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QUASI MULTIPLICATIVE BASES FOR BIMODULE PROBLEMS
FROM SOME CLASS

We consider the class of separated bimodule problems (K, V) such that ObK = ObK+ ∪ ObK−,
which contains the linear matrix problems. For a bimodule problem satisfying some conditions
with |ObK+| = 1, we construct explicitly the analogue of multiplicative basis which we call quasi
multiplicative. This basis makes it possible to use the covering technique.
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A classification of problems of finite and tame representation type and their
indecomposable representations together with a description of their representation
categories belongs to the most important problems of representation theory [1–3].
A very important and effective tool for a solution of the finiteness problem is so
called “covering method”. This method is especially effective when the basis is
multiplicative, see [4, 5]. We give a generalization of the notion of a multiplicative
basis for a class of bimodule problems containing linear matrix problems. We for-
mulate a number of conditions for “small” subproblems providing the finiteness of
their representation type. For a bimodule problem satisfying these conditions with
|Ob K+| = 1, we construct explicitly the quasi multiplicative basis. This basis makes
it possible to use the covering technique for bimodule problems from considered class.

Let k be algebraically closed field. Unless otherwise stated, all the categories we
consider are the categories over k, all morphism spaces are finite dimensional, and all
functors are k-linear. A category K is called local, provided for every X ∈ Ob K the
endomorphism algebra K(X,X) is local, and regular, if, in addition, every invertible
morphism is automorphism. A category K is called fully additive or Krull-Schmidt
category if K is a category with finite direct sums and every idempotent from K
splits, i. e. it has kernel and cokernel.

A full subcategory K0 ⊂ K will be called an additive skeleton of K, provided K0

is regular and every X ∈ Ob K is isomorphic to a finite direct sum of objects from
K0. For a local category K and for every X ∈ Ob K there exists the decomposi-
tion K(X,X) = k1X ⊕ Rad X, where Rad X is the Jacobson radical of the algebra
K(X,X). If K is regular, then we denote by Rad K the radical of K, i. e. an ideal
in K such that Rad K(X,Y ) = K(X, Y ) for X �= Y , and Rad K(X, X) = Rad X,
X,Y ∈ Ob K.

Let V be a K-bimodule ( [6]). A category K (a bimodule V) is called locally finite
dimensional, if for any X ∈ Ob K the spaces ⊕

Y ∈Ob K
K(X, Y ) and ⊕

Y ∈Ob K
K(Y, X)

( ⊕
Y ∈Ob K

V(X,Y ) and ⊕
Y ∈Ob K

V(Y,X)) are finite dimensional, and finite dimensional,

provided all the spaces ⊕
X,Y ∈ObK

K(X, Y ) ( ⊕
X,Y ∈Ob K

V(X,Y )) are finite dimensional.
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Given a category K, we denote by add K an additive hull of K, i. e. a minimal
fully additive category which contains K. For a K-bimodule V, we denote by add V
the corresponding add K-bimodule.

A pair A = (K, V) consisting of a category K and a K-bimodule V is called
a bimodule problem over K or shortly bimodule problem. A bimodule problem A

will be called normal, provided the category K is regular, and both K and V are
locally finite dimensional All the bimodule problems we will consider are assumed
to be normal. Given some S ⊂ Ob K denote by KS the full subcategory of K with
Ob KS = S, and by VS the subbimodule V|S = KSVKS. A bimodule problem
AS = (KS, VS) is called the restriction of A to S.

For a bimodule problem A = (K, V), a representation M of A is a pair M =
(MK,MV), where MK ∈ Ob add V = Ob add K and MV ∈ add V(MK, MK). If M ,
N are two representations of A, then a morphism f from M to N is a morphism
f ∈ add K(MK, NK) such that NV · f − f · MV = 0. The composition of morphisms
and the unit morphisms in the representation category rep A and in the category
add K coincide.

Given two bimodule problems A = (K, V) and A′ = (K′, V′), a morphism of
bimodule problems θ : A → A′ is a pair θ = (θ0, θ1), where θ0 : K → K′ is a k-
functor, θ1 : V → V′ is a K-bimodule morphism with the K-bimodule structure on
V′ induced by θ0 ( [6]).

Let A = (K, V) be a normal bimodule problem. Bigraph Σ(= ΣA) = (Σ0, Σ1)
is called a basis of the bimodule problem A, if Σ0 = Ob K, Σ0

1(X, Y ) is a basis of
V(X, Y ), and Σ1

1(X, Y ) is a basis of Rad K(X, Y ), X,Y ∈ Ob K. For all x, y ∈ Σ1

such that the product xy is not specified, we assume xy = 0.
Let V be a K-bimodule. We say that x ∈ Rad K(X,Y ) annihilates the bimodule

V, if xa = 0, bx = 0 for any Z ∈ Ob K, a ∈ V(Z, X), b ∈ V(Y, Z). The ideal of the
category K consisting of all annihilate elements is called the annihilator of V and is
denoted by AnnK(V). A bimodule V is called faithful provided AnnK(V) = 0. We
call a bimodule problem A = (K, V) faithful, if the bimodule V is faithful. For a
bimodule problem A, a faithful part of A is defined as the faithful bimodule problem
Ared, Ared = (Kred, V), where Kred = K/ AnnK(V).

Let A = (K, V) be a normal bimodule problem, R = Rad K, Σ be a basis of A.
The integer N is called the global triangled height of A if RN+1 = 0, RNV = 0, and
either or RN �= 0 or RN−1V �= 0. Denote by Vi = Ri−1V, i = 1, . . . , N . We have two
filtrations:

R ⊃ R2 ⊃ . . . ⊃ RN ⊃ 0, V1 ⊃ V2 ⊃ . . . ⊃ VN ⊃ 0. (1)

The map h : R∪V → N such that h(x) = i if x ∈ (Ri\Ri+1)∪ (Vi\Vi+1), is called the
triangled height of an element. The element x ∈ Σ1 is called minimal, if h(x) = 1.
Let h(0) = ∞. Then h(xy) � h(x) + h(y) and h(x + y) � max{h(x), h(y)} for all

x, y ∈ Σ1. Let Σ
k(i)
1 = {x ∈ Σk

1 | h(x) = i}, i = 1, . . . , N , k = 0, 1. Clearly, the set

{Σk(i)
1 , i = 1, . . . , N} is a partition of Σk

1, k = 0, 1.

Definition 1. The basis Σ of bimodule problem A is called triangled (with respect

to the filtration (1)), if
N∪
l=i

Σ1
1
(l)

is a basis of Ri,
N∪
l=i

Σ0
1
(l)

is a basis of Vi, i = 1, . . . , N .

Lemma 1 ( [2]). Every normal bimodule problem A with the nilpotent radical
has a triangled basis.
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Definition 2. A bimodule problem A = (K, V) is called admitted if the set Ob K
can be decomposed in a disjoint union Ob K = Ob K+ ∪Ob K− such that V(X,Y ) �= 0
implies X ∈ Ob K−, Y ∈ Ob K+ and Rad K(X, Y ) �= 0 implies X, Y ∈ Ob K+.

The property of a bimodule problem A to be admitted depends only on the
bigraph ΣA, therefore we will use the notation Σ+

0 = Ob K+ and Σ−
0 = Ob K−.

Remark 1. For a triangled basis Σ of an admitted bimodule problem, the fol-
lowing properties hold:

1) Σ1
1
(i)

is a basis of Ri/Ri+1 modulo Ri+1, Σ0
1
(i)

is a basis of Vi/Vi+1 modulo
Vi+1, i = 1, . . . , N ;

2) for any x ∈ Σ1, h(x) = i if and only if x ∈ Σ1
(i);

3) for x ∈ R the equality x =
∑

ϕ∈Σ1
1

λϕϕ, λϕ ∈ k, implies h(ϕ) � h(x) for any

ϕ ∈ Σ1
1 with λϕ �= 0;

4) for x ∈ V the equality x =
∑

a∈Σ0
1

λaa, λa ∈ k, implies h(a) � h(x) for any

a ∈ Σ0
1 with λa �= 0.

Remark 2. Let A be an admitted bimodule problem with the global triangled
height N . There are the decompositions of k-vector spaces:

Vi = ⊕
E∈Σ−

0 ,A∈Σ+
0

Vi(E, A), Ri = ⊕
A,B∈Σ+

0

Ri(A,B), i = 1, . . . , N

with the multiplications:

Ri(A,B) × Vj(E, A) → Vi+j(E, B), A,B ∈ Σ+
0 , E ∈ Σ−

0 ,

Ri(B, C) × Rj(A,B) → Ri+j(A,C), A, B, C ∈ Σ+
0 .

Definition 3. Let E ∈ Σ−
0 , A, B ∈ Σ+

0 (in particular, A = B), a ∈ V(E, A),
b ∈ V(E, B). We say that a<

R
b if there exists r ∈ R(A,B) such that ra = b, we

shall write or a <r b. The partial order <
R

on V is transitive due to the associativity:

if a1 <r1 a2 and a2 <r2 a3 then a1 <r a3 with r = r2r1. The order <
R

on V is

non-reflexive due to the associativity and triangularity conditions. Two elements
a, b ∈ V are called comparable is either a<

R
b or b <

R
a. For A ∈ Σ+

0 let ord A =

dimk

∑

E∈Σ−
0

V(E, A).

Let us define the class C of bimodule problems we will consider. Let A ∈ C

if and only if A is normal admitted faithful bimodule problem with the nilpotent
radical R and the triangled basis Σ with respect to the filtration (1) such that for
any E ∈ Σ−

0 , A,B ∈ Σ+
0 , A �= B:

1) ord A � 3;
2) if a1, a2 ∈ V(E, A) are linearly independent, then a1, a2 are comparable;
3) if ord A = ord B = 3, then any a ∈ V(E, A), b ∈ V(E, B) are comparable;
4) if R(A,B) = {ϕ}, then dimk (ϕ

∑

E∈Σ−
0

V(E, A)) < 3.

Remark that if one of the conditions 1)–4) is not true, then bimodule problem
A is of strictly unbounded type ( [2]).
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For any x ∈ R ∪ V there is a basis decomposition x =
∑

y∈Σ1

λy y ∈ Σ1, λy ∈ k.

Denote by cony x = λy the content of y in x. Two nonzero elements x, y ∈ K ∪ V
are called proportional if k

∗x = k
∗y, in this case we write x ≈ y.

Let A,B ∈ Σ+
0 (in particular, A = B). For ϕ, ψ ∈ R(A,B) we say that ϕ < ψ if

ψ ∈ R(B,B)ϕ ∪ ϕR(A,A) ∪ R(B,B)ϕR(A,A). If ϕ < ψ, then h(ϕ) < h(ψ).

Definition 4. Given A,B ∈ Ob K+, define by A(A,B) = (K(A,B), V(A,B)) the
full restriction of the bimodule problem A to the set SA,B = {A, B}∪{s(a) | a ∈
Σ0

1, e(a) ∈ {A,B}}, where s, e : Σ1 → Σ0 are maps taking starting s(a) and ending
e(x) vertices of an arrow a. Denote by Σ(A,B) ⊂ Σ the restriction of the basis Σ of
A to A(A,B). We will write A(A) instead of A(A,A) in the case A = B. The bimodule
problems A(A,B) and A(A) inherit the triangled structure from A (and may have the

proper one). Denote by h′ : Σ
(A,B)
1 → N the induced triangled height.

Let S ⊂ Σ0, and AS = (KS, VS) be a restriction of bimodule problem A = (K, V)
to the set S. Given a faithful bimodule problem A, the bimodule problem AS can
be non-faithful.

Remark 3. Let A be an admitted bimodule problem, and A,B ∈ Σ+
0 . If A is

faithful, then bimodule problems A(A,B) and A(A) are faithful as well. Moreover,
R(A,B) = Rad(A(A,B))(A,B). This fact follows from the equality

AnnK(V) = ∪
A,B∈Ob K+

AnnK(A,B)(V(A,B)).

Given a bimodule problem A, a change of Σ consists of a family of changes
of bases in all V(E, A) (the change of Σ0

1) and all R(A,B) (the change of Σ1
1),

A,B ∈ Σ+
0 , E ∈ Σ−

0 . These new bases gives the new basis Σ
′
A of A. The change is

called triangled, provided both ΣA and Σ
′
A allow a triangled filtration.

Definition 5. Let x, y ∈ Σi
1, i = 0, 1, and s(x) = s(y), e(x) = e(y). The change

of basis from Σ to Σ′ is called an elementary change provided x′ = x+λy, λ ∈ k, and
z′ = z for all z ∈ Σi

1\{x}. An elementary change is called correct, if h(x) � h(y).
The change of basis from Σ to Σ′ is called standard if it is the superposition of
correct elementary changes. We will use only standard changes of basis. Usually we
do not modify the notations of basic elements after the elementary change of basis
and write x instead x′.

For a, b ∈ Σ0
1(E, A) let

S(a, b) = {ξ ∈ Σ1
1(A,B) | conb(ξa) �= 0},

Σ1
1(a, b) = {ξ ∈ Σ1

1(A,B) | ξa ≈ b} ⊂ S(a, b).

For ϕ ∈ Σ1
1, denote Pϕ = {(a, b) ∈ Σ0

1 × Σ0
1 | ϕ ∈ S(a, b)}.

Remark 4. Let a, b ∈ Σ0
1. If ϕ, ψ ∈ S(a, b) and h(ϕ) � h(ψ), then there is

a correct elementary change of basis ϕ′ = ϕ − λψ, λ ∈ k
∗, such that S′(a, b) =

S(a, b)\{ϕ}. Indeed, since h(ϕ) � h(ψ), then the elementary change of basis ϕ′ =

ϕ − conb(ϕa)

conb(ψa)
ψ is correct and leads to the condition S′(a, b) = S(a, b)\{ϕ}.
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Definition 6. The triangled basis Σ of a bimodule problem A ∈ C is called quasi
multiplicative if the following properties hold.

1) For any a ∈ Σ0
1 and ϕ ∈ Σ1

1 there exists b ∈ Σ0
1 such that ϕa ≈ b whenever

ϕa �= 0. In particular, S(a, b) = Σ1
1(a, b).

2) Given ϕ, ψ ∈ Σ1
1 with ψϕ �= 0, one of the following conditions holds:

(a) there is τ ∈ Σ1
1 such that ψϕ ≈ τ ;

(b) there are τ1, τ2 ∈ Σ1
1 such that ψϕ = λ1τ1 + λ2τ2, λ1, λ2 ∈ k

∗, and there
exist ai, bi, ci ∈ Σ0

1, i = 1, 2 such that ϕai ≈ bi, ψbi ≈ ci, i = 1, 2, and
τjai = δijci, i, j = 1, 2 (here δij is a Kronecker symbol). It is possible here
that two of the vertices A, B, C are equal.

E1

a1

��
b1

��

c1

��
A

τ2

��� � � � � � �

τ1
��� � � � � � �

ϕ�� ���� B ψ�� ���� C

E2

a2

��

b2

		

c2





3) For any a, b ∈ Σ0
1 inequality |Σ1

1(a, b)| � 2 holds. If Σ1
1(a, b) = {ϕ1, ϕ2},

a ∈ Σ0
1(E, A), b ∈ Σ0

1(E, B), then A �= B, ord A = ord B = 3, and the following
conditions hold:

(a) |Pϕ1| = |Pϕ2| = 2 and |Pϕ1 ∩ Pϕ2| = 1;
(b) if Pϕi

= {(a, b), (ai, bi)}, i = 1, 2, then Σ1
1(ai, bi) = {ϕi} and a1 �= a2,

b1 �= b2.

E1

a1

��

b1

��

E2

b2



a2

��
A

ϕ1

��	 � � � � � 


ϕ2

��
 � � � � � 	
B

E

a

��

b

��

Lemma 2. Let A ∈ C be a bimodule problem with triangled basis Σ, A ∈ Σ+
0 , E ∈

Σ−
0 , let A{A,E} be the restriction of A, let A′ = A′

{A,E} = (K′, V′) be the faithful part

of A{A,E}, let Σ′ be the restriction of Σ to A{A,E} and R′ = R(A,A)/ AnnR V′(E, A).

Then Σ′0
1 = Σ0

1(E, A), Σ′1
1 ⊂ Σ1

1(A,A), R′3 = 0 and after the suitable correct in A

triangled change of basis we obtain one of the following possible cases:

1) dimkV
′ = 1, Σ0

1(E, A) = {a1}, R′ = 0.
2) dimkV

′ = 2, dimkV
′
2 = 1 (see (1)). Then Σ0

1(E, A) = {a1, a2} with a2 ∈ V′
2,

a1 ∈ V′
1\V2, and R′ = {α12}, α12a1 = a2.

3) dimkV
′ = 3, dimkV

′
1/V

′
2 = dimkV

′
2/V

′
3 = dimkV

′
3 = 1. Let Σ0

1(E,A) =
{a1, a2, a3} with a3 ∈ V′

3, a2 ∈ V′
2\V′

3, a1 ∈ V′
1\V′

2, then for the radical R′ the
following holds: Σ′1

1(A,A) = {α12, α23, α13}, where α12, α23 ∈ R′/R′2, α13 ≈ α23α12 ∈
R′2, αijai ≈ aj, and, probably, α12 = α23.

Proof. By the definition of class C, dimkV
′ � 3 and dimkV

′
i/V

′
i+1 � 1, i = 1, 2.

Then R′3 = 0 since A is faithful.
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Assume R′ �= 0. Then V′
2 �= 0. Denote V′

1 = {a1}, V′
2 = {a2}. There is

ϕ ∈ R′
1 such that ϕa1 ≈ a2 (since R′

1 · V′
1 = V′

2). Choose the element ϕ from
X12 = {ξ ∈ R(A,A) | cona2 ξa1 �= 0} with the minimal height h′(ϕ). If |X12| > 1
then we do the correct elementary change of basis (as in remark 4) in order to obtain
X ′

12 = X12\{ϕ}. Otherwise, one of the following cases occur:
1) ϕa1 ≈ a2;
2) dimkV

′ = 3, V′
3 = {a3}, and ϕa1 = λ2a2 + λ3a3; in this case we do the correct

elementary change of basis a′
2 = a2 + λ3

λ2
a3 to obtain ϕa1 ≈ a′

2.
So it remains to consider the case dimkV

′ = 3, V′
3 = {a3}, and X12 = {ϕ12},

ϕ12a1 = λ12a2, λ12 ∈ k. For any ψ ∈ X23 = {ξ ∈ R(A,A) | cona3 ξa2 �= 0},
ψa2 ≈ a3 and h′(ψ) = 1. If |X23| > 1 then there is the correct elementary change of
basis leaving X12 without change such that |X ′

23| = |X23| − 1. Otherwise we have
X23 = {ϕ23}, where, probably, ϕ23 = ϕ12, and ϕ23a2 = λ23a3.

Consider the set X13 = {ξ ∈ R(A,A) | cona3 ξa1 �= 0}. Here h′(ξ) = 2 and
ξa1 ≈ a3 for any ξ ∈ X13. As above, X13 = {ϕ13} and ϕ13a1 = λ13a3, λ13 ∈ k. Then
the associativity (ϕ23ϕ12)a1 = ϕ23(ϕ12a1) = λ12λ23a3 implies ϕ23ϕ12 = λ12λ23

λ13
ϕ13.

Theorem 1. Let A ∈ C be a bimodule problem with a triangled basis Σ such that
|Σ+

0 | = 1. Then there exists a triangled change of basis from Σ to quasi multiplicative
basis Σ′.

According to the definition 6 quasi multiplicativity of basis it is sufficient to
check on the bimodule problems A(A,B) for all A,B ∈ Σ+

0 . Since A ∈ C is a faithful
bimodule problem, then the bimodule problems A(A), A(B), A(A,B) are faithful as
well by Remark 3.

First of all we consider the full subproblem A(A) for any A ∈ Σ+
0 . Since ord A � 3

for A ∈ C, then |(Σ(A))−0 | � 3 and a �= a′ ∈ (Σ(A))0
1 are comparable if and only if

s(a) = s(a′). We show that there exists a finite superposition of correct in A

elementary changes of Σ1
1(A,A) and ∪

E∈Σ−
0

Σ0
1(E, A) such that the obtained basis Σ(A)

of A(A) is quasi multiplicative. Moreover, |S(a1, a2)| � 1 for every non-equal a1, a2 ∈
(Σ(A))0

1. If |(Σ(A))−0 | = 1 then the proof follows from the lemma 2. Otherwise,
if |(Σ(A))−0 | = |(Σ(A))0

1|, then R′ = 0 and Σ1
1(A, A) = ∅. In the case (Σ(A))−0 =

{E1, E2} and |(Σ(A))0
1| = 3 we have (up to renumbering) (Σ(A))0

1(E1, A) = {a1, a2},
(Σ(A))0

1(E2, A) = {a}. Since A is faithful, then Σ1
1(A,A) = {α}, and a2 ≈ αa1.

Therefore, any case leads to construction of quasi multiplicative basis.
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