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QUASI MULTIPLICATIVE BASES FOR BIMODULE PROBLEMS
FROM SOME CLASS

We consider the class of separated bimodule problems (K,V) such that ObK = ObK* U ObK™,
which contains the linear matrix problems. For a bimodule problem satisfying some conditions
with | Ob K| = 1, we construct explicitly the analogue of multiplicative basis which we call quasi
multiplicative. This basis makes it possible to use the covering technique.

PosryisinyTo kiac posainenux Gimomynbaux 3a1a4d (K, V), axuii Micturs tinifini marpuyni 3agadi i
rakux, mo ObK = ObKT UObK™. V sunaaxy | Ob K| = 1 Ta Bukonanns neaxkux yMoB CKiHYeH-
HOCTI TI00Y/IOBAHO AHAJIOT MYIbTHUILTIKATUBHOTO 0a3ucy OIMOIy/IbHOI 3a/adi, AKHH MU HA3UBAEMO
kBas3i myabruiikarueauM. Lleit 6a3uc M03BOJsIE BUKOPUCTOBYBATH TEXHIKY HAKPUTTIB.

A classification of problems of finite and tame representation type and their
indecomposable representations together with a description of their representation
categories belongs to the most important problems of representation theory [1-3].
A very important and effective tool for a solution of the finiteness problem is so
called “covering method”. This method is especially effective when the basis is
multiplicative, see [4,5]. We give a generalization of the notion of a multiplicative
basis for a class of bimodule problems containing linear matrix problems. We for-
mulate a number of conditions for “small” subproblems providing the finiteness of
their representation type. For a bimodule problem satisfying these conditions with
| Ob K*| = 1, we construct explicitly the quasi multiplicative basis. This basis makes
it possible to use the covering technique for bimodule problems from considered class.

Let k be algebraically closed field. Unless otherwise stated, all the categories we
consider are the categories over k, all morphism spaces are finite dimensional, and all
functors are k-linear. A category K is called local, provided for every X € ObK the
endomorphism algebra K(X, X) is local, and regular, if, in addition, every invertible
morphism is automorphism. A category K is called fully additive or Krull-Schmidt
category if K is a category with finite direct sums and every idempotent from K
splits, i. e. it has kernel and cokernel.

A full subcategory Ko C K will be called an additive skeleton of K, provided Kg
is regular and every X € ObK is isomorphic to a finite direct sum of objects from
Ko. For a local category K and for every X € ObK there exists the decomposi-
tion K(X, X) = kly & Rad X, where Rad X is the Jacobson radical of the algebra
K(X, X). If K is regular, then we denote by Rad K the radical of K, i.e. an ideal
in K such that RadK(X,Y) = K(X,Y) for X # Y, and RadK(X, X) = Rad X,
X,Y € ObK.

Let V be a K-bimodule ( [6]). A category K (a bimodule V) is called locally finite
dimensional, if for any X € ObK the spaces @& K(X,Y) and & K(Y,X)

YeObK YeObK

(& V(X,Y)and & V(Y,X)) are finite dimensional, and finite dimensional,
YeObK YeObK

provided all the spaces @& K(X,Y) ( @& V(X,Y)) are finite dimensional.
X,Y€ObK X,Y €ObK
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Given a category K, we denote by add K an additive hull of K, i.e. a minimal
fully additive category which contains K. For a K-bimodule V, we denote by addV
the corresponding add K-bimodule.

A pair A = (K,V) consisting of a category K and a K-bimodule V is called
a bimodule problem over K or shortly bimodule problem. A bimodule problem A
will be called normal, provided the category K is regular, and both K and V are
locally finite dimensional All the bimodule problems we will consider are assumed
to be normal. Given some S C ObK denote by Kg the full subcategory of K with
ObKg = S, and by Vg the subbimodule V|s = KgVKg. A bimodule problem
As = (Kgs, Vg) is called the restriction of A to S.

For a bimodule problem A = (K,V), a representation M of A is a pair M =
(Mg, My), where Mg € ObaddV = ObaddK and My € addV(Mg, Mk). If M,
N are two representations of A, then a morphism f from M to N is a morphism
f € add K(Mk, Nk) such that Ny - f — f - My = 0. The composition of morphisms
and the unit morphisms in the representation category rep A and in the category
add K coincide.

Given two bimodule problems A = (K,V) and A" = (K',V’), a morphism of
bimodule problems § : A — A’ is a pair 6 = (6y,0,), where 0y : K — K' is a k-
functor, 6, : V. — V' is a K-bimodule morphism with the K-bimodule structure on
V' induced by 6y ( [6]).

Let A = (K,V) be a normal bimodule problem. Bigraph ¥(= ¥ ,4) = (3, 1)
is called a basis of the bimodule problem A, if 3y = ObK, ¥%(X Y is a basis of
V(X,Y), and ¥}(X,Y) is a basis of RadK(X,Y), X,Y € ObK. For all z,y € 3,
such that the product xy is not specified, we assume xy = 0.

Let V be a K-bimodule. We say that © € Rad K(X,Y") annihilates the bimodule
V,if za = 0, bx = 0 for any Z € ObK, a € V(Z,X), b € V(Y, Z). The ideal of the
category K consisting of all annihilate elements is called the annihilator of V and is
denoted by Anng(V). A bimodule V is called faithful provided Anng(V) = 0. We
call a bimodule problem A = (K,V) faithful, if the bimodule V is faithful. For a
bimodule problem A, a faithful part of A is defined as the faithful bimodule problem
Ared, Ared = (Krea, V), where Kieq = K/ Anng (V).

Let A = (K, V) be a normal bimodule problem, R = Rad K, ¥ be a basis of A.
The integer N is called the global triangled height of A if R¥N*1 =0, R¥V = 0, and
either or RV # 0 or R¥='V # 0. Denote by V; = RV, i =1,..., N. We have two
filtrations:

ROR’*>...DRV >0, ViDOVyD...DVy DO. (1)

The map h : RUV — N such that h(z) =i if x € (R\R™)U(V;\Vii1), is called the
triangled height of an element. The element x € ¥, is called minimal, if h(z) = 1.
Let h(0) = oo. Then h(zy) > h(z) + h(y) and h(x + y) = max{h(x), h(y)} for all
2,y € Sy. Let "0 = {o e $F | h(z) =4}, i=1,...,N, k= 0,1. Clearly, the set
(210 =1,..., N} is a partition of X, k = 0, 1.

Definition 1. The basis ¥ of bimodule problem A is called triangled (with respect
to the filtration (1)), iflgiZ}(l) is a basis of RY, lgi E?(Z) is a basis of Vi, i=1,...,N.

Lemma 1 ( [2]). Every normal bimodule problem A with the nilpotent radical
has a triangled basis.
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Definition 2. A bimodule problem A = (K, V) is called admitted if the set Ob K
can be decomposed in a disjoint union ObK = Ob Kt UOb K™ such that V(X,Y) # 0
implies X € ObK™, Y € ObK™ and RadK(X,Y) # 0 implies X, Y € ObK™*.

The property of a bimodule problem A to be admitted depends only on the
bigraph X 4, therefore we will use the notation X§ = ObK" and 7 = ObK™.

Remark 1. For a triangled basis 3 of an admitted bimodule problem, the fol-
lowing properties hold:

1) E%(i) is a basis of RY/R™ modulo R™™, 29(") is a basis of V;/Viy1 modulo
Vi-{—l; izl,...,N,'

2) for any x € ¥y, h(x) =i if and only if x € $,9;

3) for x € R the equality x = Y Ao, A\, € k, implies h(p) = h(x) for any

pET]

@ € X7 with A\, # 0;

4) for x € V the equality x = > M\a, A\, € k, implies h(a) = h(zx) for any

0
a€xy

a € XV with A\, # 0.

Remark 2. Let A be an admitted bimodule problem with the global triangled
height N. There are the decompositions of k-vector spaces:

V,i= @& Vy(E,A), RR= & R(AB), i=1,...,N

— + +
EeX ,AeX; A,Bexy
with the multiplications:

Ri(AaB)ij(E7A)_>Vi+j(EaB)v AvBEE(TvEGEaa
Ri(B,C) x RI(A, B) — R™(A,C),  AB,Cex,

Definition 3. Let E € X, A,B € ¥ (in particular, A = B), a € V(E, A),
b e V(E,B). We say that aéb if there exists r € R(A, B) such that ra = b, we

shall write or a <, b. The partial order E on V 1is transitive due to the associativity:
if ap <, ag and ay <,, ag then a; <, ag with r = rory. The order E on V is

non-reflexive due to the associativity and triangularity conditions. Two elements
a,b € V are called comparable is either aéb or bEa. For A € ¥§ let ord A =
dimy > V(E,A).
EBexy

Let us define the class € of bimodule problems we will consider. Let A € C
if and only if A is normal admitted faithful bimodule problem with the nilpotent
radical R and the triangled basis ¥ with respect to the filtration (1) such that for
any F € X, A,Be X, A+ B:

1) ord A < 3;

2) if ay,ay € V(E, A) are linearly independent, then ay, as are comparable;

3) if ord A = ord B = 3, then any a € V(E, A), b € V(F, B) are comparable;

4) if R(A, B) = {¢}, then dimy (¢ >  V(E,A)) < 3.

EBexy

Remark that if one of the conditions 1)—4) is not true, then bimodule problem

A is of strictly unbounded type ( [2]).
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For any x € RU YV there is a basis decomposition z = Y A,y € ¥y, A, € k.
yeED]
Denote by con, z = A, the content of y in . Two nonzero elements z,y € KUV

are called proportional if k*xr = k*y, in this case we write = ~ y.
Let A, B € ¥ (in particular, A = B). For p,1 € R(A, B) we say that ¢ < 1 if
Y € R(B,B)pUypR(A, A) UR(B, B)pR(A, A). If ¢ < 1, then h(p) < h(1)).

Definition 4. Given A, B € ObK™, define by AANB) = (KAB) VAB)) the
full restriction of the bimodule problem A to the set Sy = {A, B} U{s(a) | a €
Y0 e(a) € {A, B}}, where s,e : ¥y — X are maps taking starting s(a) and ending
e(z) wvertices of an arrow a. Denote by S4B C X the restriction of the basis ¥ of
A to AAB) - We will write A instead of A in the case A= B. The bimodule
problems AB) and AW inherit the triangled structure from A (and may have the
proper one). Denote by h' : EEA’B) — N the induced triangled height.

Let S C ¥y, and Ag = (Kg, Vg) be a restriction of bimodule problem A = (K, V)
to the set S. Given a faithful bimodule problem A, the bimodule problem Ag can
be non-faithful.

Remark 3. Let A be an admitted bimodule problem, and A,B € %f. If A is
faithful, then bimodule problems AXE) and AX are faithful as well. Moreover,
R(A, B) = Rad(AXP)) (A, B). This fact follows from the equality

Anng(V) = B BEL(J)b - Annyas (VD).

Given a bimodule problem A, a change of X consists of a family of changes
of bases in all V(E,A) (the change of X) and all R(A, B) (the change of X1),
A, B e X, EF €Y. These new bases gives the new basis Z;l of A. The change is
called triangled, provided both ¥, and 2:4 allow a triangled filtration.

Definition 5. Let z,y € X, i = 0,1, and s(z) = s(y), e(x) = e(y). The change
of basis from X to Y is called an elementary change provided ¥’ = x+ Ay, A € k, and
2 =z for all z € L\{z}. An elementary change is called correct, if h(z) < h(y).
The change of basis from X to X' is called standard if it is the superposition of
correct elementary changes. We will use only standard changes of basis. Usually we
do not modify the notations of basic elements after the elementary change of basis
and write x instead x’.

For a,b € 3Y(E, A) let

S(a,b) = {¢ € ¥1(A, B) | comy(¢a) # 0},
Si(a,b) = {€ € R1(A, B) | €a = b} C S(a,b).

For ¢ € X}, denote P, = {(a,b) € X! x ¥ | ¢ € S(a,b)}.

Remark 4. Let a,b € X0 If p,v € S(a,b) and h(p) < h(v), then there is
a correct elementary change of basis ¢' = o — M\p, X € k*, such that S'(a,b) =
S(a,b)\{¢}. Indeed, since h(yp) < h(1)), then the elementary change of basis ¢’ =

©— %w is correct and leads to the condition S'(a,b) = S(a,b)\{¢}.
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Definition 6. The triangled basis > of a bimodule problem A € C is called quasi
multiplicative if the following properties hold.
1) For any a € X¥ and ¢ € X there exists b € 39 such that pa ~ b whenever
wa # 0. In particular, S(a,b) = 3i(a,b).
2) Given o, € X1 with 1o # 0, one of the following conditions holds:
(a) there is T € X1 such that Vo ~ T;
(b) there are 71,72 € X1 such that Yo = M7 + XaTo, A1, A2 € k*, and there
exist a;,b;,c; € X9, 1 = 1,2 such that pa; ~ b;, Yb; ~ ¢;, i = 1,2, and
Tia; = 0;5¢i, 1,5 = 1,2 (here §;; is a Kronecker symbol). It is possible here
that two of the vertices A, B, C are equal.

ay ‘ cl
o
AZ-9->B-—-30C
= - =z
=)
as r Cc2
Eo

3) For any a,b € XY inequality |21 (a,b)| < 2 holds. If 3i(a,b) = {p1, 02},
a € XV(E,A), b€ XY(E,B), then A # B, ord A = ord B = 3, and the following
conditions hold:
(a) [Py, | = [Py,| =2 and [Py, NP, | =1;
(b) if Py, = {(a,b), (ai,b;)}, @ = 1,2, then ¥i(ai,b;) = {@i} and ay # as,
by 2 by,

Es

1 by as
P
| b2
I N
AZ_ B
&
a b
E
Lemma 2. Let A € € be a bimodule problem with triangled basis ¥, A € 3¢, E €
Yo, let Aga gy be the restriction of A, let A’ = A’{A’E} = (K", V') be the faithful part
of Aga,gy, let X' be the restriction of ¥ to Ara gy and R' = R(A, A)/ Anng V'(E, A).
Then ¥ = Y9(E, A), ¥'1 ¢ 1A, A), R? = 0 and after the suitable correct in A
triangled change of basis we obtain one of the following possible cases:
1) dimV' =1, 2% E, A) = {a;}, R = 0.
2) dimV' = 2, dimgVy = 1 (see (1)). Then X9(E, A) = {a1, a2} with ay € V5,
a; € VI\Vy, and R' = {12}, aipa; = as.
3) dimV' = 3, dimV;/V, = dimVy/VE = dimgVy = 1. Let X)(F,A) =
{a1,a9,a3} with a3 € V5, ay € VL\V4, ay € VI\V,, then for the radical R’ the

following holds: E’}(A, A) = {ana, aog, a3}, where aig, o € R//R’Q, O3 A Qigguys €
R, ajja; = aj, and, probably, oy = aos.

ai

P 5|

Proof. By the definition of class €, dim,V’' < 3 and dim,V;/V;, , <1,i=1,2.
Then R = 0 since A is faithful.
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Assume R' # 0. Then V), # 0. Denote V| = {ai}, V), = {az}. There is
¢ € R} such that pa; = ay (since R} - V| = V}). Choose the element ¢ from
Xi2 = {€ € R(A4, A) | cong, £aq # 0} with the minimal height A'(p). If [Xo| > 1
then we do the correct elementary change of basis (as in remark 4) in order to obtain
X1y = X12\{¢}. Otherwise, one of the following cases occur:

1) pay ~ as;

2) dimyV' = 3, Vi = {as}, and pa; = \as + Asas; in this case we do the correct
elementary change of basis a), = as + :\\—;’ag to obtain @a; &~ aj.

So it remains to consider the case dimV' = 3, V4 = {as}, and X2 = {¢12},
©12a1 = Apaz, A1z € k. For any ¢ € Xo3 = {£ € R(A, A) | cong, &ay # 0},
Yas =~ az and h'(¢) = 1. If | Xa3| > 1 then there is the correct elementary change of
basis leaving X, without change such that | X),| = |Xa3] — 1. Otherwise we have
Xo3 = {23}, where, probably, @93 = @12, and pa3as = Ag3as.

Consider the set X153 = {¢ € R(A, A) | cong, a; # 0}. Here h'(€) = 2 and
€ay = ag for any £ € Xy3. As above, X3 = {13} and p13a; = \jzas, A3 € k. Then
the associativity (pa3p12)ar = p23(p12a1) = A2Aazaz implies o312 = )‘1,\21/;23 Y13

Theorem 1. Let A € € be a bimodule problem with a triangled basis 3 such that
|X4| = 1. Then there exists a triangled change of basis from 3 to quasi multiplicative
basis 3.

According to the definition 6 quasi multiplicativity of basis it is sufficient to
check on the bimodule problems A“®) for all A, B € ¥}. Since A € € is a faithful
bimodule problem, then the bimodule problems AM, AB) AMAB) are faithful as
well by Remark 3.

First of all we consider the full subproblem A for any A € ¥f. Since ord A < 3
for A € €, then [(XW);| < 3 and a # o' € (W)Y are comparable if and only if

s(a) = s(a’). We show that there exists a finite superposition of correct in A
elementary changes of ©1(A4, A) and U X9(E, A) such that the obtained basis %(*)
Eexy

of AM is quasi multiplicative. Moreover, |S(a1,as)| < 1 for every non-equal a,, ay €
(AN TIf (W) | = 1 then the proof follows from the lemma 2. Otherwise,
if (W) = (W)Y, then R = 0 and X1(A4,4) = @. In the case (X)), =
{E1, E5} and |[(X™)9] = 3 we have (up to renumbering) (S)(E;, A) = {ay,as},
(SN(E,, A) = {a}. Since A is faithful, then ¥1(A, A) = {a}, and ay =~ aa;.

Therefore, any case leads to construction of quasi multiplicative basis.
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