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We consider the posets critical with respect to positivity of the Tits quadratic form and study their
combinatoric properties.
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1. Introduction. The Hasse diagram is a type of diagram that represents a
finite poset in the plane. Namely, for a poset S one represents each element of S
as a vertex and each pair of elements x, y of S, such that y covers x (i. e. x < y
and there is no z satisfying x < z < y), as an edge (a line segment or curve) that
goes upward from x to y. We denote such diagram by H(S). For a class of finite
posets X we denote by VA(X) the set of pairs (s, k) of non-negative integer numbers,
such that s and k are respectively the number of vertices and edges of H(X) for an
X ∈ X.

In this paper we study properties of the Hasse diagram of some class of posets
connected with the Tits quadratic form. All posets are assumed to be finite.

Let S be a poset without an element denoted by 0. The Tits quadratic form of
S is by definition the form qS : ZS∪0 → Z defined by the equality

qS(z) = z20 +
∑

i∈S
z2i +

∑

i<j,i,j∈S
zizj − z0

∑

i∈S
zi.

A poset S is called critical with respect to positivity of the Tits quadratic form or,
briefly, P -critical if the Tits form of any its proper subset is positive but the Tits
form of S is not positive [1]. The set of all P -critical posets will be denoted by Pc.

The aim of this paper is to prove the following theorem.

Theorem 1. VA(Pc) consists of the following pairs:
(4, 0), (4, 3), (4, 4),
(6, 3), (6, 4), (6, 5), (6, 6),
(7, 4), (7, 5), (7, 6), (7, 7),
(8, 5), (8, 6), (8, 7), (8, 8), (8, 9).

From this theorem we have the following corollaries.

Corollary 1. Let (s, i), (s, j) ∈ VA(Pc) and i < k < j. If s is not equal to 4
(the smallest first coordinate for the pairs of VA(Pc)), then (s, k) ∈ VA(Pc).

Corollary 2. Let (s, k) ∈ VA(Pc). If s is not equal to 9 (the biggest second
coordinate for the pairs of VA(Pc)), then s ≥ k.
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2. P -critical posets. The P -critical posets were classified in [1]. They are
given (up to isomorphism and anti-isomorphism) by the following table.
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3. Proof of Theorem 1. The theorem follows from the following table in which
one indicates the P -critical posets numbers, their numbers of vertices and edges.
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