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ADAPTIVE LEARNING RATE FOR CNNMVN

Adaptive learning rate techniques are widely used to enhance the training efficiency of
neural networks by improving convergence speed and accuracy while decreasing the risk of
getting stuck in local minima or saddle points. In this paper, we introduce adaptive learning
rate approaches for the Complex-Valued Convolutional Neural Network with Multi-Valued
Neurons (CNNMVN), a fully complex-valued neural network that procesoses complex in-
puts using complex weights and complex-valued activation functions. Unlike traditional
real-valued neural networks, CNNMVN employs an error-sharing principle rather than
gradient-based optimization, eliminating the local minima problem and allowing for more
flexible adjustments in the learning rate.

We propose two adaptive learning rate (ALR) strategies tailored for CNNMVN. The
first approach modifies the learning rate coefficients in the error-correction formulas, while
the second one adjusts the normalization parameters in the error-backpropagation and
error-correction processes. Both methods dynamically adapt the learning rate based on
validation accuracy.

Results indicate that adaptive learning rate significantly improves convergence speed
and accuracy, particularly when combined with a self-adaptive learning rate. Furthermore,
our study highlights the impact of normalization factors on learning dynamics and explores
training scenarios where normalization is minimized or removed entirely.

Our findings demonstrate that ALR methods enhance CNNMVN training performance,
providing a robust framework for optimizing learning rates in complex-valued neural net-
works.

Keywords: convolutional neural networks, complex-valued networks, multivalued neu-
rons, CNNMVN, MLMVN, image recognition, frequency domain.

1. Introduction. Deep learning has experienced significant progress with the
development of advanced neural network architectures and training methodologies.
One of such architectures is the Convolutional Neural Network with Multi-Valued
Neuron (CNNMVN). It was first introduced in [1], its modified learning algorithm
was presented in [2] and its further deep analysis was presented in [3]. CNNMVN
retains the traditional CNN topology while being capable of directly processing
complex-valued data, making it particularly useful for applications requiring the
handling of magnitude and phase relationships, such as signal processing, radar
imaging, and medical diagnostics.

An essential factor influencing the performance of CNNMVN is the choice of
the learning rate, which directly impacts convergence speed and generalization ca-
pability. In real-valued neural networks various adaptive learning rate techniques
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have been proposed to improve training efficiency, such as AdaGrad [4], RMSprop
[5], Adam [6], and AdaBelief [7]. These algorithms dynamically adjust the learn-
ing rate based on past gradient information. There also is adaptive learning rate
techniques based on model complexity [8] and training loss [9]. Similarly, in the
domain of complex-valued neural networks, adaptive learning rate techniques have
been explored, including complex-valued extensions of Adam

Recent advancements in adaptive learning rate techniques for complex-valued
neural networks have introduced several novel approaches aimed at improving con-
vergence efficiency and stability. One such approach is the complex-valued extension
of the Adam optimization algorithm [10], which adapts the well-established Adam
method to the complex domain, allowing for more effective gradient-based learning
in complex-valued neural networks. Another significant contribution is the Adap-
tive Orthogonal Gradient Descent (AOGD) algorithm [11], specifically designed for
fully complex-valued neural networks. The Complex-Valued Adaptive Learning Rate
Tuning (CALRT) algorithm [12]| has also been proposed to dynamically determine
the optimal complex-valued step size (or learning rate) at each iteration of the train-
ing process. Additionally, a training algorithm with a selectable search direction for
complex-valued feedforward neural networks has been introduced [13]. This method
allows for adaptive modifications in the search direction, improving learning effi-
ciency and reducing the risk of stagnation during training.

CNNMVN is a fully complex-valued neural network: its inputs, weights, and ac-
tivation functions are all complex-valued. Unlike traditional gradient-based meth-
ods, CNNMVN learning algorithm is based on the error-sharing principle. This
fundamental distinction allows CNNMVN to avoid issues related to local minima,
which are commonly encountered in traditional complex-valued gradient descent
approaches. As a result, adaptive learning rate algorithms designed for real-valued
neural networks (RVNNs) are not suitable for CNNMVN. In this paper, we present
several approaches for adaptive learning rates that enhance accuracy and improve
convergence speed.

This paper is structured as follows. In Section 2 and 3, we recall some fundamen-
tals related to the error-backpropagation and error-correction algorithms adapted
for CNNMVN. Section 4 explores various adaptive learning rate approaches for CN-
NMVN. In Section 5, we evaluate the effectiveness of these approaches through
experimental results on benchmark datasets, demonstrating improvements in con-
vergence speed and model performance. Finally, Section 6 provides conclusions and
outlines potential directions for future research in adaptive learning strategies for
CNNMVN.

2. CNNMYVN error backpropagation process. As it was said before,
the learning algorithm in CNNMVN is based on the error-sharing principle [14]. It
means that the error produced by each neuron should be proportionally distributed
among the neurons connected to it.

Let us briefly recall some fundamentals about CNNMVN error backpropagation
[2].

Let us have CNNMVN with G convolutional layers, M — 1 hidden layers and
one output layer. Let each convolutional layer consists of Hy kernels g = 1,G. Let
the input image x (or a feature map in the case of convolutional layers from the 24
one to the G one) be of size a, x b, x d,. Then the kernel size in ¢g"" convolutional
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layer is of size r, X r, X d, (r, < min (ag,b,) ). The m™ hidden layer in the fully
connected part contains N, neurons (m = 1, M — 1), and the output layer contains
Njs neurons.

Now the global errors of the network 4 ,, should be calculated as
The global error then should be shared among all neurons that participate in its
formation. Thus, the errors of the output layer neurons are

1 -

Sort = —————& n=T1, Ny, 2
M= O M (2)

To backpropagate the output neurons errors for the neurons in hidden layers we
should use the following rule:

1 e 1 —_ S—
5im = 6nm ) ) ) = 1a Nm7 = 1>M - 17 3
D LRI R @

where §;,, is the error of the i neuron in the m*" layer and the normalization factor
Gm-1 = Npm_1+1 (m=2,M —1) is the number of all neurons in the m — 1% layer
plus one (note that for the first layer (m = 1) we use ¢; = 1 because there are no
preceding layers and no neurons to share the error with). The errors of the first
hidden layer neurons are

5i1 = lzén,Q(w?Vg)_lv 1= 1aN17 (4)

where F' stands for the number of inputs which is equal to the length of flattened
feature maps.

Then the errors of the neurons in the first hidden layer should be backpropagated
to the last convolutional layer kernels as

1 N1 ) i:17...,aG—Tg+1,
6ZG: Q_Z(Sn’l(w:;i) s j: 1,...,bg—TG+1, (5)
Gn:l QG:rG'TG'CGa

where (5ZG is the error of the feature map pixel with coordinates i, j, produced by

the h'" kernel of the last (G™) convolutional layer; &, ; are the errors of the first

. 1 . .
hidden layer neurons and w?j’h are these neurons’ weights that are responsible for

processing the ijht" input; Q¢ is the normalization factor which should be equal to
the size of the kernel in the last convolutional layer.
Now the errors of the kernels in the g — 1% convolutional layer are:

Loo1 1 Hy Ty o h 1 z'.zl,...,ag—rg—l—l,
o :@ZZM’ <wt’> L =1, b=yt 1, (6)
9= h=1 t=1 Qg =1g7g"Cq,

where 697! are the errors of the feature map obtained by the [** kernel in the g — 15
convolutional layer (I = 1, H, ;); "% and w? Y are the errors of the output and the
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weights of the A'" kernel in the ¢*" convolutional layer that process the ij*" pixel in
the ' convolution respectively; ,_1 is a normalization factor which is equal to the
size of the kernel in the g — 1" layer (note that @, = 1 as there is no further error
backpropagation from the first convolutional layer).

In [3] were also introduced the error backpropagation rules for convolutional
layers with self-adaptive learning rate. Hence, the feature map errors of the last
convolutional layer (5) with additional normalization can be found as follows:

1 N . 1=1,...,a — 14+ 1,
z : n,1\ — .
(SZG:—hG 6n,1(wijh) s ] = 1,...,bg—Tg+1, (7)
Qc [¢;j | n=1 Qc =1 ra-ca

and the errors of the feature maps in preceding convolutional layers (6) with addi-
tional normalization factor are

Hy Ty izl,...,ag—rg—i—l,

_ 1 -1 .
529 1:T225h’g’t<w?’g> s jzl,...,bg—rg—f‘]., (8)
Qg1 C,-j’g ‘ h=1 t=1 Qg =1g74"Cq,
where c?j?g is the absolute value of the convolved pixel with coordinates 7, 7 in the

h'" kernel in the g'" convolutional layer (h =1, H,, g =2,G).

3. CNNMVN Error correction. The error correction in CNNMVN should
be done in the same manner as suggested in [1] and [3]. The error correction for
convolutional layer kernels implies the same idea of the batch LLS-based learning
algorithm [15] for MLMVN and the error correction for fully-connected layers is
identical to the error correction rule in MLMVN.

Let us have an a x b x d input image and a kernel whose size is r X r X d
(r < min(a,b) ). Let K be the number of the convolutional windows in an image
through which a convolutional kernel is sliding. Thus K = (a —r + 1) x (b—r + 1).
Each convolutional window can be flattened and represented as an input vector to
a kernel. Then, using a matrix-vector notation the convolutional operation can be
represented as

T Wi1,1 21

= | (9)
Tk Wy r.d ZK

where ; is the flattened input vector (i = 1, K); w are the kernel weights and z;
are the convolved pixels. According to a batch algorithm and as it was shown in [1],
after calculating the errors for all z; we can represent adjustments, which should be
added to the weights to correct them and obtain the following

T A1111,1,1 01
: = | (10)
TK Awr,r,d 0K

where Aw,, ; are the adjustments terms for kernel weights (u,v = 1,7 and j = 1,d)
and §; are the respective errors to be corrected (i = 1, K). We can rewrite (8) as

X Aw =4, (11)
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where X consists of K flattened inputs. Thus, system of equations (8) (or (9), which
is the same) for unknowns (Aw;1,...,Aw,, ) which is typically overdetermined
(K > r-r-d) can be solved in a similar way

Aw= X6, (12)

where X is the Moore-Penrose inversion of X, that is a pseudoinverse matrix of X.
Finally, the adjusted weights of the kernel are

W=W+C-Aw, (13)

where W and W are the weighting vectors before and after correction, «+» is a
component-wise addition, and C' stands for learning rate.

When the wights of the kernels in convolutional layers are adjusted, we should
to adjust the errors in the fully-connected layers. It should be done as follows:

W =W + LéX*. (14)
p+1

And the rule with a self-adaptive learning rate is

~ C
W=W+ —6X", 15
TEIE (15)

where W and W are the weighting vectors before and after correction, «+» denotes
component-wise addition, C' is the learning rate (in general it should be a complex
number, but in all practical applications it is usually equal to 1), X* is the vector
of reciprocal inputs, p is the number of inputs, and |z| stands for the absolute value
of the weighted sum before adjustment (this is a self-adaptive part of the learning
rate, and it is significant in MLMVN learning [14, 16]).

4. Adaptive learning rate. Adaptive learning rate (ALR) techniques play
a crucial role in real-valued neural networks (RVNNs) by dynamically adjusting the
learning rate during training. The primary objectives of ALR in RVNNs include
increasing the learning rate to accelerate convergence, reducing training time, and
mitigating issues related to local minima and saddle points. By optimizing the learn-
ing rate, these networks enhance their training efficiency and overall performance.

However, unlike RVNNs, the learning rule in CNNMVN is not formulated as an
optimization problem. Instead, it follows a unique "error-sharing principle," which
distributes the error among connected neurons rather than relying on gradient-based
updates. As a result, CNNMVN does not depend on traditional gradient descent
methods for weight adjustments, making standard ALR techniques designed for
RVNNSs unsuitable.

A key advantage of CNNMVN'’s learning rule is that it inherently avoids the
problems of local minima and saddle points. Since the learning process does not
involve an optimization-based approach, there are no constraints on increasing the
learning rate because there is no risk of overshooting or jumping over the minima
of an optimization function. This flexibility allows CNNMVN to achieve faster
convergence without the risk of getting trapped in undesirable minima, a common
issue in gradient-based learning frameworks.
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Despite this advantage, the error-sharing principle introduces a challenge when
backpropagating through layers with a large number of neurons or inputs. In such
cases, the distributed errors become significantly smaller as they propagate through
the network. This reduction in error magnitude leads to very small weight adjust-
ment terms, ultimately slowing down the learning process in deeper or more complex
network structures.

To address this issue, an adaptive learning rate mechanism can be incorporated
into CNNMVN to accelerate training in layers where error values are particularly
small. By dynamically increasing the learning rate in these layers, the network can
counteract the decreasing weight updates and maintain a more efficient training
process. This approach ensures that CNNMVN benefits from faster convergence
while preserving the advantages of its non-gradient-based learning rule.

We have designed two adaptive learning rate rules for CNNMVN to enhance
training efficiency. The algorithm for both ALR approaches follows these steps.
Initially, the learning rate is set to 1. After every K learning samples, we perform
a model validation step. Based on the validation accuracy, the learning rate is
adjusted accordingly.

The first ALR rule focuses on reducing the normalization factors in the error-
backpropagation (2)—(6) and the error-correction formulas (11)—(13). Similar to the
first approach, this method maintains a uniform learning rate across all layers but
specifically targets the normalization factors as an additional multiplier C' in the
denominator. In such a case decreasing the learning rate C' leads to decrease of the
normalization factors. Hence, the network effectively amplifies weight adjustments in
layers where the error values are significantly small, thereby accelerating the learning
process. The adaptive learning rate coefficients for this approach are determined as

4(# of Mismatched samples 1)
C = 4 # of All samples

(16)

The second approach involves adjusting the learning rate coefficient within the
error-correction formulas (12), (13), and (14). In this method, the learning rate re-
mains consistent across all layers, ensuring a uniform update mechanism throughout
the network. The learning rate coefficient can vary within a pre-determined range
[1, A] and can be adjusted as follows

# of Mismatched samples 1)

C = A+1—A . 44< # of All samples (17)

Both approaches aim to reduce the slowdown caused by the error-sharing prin-
ciple, ensuring that CNNMVN achieves faster convergence while maintaining its
unique learning framework.

5. Simulation results. To evaluate the effectiveness of the proposed adap-
tive learning rate methods, we performed experiments using the MNIST dataset of
handwritten digits [17]. The dataset consists of 60 000 training and 10 000 testing
samples 28 x 28 pixels each. The network architecture consisted of a simple topology
with one convolutional layer containing 16 kernels of size 5 x 5, followed by a hidden
layer with 256 neurons and an output layer with 10 neurons. The soft margins bor-
der was equal to 7/8. The training process lasted for 10 epochs. All experiments
were performed with the same random seed to compare the dynamic of the learning
process.
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During training, validation was performed every 1 000 training samples, and the
learning rate was adjusted accordingly based on validation accuracy. This ensured
that the learning rate dynamically adapted to improve training efficiency.

We provide graphical results demonstrating the testing accuracy for different
configurations. Figure 1 presents the learning process with default learning rates
and normalization factors as defined by (1)—(6), alongside the same learning process
with the self-adaptive (ABS) normalization in the convolutional layers determined
by (7) and (8). The results indicate that ABS normalization for the convolutional
layer does not significantly impact learning accuracy or convergence time.

To evaluate the first type of adaptive learning rate, we analyzed the default
normalization factors of the neural network and identified two key normalization
factors that influence the learning process. Based on the model topology and input
image size, the convolutional layer produces 16 feature maps of size 24 x 24, which
are subsequently flattened into a vector of size 1 x 9216 and passed to the fully
connected part of the network. During error backpropagation, the error of the first
fully connected layer neurons is distributed among all inputs and, consequently,
divided by 9216. Additionally, in the error-correction process, the obtained error is
further divided by 9216 to distribute it among all weights. This process leads to
a significant reduction in the adjustment terms, thereby slowing down the overall
learning speed.

To resolve this issue, we applied ALR (15) to the error-backpropagation process
while setting the normalization factor in the error-correction process in (13) to 1.
Figure 2 illustrates the learning rates for the first type of normalization compared to
the default learning process. This approach was tested with and without ABS nor-
malization. The results demonstrate that learning accuracy increases significantly
from the beginning of the first epoch in both cases. However, while the model with-
out ABS normalization experiences instability and divergence, the model with ABS
normalization maintains stable learning throughout the training process.

100 -
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n w S w {2}
o o o o o
T T T T T

5}
T

— — — — Default learning rate. Without ABS
— — — — Default learning rate. With ABS

Il Il Il I}
0 1 2 3 4 5 6 7 8 9 10
Epochs

S}

Figure 1. Accuracy of the model with default normalization factors and learning
rates.
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Figure 2. Accuracy of the model with the first ALR type.

Figure 3 presents the second ALR approach in comparison to the default learning
process. This approach was also tested with and without ABS normalization. The
results indicate that the second type of ALR also improves learning accuracy and
accelerates model convergence. Furthermore, the figure illustrates different ALR
rates and their respective impacts on model performance.

Based on the findings above, we were also interested in testing the model without
normalization factors entirely. Two types of tests were conducted: one where the
normalization factors in the first hidden layer were set to 1 and another where
all normalization factors were set to 1. Both configurations were tested with and
without ABS normalization. Figure 4 presents the accuracy rates of these models in
comparison to the default learning process, providing further insights into the role
of normalization in CNNMVN training.

It is important to highlight that, as observed in both ALR rules and the models
without normalization, the application of ABS normalization played a crucial role
in ensuring the convergence of the learning algorithm.
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Figure 3. Accuracy of the model with the second ALR type.
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Figure 4. Accuracy of the model with only hidden fully-connected layer
normalization set to 1 and model with all normalization factors set to 1.

6. Conclusion.

In this paper we introduced adaptive learning rate (ALR)

techniques for CNNMVN to improve training efficiency and convergence speed. Un-
like traditional real-valued neural networks, CNNMVN follows an error-sharing prin-
ciple instead of an optimization-based learning rule, allowing an unrestricted learning
rate adjustments without the risk of overshooting local minima.

We developed two ALR strategies: one modifying learning rate coefficients in the
error-correction formulas and another adjusting normalization factors in the error-

backpropagation and error-correction formulas.

Our experimental results on the

MNIST dataset demonstrate that both approaches effectively accelerate learning
and enhance model performance. Furthermore, our investigation of self-adaptive
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normalization revealed that it plays a crucial role in stabilizing the learning process,
particularly in preventing divergence when applying ALR techniques.

Overall, our findings highlight the potential of ALR in CNNMVN, offering a

significant improvement in training efficiency while maintaining model stability. Fu-
ture work may explore further refinements to ALR strategies, including adaptive
adjustments tailored to specific network layers or tasks.
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AjanTuBHI MeTOMM 3MIHU IIBUIKOCTI HABYAHHSI IMUPOKO BUKOPHCTOBYIOTHCS JIJIsl ITiJI-
BUITICHHs e(DEKTUBHOCTI HABYAHHS HEHPOHHUX MEPEK, OCKIIbKYA BOHU TOKPAILYIOTh IIIBU/I-
KIiCTh Ta TOYHICTH 30KHOCTI Ta 3MEHIIYIOTh PU3NK 3aCTPATaHHS B JIOKAJIBHUX MiHIMY-
Max abo CiamomomibHNX ToYKax. ¥ IIiif CTaTTi MM IPEACTABIAEMO IMAXOAN A0 aJalTHBHOI
MIBUIKOCTI HABYAHHS JJIs 3rOPTKOBOI HEHPOHHOI Mepeki 3 OaraTo3HaYHUMH HEHpPOHAMU
(CNNMVN), sika € HOBHICTIO KOMILICKCHO3HAYHOIO HEPOHHOIO MEPEZKEIO, 1110 OIIEPYE KOM-
IUIEKCHUMHU BXiTHUMHU JIAHUMH, KOMIJIEKCHUMHU BaraMu Ta KOMIIJIEKCHOZHAYHUMU aKTUBa-
miHUMY DYHKIISIMHA.

Ha Binminy Bix Tpamumiitaux mgificHosnadnnx Heiponaux mepexx, CNNMVN sBukopu-
CTOBY€ MPUHIIAII [TOLTY MOMUJIKH 3aMiCTh IPaJi€HTHOI ONTHUMI3aIil, M0 yCyBae mpobemy
JIOKJIbHUX MIiHIMyMiB 1 [103BOJIsi€ OIIBIT THYYKO KOPUTYBATH MIBUIAKICTH HaBYaHHA. Mu
NPOIIOHYEMO JIBi crparterii agantuprOl meuakocti Hapdanusa (ALR), cmemianbHo pospo-
6seni g CNNMVN. Ilepma crpareriss Moaudikye KoedilieHTH MBUIKOCTI HABYAHHS Y
dopMysIax KOPeKIil MOXuOKMU, TOJ K JIPyra PErysroe IapaMeTpu HOpMaJIi3aliil y mporecax
3BOPOTHOIO TOMIUPEHHS MOXUOKM Ta i1 Kopekrii. O6uaBa MeTOAM JTUHAMIYHO AJAITYIOThH
MBUIKICTH HABIYAHHS HA OCHOBI TOYHOCTI Ha BaJsIimartiiinifi BubipIr.

PesynbraTn nmokasyors, 110 a[auTUBHA NIBAIKICTh HABYAHHS CYTTEBO IIOKPAIILYE IITBU/I-
KicTb 3012KHOCTI Ta TOYHICTb, OCOOJIUBO IIPH TIOETHAHHI 3 CAMOHAJIAIIITOBY BAHOIO MBHUIKICTIO
HauaHHdA. KpiM ToOro, Harre JOCJIiI2KeHHS MiIKPEC/IOE BIJIUB HOPMAaJIi3allil Ha JUHAMIKY
HaBYAHHS Ta PO3IVISIAE CIEHApPIl, y SKUX HOpMAaJi3alio MiHIMI30BaHO ab0 MOBHICTIO BU-
KJTIOYI€HO.

Hamri pesyibraTu ieMoHCTPYIOTH, 1m0 MeToan ALR mokparinyors edeKTHBHICTS HaBIa~
uasgs CNNMVN, 3abesmnedyoun HaJiiiHy OCHOBY JJIsl ONTHMI3aIil MBUAKOCTI HABYAHHS B
KOMILIEKCHO3HAYHUX HEHPOHHUX MeperKax.

Kuaro4doBi cioBa: 3ropTkoBi HeifipomMepeski, KOMIJIEKCHO3HAYHI MeperKi, baraTo3HavHi Heili-
poru, CNNMVN, MLMVN, posuisHaBanHsi 306paKeHb, 4acTOTHA 00JIaCTh.
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