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Solutions of the Dirac equation in a strong external field are obtained in the WKB approxi-
mation. A field is considered strong if the electron binding energy exceeds 2mc2 and the
discrete spectrum levels may be lowered into the lower continuum. The wave functions in
the classically allowed and forbidden regions are found and the conditions for matching them
on transition through the turning point are obtained. The WKB method is applied to the
following problems: 1) generalization of the Bohr–Sommerfeld quantization conditions with
allowance for relativistic effects and the spin in 2 + 1 dimensions; 2) energy and width of
the quasistationary level in the lower continuum.

1 Introduction

It is known [1, 2] that in three spatial dimensions the expression for the electron ground state
energy in the Coulomb field of a point-charge Z|e| becomes purely imaginary when Z > 137,
and that its interpretation as electron energy no longer has a physical meaning. To determine
the electron energy spectrum in the Coulomb field with such a charge we need to eliminate
the singularity of the Coulomb potential of a point-charge at r = 0 by cutting off the Coulomb
potential at small distances. This is equivalent to taking into account of the nucleus size. In three
space dimensions the electron energy spectrum in the Coulomb field regulated at small distances
was first considered by Pomeranchuk and Smorodinsky (see, for instance, [3]). With increasing Z
in the region Z > 137, the electron energy levels in such a field were found to decrease, become
negative, and may cross the boundary of the lower energy continuum, E = −mc2. The value of
Z|e| = Zcr|e| at which the lowest electron energy level cross the boundary of the lower energy
continuum is called the critical charge for the electron ground state [2, 4]. If Z continues to
grow and enters the transcritical region with Z > Zcr, the lowest electron energy level “sinks”
into the lower energy continuum, which result in a rearrangement of the vacuum of the QED.
This rearrangement is constrained by Pauli exclusion principle. If the electron ground state
at Z < Zcr is vacant, two electron-positron pairs are created; if it is half-occupied, one pair
is created; and if it is occupied, no pairs are created. The Coulomb potential is repulsive
for the created positrons, so they go to infinity. Hence at Z > Zcr a quasistationary state
appears in the lower energy continuum and the new vacuum of QED, which corresponds to
the filling of all the electron states with E < −mc2, has the total electric charge 2e [2, 4].
Indeed, all the electron states with E < −mc2 (the Dirac sea) were filled at Z < Zcr, so
electrons created by the strong Coulomb field with Z > Zcr cannot be described by means of
a convenient wave function, and the notion of charged vacuum was introduced to describe these
states [4, 5, 6, 7]. In terms of the new vacuum, the density of electric charge ρ(r) is classical. It
is a function characterising the spatial distribution of the real electric charge appearing in the
new (charged) vacuum, while in terms of the old (uncharged) vacuum this function should be
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interpreted as the probability of two electrons (with charge 2e) being present at a given point
in space.

We would like to see how the same system behaves in two dimensions. With this aim we shall
apply the WKB method to the Dirac equation in a strong Coulomb field. Such approach works
rather well for states with energy both 0 < E < mc2 and E < −mc2. The obtained by this way
quasiclassical formulae for the energy of quasistationary levels of the Dirac equation solutions
in the lower continuum in (2 + 1) dimensions allow to consider a wide range of problems in the
theory of supercritical atoms.

2 The Dirac equation in an external Coulomb field
in 2 + 1 dimensions

Since [8] in 2+1 dimensions the Dirac algebra may be represented in terms of the Pauli matrices
as γ0 = σ3, γk = iσk, the Dirac equation for an electron minimally coupled to an external
electromagnetic field has the form (� = c = me = 1)(

i
∂

∂t
− HD

)
Ψ = 0, (1)

where

HD = �α�̂p + β − eA0Î = σ1p2 − σ2p1 + σ3 − eA0Î (2)

is the Dirac Hamiltonian, pµ = i∂µ + eAµ is the operator of generalized momentum of the
electron, Aµ is the vector potential of the external electromagnetic field, −e < 0 (e > 0) is
electric charge of the electron, and the conserved total angular momentum has only a single
component, namely, Jz = Lz + Sz, where Lz = −i∂/∂ϕ and Sz = σ3/2.

Let us apply the Dirac equation (1), (2) to study two-dimensional hydrogen-like ion with
nuclear charge eZ � 1. Consider the problem neglecting the nucleus size and assuming the
vector potential to be Coulomb

A0(r) = −Ze

r
, Ax = Ay = 0 (3)

for 0 ≤ r < ∞.
We seek the solutions of the Dirac equation (1) in the field (3) in the polar coordinates in

the form

Ψ(t, �x) =
1√
2π

exp(−iεt + ilϕ)ψ(r, ϕ), (4)

where ε is the energy, l is an integer number and

ψ(r, ϕ) =
1√
r

(
F (r)

G(r)eiϕ

)
. (5)

Note that the function (4) is an eigenfunction of the the Dirac Hamiltonian HD and the total
angular momentum Jz with eigenvalues ε and l + 1/2, respectively.

Substituting (4) and (5) into (1), and taking into account of the equations

px ± py = −ie±iϕ

(
∂

∂r
± i

r

∂

∂ϕ

)
,
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we obtain
dF

dr
− l + 1/2

r
F + (ε + 1 − V (r)) G = 0, (6)

dG

dr
+

l + 1/2
r

G − (ε − 1 − V (r))F = 0, (7)

where V (r) = −Zα/r, α = e2 ≈ 1/137 is the fine structure constant.
The exact solutions and the energy eigenvalues with ε < 1 corresponding to stationary states

of the Dirac equation may be found in full analogy with the case of three space dimensions [1].
Let us look for functions F and G in the form

F =
√

1 + ε · e−ρ/2ργ (Q1 + Q2) , G =
√

1 − ε · e−ρ/2ργ (Q1 − Q2) , (8)

where

ρ = 2λr, λ =
√

1 − ε2, γ =
√

(l + 1/2)2 − (Zα)2.

The value of γ is to be found by studying the behavior of the wave function at small r. The
functions Q1 and Q2 which rendered the solutions of (6), (7) finite at ρ = 0 are given in terms
of the confluent hypergeometric function F (a, b; z) as:

Q1 = AF (γ − εZα/λ, 2γ + 1; ρ), Q2 = BF (γ − εZα/λ + 1, 2γ + 1; ρ).

The constants A and B are related by

B =
γ − εZα/λ

l + 1/2 + Zα/λ
A,

and the energy eigenvalues are defined by

γ − εZα/λ = −nr. (9)

It is easy to show that the following values of the quantum number nr are allowed: nr =
0, 1, 2, . . ., if l � 0, and nr = 1, 2, 3, . . . if l < 0.

From the normalization condition for the wave function Ψ(t, �x) one can obtain the expression
for the constant A:

A =
1

Γ(2γ + 1)

{
λ [Zα + λ(l + 1/2)] Γ(2γ + nr + 1)

2Zα · nr!

}1/2

.

From (9) we find the electron energy spectrum in the Coulomb field (3):

ε =

1 +
(Zα)2(

nr +
√

(l + 1/2)2 − (Zα)2
)2


−1/2

.

It is seen that

ε0 =
√

1 − (2Zα)2

for l = nr = 0, and ε0 becomes zero at Zα = 1/2, whereas in three spatial dimensions ε0 equals
zero at Zα = 1. Thus, in two space dimensions the expression for the electron ground state
energy in the Coulomb field of a point-charge Z|e| no longer has a physical meaning at a much
lower value of Zα = 1/2, and the corresponding solution of the Dirac equation oscillates near
the point r → 0.

To determine the electron energy spectrum in the Coulomb field with such a charge we need
to eliminate the singularity of the Coulomb potential of a point-charge at r = 0 by cutting off
the Coulomb potential at small distance rN . This is equivalent to taking into account of the
nucleus size.
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3 WKB method for the Dirac equation
in the strong external field

For finding the quasiclassical solutions of the system of equations (6), (7) it is convenient to
write them in the matrix form:

ψ′ =
1
�
Dψ, ψ =

(
F
G

)
, D =

(
�ℵ/r − (ε + 1 − V (r))

ε − 1 − V (r) −�ℵ/r

)
. (10)

Here we have restored in an obvious view the reduced Planck constant �, the prime denotes
the derivative with respect to r, ℵ = l + 1/2, and the external electrostatic potential is V (r) =
−eA0(r). The solution of the matrix equation (10) we shall look as the formal expansion in
powers of �:

ψ = ϕ exp
(∫

ydr

)
, y(r) =

1
�
y−1(r) + y0(r) + �y1(r) + · · · ,

ϕ(r) =
∞∑

n=0

�
nϕ(n)(r), (11)

where the upper (lower) component ϕ
(n)
F

(
ϕ

(n)
G

)
of the vector ϕ(n) corresponds to the radial

wave function F (G). By substituting (11) into (10) and equating to zero the coefficient of each
power of �, we obtain the recurrence system

(D − y−1) ϕ(0) = 0, (12)

(D − y−1) ϕ(n+1) =
(
ϕ(n)

)′
+

n∑
k=0

yn−kϕ
(k), n = 0, 1, . . . (13)

Using the first two equation of system of equations (12), (13) by the left and right vectors
technique we find the terms y−1, y0 and ϕ(0). Solving the following equations of this system by
the similar procedure one can find the terms y2, y3, . . . , ϕ

(2), ϕ(3), . . . in the expansions (11). But
formulae for them are rather cumbrous, therefore in applications one usually restricts them to
only first terms. Actually the reason of this is the fact that the expansions in powers of � (11)
in the general case do not convergent and are asymptotic series, the finite number of terms of
which gives the good approximation for the wave function, if a parameter of an expansion (the
reduced Planck constant �) is rather small. So we obtained (to within a normalization constant)

ψ =
1√
qQ∓

exp
[∫ (

±q +
V ′(r)
2qQ∓

)
dr

](
1 + ε − V (r)

∓Q∓

)
. (14)

Employ the obtained formula to the problem about quasistationary state that is prolongation
of the discrete level into the transcritical range Z > Zcr, when ε < −1.

To the Dirac system of equations (6), (7) there corresponds the effective potential

U(r, ε) = εV − 1/2V 2 + ℵ2/2r2, (15)

which corresponds to the attraction on small distances r < r− from nuclear (at Zα > |ℵ|)
and repulsion for r > r−. So U(r, ε) looks like a potential with a barrier. To eliminate the
singularity of the Coulomb potential of a point-charge at r = 0 it is necessary to cut off the
Coulomb potential V (r) at some small distance rN :

V (r) =
{ −Zα/r, r > rN ,

− (Zα/r) f (r/rN ) , r ≤ rN .
(16)

Here f(x) is cutoff function, 0 ≤ x = r/rN ≤ 1. Most often the following models are used:
f(x) = 1 and f(x) =

(
3 − x2

)
/2.
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4 The wave function of the Dirac electron
in classically allowed and forbidden regions

The wave function of quasistationary state has the various look in the various regions.
I. The region r0 < r < r− is classically allowed; there the wave functions (14) oscillate

G = C±
1

(
ε − V + 1

p

)1/2

cos Θ1, F = C±
1 sgn

(
ε − V − 1

p

)1/2

cos Θ2. (17)

Here

p(r) =

√
(ε − V )2 − 1 − ℵ2

r2

is quasiclassical moment for the radial motion of a particle, C±
1 is normalization constant,

Θ1 =
∫ r

r−

(
p − ℵw

pr

)
dr +

π

4
, Θ2 =

∫ r

r−

(
p − ℵw̃

pr

)
dr +

π

4
,

w =
1
2

(
V ′

1 + ε − V
− 1

r

)
, w̃ =

1
2

(
V ′

1 − ε + V
− 1

r

)
.

Signs ± correspond to values ℵ > 0 and ℵ < 0. If a width γ of a level is small (it will be
shown later) the wave function of quasistationary state can be normalized on a single particle
localized in the region I, neglecting its penetrability into the classically forbidden regions r < r0

and r > r− [10]. Here cos2 Θi(r) can be replaced with average value 1/2:

∣∣C±
1

∣∣ =
[∫ r−

r0

ε − V (r)
p(r)

dr

]−1/2

=
(

2
T

)1/2

,

where T is the frequency period of a relativistic particle inside a potential well.
II. The below-barrier region r− < r < r+ is classically forbidden. Here p = iq, and quanti-

ties q, y−1 and y0 are real. As known [10] the wave function should exponentially damp inside
of this region. So the solutions of the Dirac system of equations (6), (7) in the below-barrier
region for ℵ < 0 are

ψ =
C−

2√
qQ−

exp
[
−

∫ r

r+

(
q +

V ′(r)
2qQ−

)
dr

]( −Q−
ε − 1 − V (r)

)
, (18)

III. In the region r > r+ the divergent wave corresponds to the quasistationary state (taking
off positron); for ℵ < 0:

ψ =
C−

3√
pP−

exp
[∫ r

r+

(
ip +

V ′(r)
2pP−

)
dr

] (
iP−

ε − 1 − V (r)

)
, (19)

where P± = p ± iℵ/r. The formulae (17)–(19) include the whole range of values of r (except
for range r < r0 for which the view of a wave function here is not written out), except for
neighbourhoods of turning points r− and r+. For bypass of these points and sewing the solutions
we shall use the usual method [10]. Closely to the r− and r+ the system (6) reduces to the
Schrödinger equation with the effective potential linearly depending on r − r±, the solution of
which expressed through the Airy function; one can sew by the more elegant Zwaan method.
So the relation between the constants in various regions is of the form

C±
2 = iC±

3 = σC±
1

[
|ℵ|(

r2− + ℵ2
)1/2 + r−

]σ

exp
[
−

∫ r+

r−

(
q + σ

V ′(r)
qQ±

)
dr

]
, (20)

where σ = sgnℵ/2.
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Though the formulae (17)–(19) essentially differ from the formulae by nonrelativistic quasi-
classics and more complicated from them, their application to concrete problems does not meet
difficulties, as all quantities in functions F and G express in quadratures.

5 Position and width of quasistationary levels
in the lower continuum

Let us find the energy of quasistationary states that are the prolongation of the discrete spectrum
levels into supercritical region Z > Zcr, ε < −1. Neglecting the penetrability of a barrier in the
region r− < r < r+ we obtain from (15) the quantization condition:∫ r+

r−

(
p − ℵw

pr

)
dr = π

(
nr +

sgn (l + 1/2)
2

)
. (21)

The equation (21) determines the real part of the level energy εnl = ε − iγ/2. It is easy to
show that the condition (21) reproduces the exact expression of the energy spectrum in the case
0 < ε < 1.

Calculating the integral in (21) for the potential (14) and taking into account that |ε| 	
Zα/rN , we arrive at the transcendental equation ε:

εZα

2k
ln

|ε|Zα + kg

|ε|Zα − kg
− g ln

rNeµ

2g2
+ σ arccos

g2 − εℵ2

Zαµ
+ I = π

(
nr +

sgn (l + 1/2)
2

)
, (22)

where

I = Zα

∫ 1

x0

[√
f2(x) − ρ2

x2
+

ℵ
2(Zα)2

(
f ′(x)
f(x)

+
1
x

)
1√

x2f2(x) − ρ2

]
dx, e = 2.718 . . .

Let now us go to determination of the level width γ = −2 Im εnl that coincides with the
probability of the spontaneous creation of positrons. From the equations (6), (7) we obtain the
expression for γ

γ = 2 Im [G∗(∞)F (∞)].

By the obtained formulae for G and F γ takes the form

γ = γ0 exp
[
−2πZα

(√
1 + 1/k2 −

√
1 − ρ2

)]
,

T =
1
γ0

= − 2
k2

[
εg +

Zα

2k
ln

( |ε|Zα + kg

|ε|Zα − kg

)]
.

6 Conclusions

In this paper we construct quasiclassical solutions of the (2+1)-dimensional Dirac equation with
a strong Coulomb field. By the obtained formulae we obtain the spectrum of quasistationary
levels (its position and width) in the lower energy continuum ε < −1 for a spherical superheavy
nuclear with a charge Z > Zcr. Comparison of values of critical charge Zcr obtained from exact
solutions of the Dirac equation [9] with Zcr obtained from the quasiclassical formula (20) shows
good correlation. Note that in the ground state for the model I at rN = 0.03 Z ≈ 108 and
170 in (2 + 1)- and (3 + 1)-dimensional QED, respectively. Thus, the Dirac vacuum in two
space dimensions in the presence of a strong Coulomb field is unstable against electron-positron
production at significantly smaller values of the critical charge than in the case of three spatial
dimensions. Another difference between these two cases results from the fact that electrons
confined to a plane behave like a spinless fermion. So if the ground electron state at Z < Zcr is
vacant, one pair is created; if it is occupied, no pairs are created.
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