:

I(d)=1q-e7,

where o — absorption coefficient, d is the film thickness. Implemented by function

def intensity_with_absorption(I_0, d):
return |_0 * np.exp(-absorption_coefficient * d)

e Generation of experimental data. The load_spectral_data function loads spec-
tral data from a file. Reads a CSV file containing two columns: nu_s (Raman shift
(frequency, Hz)) and intensity (measured intensity). Returns two variables: nu_s array
(frequencies) and intensity array. The corresponding function has the form:

def load_spectral_data(file_path):

data = pd.read_csv(file_path)

nu_s = data['nu_s"].values # Raman shift frequencies (Hz)
intensity = data['intensity'].values # Measured intensities
return nu_s, intensity

Added logic to check if the file exists to load or generate data. If the file is found,
loads the data using load_spectral_data. If the file is not found, generates synthetic data
according to the following algorithm:

experimental_data = total_spectrum(nu_s) + np.random.normal(0, 0.02, len(nu_s))

o Fitting (approximation) of the spectrum. The fitting uses non-linear methods to
find parameters A, vg i, vi, o; that minimize the difference between experimental

and simulated data.
The function for optimization has the form:

12 =2 (lexp (0s,6) = it (Vs 1 ).
k

The software is implemented as follows:

def fit_func(nu_s, al, c1, g1, a2, c2, g2, a3, c3, g3):
sigma = 10e12 # Consistent Gaussian width
return (voigt_profile(nu_s, c1, g1, sigma, al) + voigt_profile(nu_s, c2, g2, sigma, a2) +
voigt_profile(nu_s, ¢3, g3, sigma, a3))
initial_guess =[1.0, nu_peak_1, gamma_1, 0.8, nu_peak_2, gamma_2, 0.7, nu_peak_3,
gamma_3]
popt, pcov = curve_fit(fit_func, nu_s, experimental_data, pO=initial_guess)
fitted_spectrum = fit_func(nu_s, *popt)
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e Machine learning for prediction. Since spectral data often have non-linear rela-
tionships between different spectral features, machine learning algorithms can effective-
ly model such relationships, unlike traditional linear methods such as linear regression.
In addition, spectral data usually have a large set of dimensions (large spectra), and
these algorithms can handle a large number of features, taking into account the im-
portance of each one. Ensemble algorithms (Random Forest and Gradient Boosting) are
able to work with data containing noise, which is typical for spectral measurements. In
terms of automating the process, neural networks, particularly deep neural networks,
can automatically detect important patterns in large spectral data sets, reducing the need
for manual feature selection. Overall, these algorithms are powerful tools for spectral
analysis because they are able to process complex, multidimensional data with high ac-
curacy and efficiency.

In connection with the above, the work uses a comprehensive approach to fore-
casting spectral characteristics based on ensemble algorithms and neural networks.
Three algorithms based on machine learning have been implemented, namely Random
Forest, GradientBoostingRegressor — for more accurate dependency analysis, and neu-
ral network (MLPRegressor) — for non-linear forecasting. In addition, the selection of
the best model based on the MSE is implemented.

¢ The Random Forest algorithm predicts the intensity of the spectrum. The work of
the method is based on an ensemble of decision trees. The final prediction is calculated
as the average of the tree predictions:

1T
V=7 > fi (%),
t=1
where T — the number of trees, f;(x) is the prediction of t-th tree. The software

implementation has the form:
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
y_pred_rf = rf_model.predict(X_test)
mse_rf = mean_squared_error(y_test, y_pred_rf)

« Gradient Boosting. Gradient boosting builds an ensemble of trees step by step,
minimizing the loss function (MSE):

ym+1 = ym +T|hm (%),

where v is the learning rate, h.,(X) is a new tree that approximates the negative gradi-
ent of the loss function. The software implementation has the form:

gb_model = GradientBoostingRegressor(n_estimators=100, random_state=42)
gb_model.fit(X_train, y_train)

y_pred_gb = gb_model.predict(X_test)

mse_gb = mean_squared_error(y_test, y_pred_gb)

¢ Neural network (MLPRegressor). A neural network consists of layers of neurons
that use an activation function (ReLU). The forecast is calculated as:

Y =oW;-o(W - x+by) +by),
where W;, W, are weights, by, b, are displacements, and o is an activation function.
The software is implemented as follows:
nn_model = MLPRegressor(hidden_layer_sizes=(100, 50), max_iter=1000, random_state=42)
nn_model.fit(X_train, y_train)

y_pred_nn = nn_model.predict(X_test)
mse_nn = mean_squared_error(y_test, y_pred_nn)
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e Comparison of models. The MSE of each model is calculated:
13 N2
MSE == > (yi - %)°.
Nz

best_model = min([(rf_model, mse_rf), (gb_model, mse_gb), (nn_model, mse_nn)],
key=lambda x: x[1])[0]

» Forecast by the best model. It is implemented on the basis of forecast uncertainty
analysis. Mathematically, the standard deviation of the forecast has the form:

-
Al (os)=JTEZ(IA.,t(os)—TA.<os))2.
t=1

Software forecasting is implemented as follows:

prediction_std = np.std([tree.predict(X) for tree in rf_model.estimators_], axis=0)

plt.fill_between(nu_s.flatten() * 1e-12, y_pred_full - prediction_std, y_pred_full + predic-

tion_std, color="gray", alpha=0.3)

y_pred_full = best_model.predict(X)

These processes make it possible to compare the performance of different machine
learning approaches for the analysis and prediction of Raman spectra.

The next key stage was system optimization. This stage is implemented by adding
the optimization logic of the gas environment. This made it possible to select a buffer
gas (for example, Ne or Ar) using the selected_gas variable; the buffer gas affects the
reduction of unwanted reactions due to the suppression factor specified in the dictionary
BUFFER_GASES; the result is integrated into a Voigt function that takes into account
the effect of the buffer gas. Let’s dwell in more detail on the system optimization
process.

The implementation of the suppression of unwanted chemical reactions by the
buffer gas is modeled by scaling the intensity of the spectrum through the suppression
factor Fy, which is specific for each buffer gas:

Ibuffered (Vs) = 1 (Vs) Fy,

where Fy €[0,1] — suppression factor defined for each buffer gas. According to the

dictionary

B 0.8 for Ne,
9 10.9 for Ar.

e Integration into the Voigt profile. The buffer gas affects the result of the Voigt
function:

A-Re[wofz(2)] _  _ (vg—vo)+ jy
g o2 .

Programmatically, these steps were implemented by adding functions and making
appropriate changes to the code.

I butfered (Vs) =
o421

Research results

The designed and developed technology illustrates the full process from mathe-
matical modeling and optimization to Al prediction and analysis of results.

Scientific papers [20-22] combine studies of the physicochemical processes of
formation of thin films and micro- and nanostructures of materials (metal oxides and
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sulfides) using laser or electric discharge in gas-vapor mixtures. The conditions of syn-
thesis of materials are considered, in particular, due to the effect of the discharge on
metal vapors in the presence of gases. All works focus on the optical and spectral charac-
teristics of the films, which opens up the possibilities of their application in plasma
chemical reactors, synthesis of microstructured materials, as well as in bactericidal and
optical technologies. Work [20] describes a high-voltage nanosecond discharge in a gas-
vapor mixture «Air-Tungsten» at different pressures, which promotes the synthesis of
thin films of tungsten oxide (WO3) on a glass substrate. The main components of the

plasma were determined and the optical properties of the discharge were investigated.
In [21], the formation of films on the glass surface during the irradiation of aqueous
solutions of copper sulfate with nanosecond laser radiation was studied, which leads
to the formation of ordered and disordered films with transparency in the range of
300-1200 nm. In [22], a pulsed source of ultraviolet fluxes of silver atoms and ions and
micro-nanostructures of silver sulfide formed by a nanosecond discharge are investigat-
ed, which can be used as a source of bactericidal radiation and for the synthesis of silver
sulfide films. For all the above-analyzed scientific works, the actual task is mathemat-
ical and computer modeling, as well as optimization of the experiments. A detailed
comparative analysis of the studied processes, modeling results and Al-prediction is no
less interesting. Experimental data from [20] were taken to test the model.

In the first stage, a mathematical model for analyzing Raman spectra was tested. It
includes calculating the Raman scattering intensity for a single or multilayer material,
modeling the Raman spectrum peaks using a Lorentz profile, and fitting experimental
data [20] to determine the peak parameters. The result of this step is shown in Fig. 1.

The simulated spectrum (solid line) for Raman scattering based on parameters
from [20], the experimental data (dots) with the addition of random noise to simulate
real conditions, and the approximated spectrum (dashed line) based on the fitting re-
sults. The curves overlap because the approximated model shows a high agreement with
both the theoretical spectrum and the experimental data. This indicates that the model
effectively describes the physical processes that affect the intensity of the spectrum and
takes into account the noise of real measurements. Small discrepancies between the
curves may be due to the influence of additional factors, such as film inhomogeneities
or measurement errors.

The next step was to apply an artificial intelligence component to the program
(random forest model) for predicting the Raman spectrum. At this stage, the system uses
experimental data to train the model, predicts the spectral intensity for the entire range
of Raman shifts, and visualizes the prediction results on a single graph along with simu-
lated, experimental, and approximated data.

Fig. 2 shows the simulated spectrum (dashed-dotted line) — theoretical signal
without noise, experimental data (dots) — with noise added to simulate real conditions,
spectrum fitting (dashed line) — approximated peak parameters and Al prediction (solid
line) — prediction result made by the random forest model. The overlap of the spectra
indicates the high accuracy of the theoretical model and prediction. The fact that the
predicted spectrum almost perfectly matches the approximated and experimental data
indicates the successful application of machine learning, which considers complex de-
pendencies in the data. The difference between the experimental and predicted spectra,
although minimal, is explained by the presence of noise and measurement errors that are
not fully taken into account by the model. The MSE of the model is 0.00058, which in-
dicates high prediction accuracy. Additionally, the figure shows the uncertainty inter-
vals for the forecast (filled areas around the forecast line). They illustrate the level of
confidence in the results, allowing an assessment of the possible variability of the model
forecasts.
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At the final stage, a Voight profile was added for peak approximation, which
provides better analysis accuracy than the Lorenz profile, an analysis of Al predic-
tion uncertainty through visualization of confidence intervals of the random forest
model and three machine learning algorithms to improve scientific modeling and
prediction of spectra. Additionally, the selection of the best model based on MSE
was implemented.

Fig. 3 shows the simulated spectrum (dashed-dotted line) — theoretical signal
without noise, experimental data (dots) — with noise added to simulate real conditions,
spectrum fitting (dashed line) — approximated peak parameters and Al prediction (solid
line) — prediction result made by the random forest model. The overlap of the spectra
indicates the high accuracy of the theoretical model and prediction. The fact that the
predicted spectrum almost perfectly matches the approximated and experimental data
indicates the successful application of machine learning, which considers complex de-
pendencies in the data. The difference between the experimental and predicted spectra,
although minimal, is explained by the presence of noise and measurement errors that are
not fully taken into account by the model. The MSE of the model is 0.00058, which in-
dicates high prediction accuracy. Additionally, the figure shows the uncertainty inter-
vals for the forecast (filled areas around the forecast line). They illustrate the level of
confidence in the results, allowing an assessment of the possible variability of the model
forecasts.
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The result shows that machine learning methods are effective for spectral data
analysis, allowing to increase the accuracy of the prediction and take into account com-
plex relationships. The width and shape of the peaks are in good agreement between the
fitting and the prediction, indicating the accuracy of the constructed model.

Conclusion

In the work, a technology based on mathematical and software models for the analysis
of thin films using Raman spectroscopy was developed, which considers the intensity of
Raman lines, film parameters and the phenomenon of light interaction with the material. An
adaptive approach was implemented for modeling Raman spectra using the Voight profile,
which provides an accurate description of the width and shape of spectral lines. For the first
time, it was proposed to include the influence of film thickness, absorption coefficient and
laser radiation distribution to ensure realistic modeling. The developed modeling technology
includes software integration of machine learning methods (random forests, gradient boost-
ing, neural networks), which allows for effective prediction of spectral characteristics and
determination of the best fitting parameters. Model optimization was implemented by intro-
ducing buffer gases (Ne, Ar), which reduces the influence of undesirable impurity reactions
and improves the quality of experimental data.

The analysis showed high accuracy of spectrum prediction and agreement of theoretical
models with experimental data. In general, the developed technology allows to take into ac-
count the physicochemical properties of the film, including defects, chemical composition and
structure, and also allows to adapt the model to different materials and types of spectrometry.
The application of this model will contribute to the development of thin film analysis technol-
ogies for optoelectronics, sensor systems, photocatalysis and other high-tech industries. In the
future, the expansion of the model may include multilayer films, modeling of crystalline ani-
sotropy and automation of spectral data large sets processing.
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Y poborti ornrcaHo po3poOKy TEXHOJIOTIT MOJICITIOBaHHS, ONITUMI3allii Ta MPOTHO-
3yBaHHS CHEKTPAIBHAX XapaKTePHCTHK TOHKHUX IUTIBOK Ha OCHOBI paMaHIBCHKOT
CIIEKTPOCKOMIi i3 3aCTOCYBaHHSAM IITYYHOI'O iHTENEKTy. Po3risHyTo BHpo-
BaJKEHHS CyJacHUX METOJ[iB MalllMHHOTO HAaBYaHHS, BKIIOYHO 3 aHCAMOJIEBIMHU
ITOPUTMaMH (BHITAJKOBHUH JiC, TpafieHTHHI OyCTHHT) Ta HEHPOHHHMH Mepe-
JKaMH, 10 3a0e3ledye BHCOKY TOUYHICTh MPOTHO3IB 1 aBTOMATH3AII0 aHali3y
crekTpiB. IHHOBawiiHui miaxig nepenbavae BukopuctanHs npodimo Boiita,
SIKMH TTO€THY€E JIOPSHIIIBCEKY Ta I'ayCiBChKY CKJIaIO0Bi, [0 AA€ 3MOTY TOYHO OIIH-
CyBaTH MMpUHY i GopMy MIKIB IS ampoKCHUMAIl 3 ypaxyBaHHAM (i3HKO-Xi-
MIYHHX [TAPaMETPiB IUTIBOK 1 BIUVIMBY €KCIIEPUMEHTAIBHUX YMOB. 3a/iaya aKkTyallb-
Ha y 3B’S3Ky 31 3pOCTaHHSAM BHMOT 10 TOYHOCTI aHANi3y MaTepialiB y raimy3sx
ONTOCNEKTPOHIKH, (POTOKATANII3y Ta CEHCOPHUX CHCTEM, Y SIKHX paMaHiBChKa
CIEKTPOCKOIIiSl € He3aMiHHUM iHCTpyMeHToM. Tpanuniiiai Metoan oOpoOku na-
HUX OOMEXEHI CKJIAJHICTIO B3a€MOJIi CBIT/Ia 3 MaTepialoM, a 3a JOMOMOTOIO
inTerpanii I MoxHA TOAONATH IIi TPYAHOII 3aBASKH ONTHMI3allii, aHAi3y i
MIPOTHO3YBaHHIO. 3aIllpONIOHOBAHA TEXHOJIOTIS MOEAHYy€e (hi3MIHE MOJIETIOBaHHSI
crekTpiB 3 IIII-nporHo3yBaHHAM, 10 J1a€ 3MOT'Y TOYHO BPAaxOBYBaTH BILIUB Jie-
(exTiB, HEOAHOPIAHOCTEH 1 MOTIMHAHHA. PeanizoBaHO anropuTMH IS ONTHMi-
3amii Mozeni 3 MiHIMi3aLi€0 CepeAHBOKBAIPATUIHOI MOMMIKH i BUOOpY Haii-
Kpamioi MoJei JUIs BUpilIeHHs crienngiyHux 3anad. [Ipu qomaTkoBiil onruMiza-
il Mozen BpaxOBYETHCS BIUIMB TOBIIMHH IUTIBKH 3 BUKOPHCTaHHAM KoedimieHTa
TIOTJIMHAHHS Ta MPHUIYIICHHS HeOaKaHNX peakiii 3a 10moMororo OypepHuX ra-
3iB (Ne, Ar). Po3pobnenuii minxin 3abe3neuye CKOpOUCHHS Yacy i pecypciB Just
EKCIIEPUMEHTAIBHUX JIOCIIKeHb, aBTOMATU3AIII0 aHAII3Y CIIEKTPIB 1 pO3pOOKy
HOBHUX MaTtepiamniB. 3aBasku meromaM LI MoxxHa oTpUMaTH BHCOKOTOYHI pe-
3yJIbTaTH HaBiTh 32 HEBEJMKOI KUIBKOCTI eKCIepuMeHTanbHHX naHux. Cepen
MIEPCIIEKTUB PO3BUTKY — IHTErpamisi 0araTomapoBHX CTPYKTYp, ypaxXyBaHHS
aHI30Tpomii MaTepianiB Ta JeTalbHE MOJCIIOBAHHS Ne(EKTiB y IUTiBKaX, a Ta-
KOXX aJjanTamis Ui aHali3y pi3HUX TUIIB MaTepianiB, TAKHX SK OpraHidHi ILTiB-
KU 9¥ TiOpUIHI CTPYKTYypH. Po3mmpenHs (QyHKIIOHAIEHUX MOXIMBOCTEH Ipo-
rpaMHOTO 3a0e3MeUeHHs] MOKe nepen0ayaTi aBTOMATH3AII0 (ITHHTY CIIEKTPiB,
ONTUMI3allil0 MapaMeTpiB IUTIBKM Ta MPOTHO3YBAaHHS BIACTUBOCTEH Ha OCHOBI
MAaIIMHHOTO HAaBYAHHS 3 BEIMKUMH HabopaMu naHuX. Lle BiIkpuBae HOBI MOX-
JIUBOCTI JISl TOCHI/KEHb (Di3MKO-XIMIUHMX BIACTUBOCTEH MarepiaiiB i po3po0-
KH 1HTEJIEeKTyaJbHUX CHCTEM aHaJIi3y.

KniouoBi cioBa: paMaHiBCbKa CHEKTPOCKOINS, TOHKI TUTIBKH, MOJCTIOBAHHS,
MallMHHE HaBYaHHS, CIEKTPAILHUH aHasi3, ONTHUMi3awis, HeHpOHHI Mepexi,
(i3UKO-XIMIYHI BJIaCTUBOCTI.
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