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The WKB approximation is developed for the Dirac equation with the spherically
symmetrical vector and scalar potentials. The relativistic wavefunctions are constructed,
new quantization rule containing the spin-orbital interaction is obtained. For spherically
symmetrical model of the Stark effect the quasi-classical spectrum of relativistic hydrogen-
like atom is calculated. Application of the WKB method to the mass spectrum of the
hydrogen-like quark systems was done.
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1 Introduction

Except for very special potential, there is no analytic solution to the Dirac
equation and, thus, numerical or asymptotic methods must be applied. In many
theoretical and applied problems just a possibility to obtain an asymptotic solution
allows to carry out fullest analysis of the problem. Therefore there is hardly a
necessity to explain importance of creating and investigating asymptotic methods
of solving the Dirac equation in detail.
The WKB method is one of the basic and universal approximative methods for

the problems of the quantum mechanics and mathematical physics [1–4] which can
not be solved exactly or have very complicated analytical solution. Unlike the per-
turbation theory the given approach is not connected with a smallness of interaction
and consequently has a wider applicability region allowing to study qualitative le-
gitimacies in the behaviour and properties of quantum mechanical systems. In the
case of the Coulomb field the WKB method has a good accuracy even for small
quantum numbers [1–4]. In particular the WKB method has been successfully used
for the hydrogen atom in an external electric or magnetic field [1, 5], for the model-
ing potentials [6], in the nonrelativistic two-Coulomb-centre problem (the molecular
hydrogen ion H+

2 ) [7]. Discussion of contemporary situation of the method, its var-
ious versions and applications in the nonrelativistic theory of atoms and molecules,
quantum chemistry, in problems of the theory of collisions etc. can be found in the
monograph [8]. New region of application of the WKB approximation can be the
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low-energy sector of QCD (energy spectrum of hadrons and the widths of hadronic
decays), where standard approaches based on perturbation theory are not usable
because the interaction between quarks is not small.
Successful applications of the WKB method for various nonrelativistic prob-

lems have stimulated employing its relativistic extension to the Dirac equation.
The passage from the Dirac equation in an external field to the Hamilton–Jacobi
equation for a classic relativistic particle was considered for the first time by Pauli
[9], and later by the authors [10, 11] in more detail. Usually, the WKB method
has been used in the case of bound states [12–15], more rarely for the calculation
of wavefunctions of continuum spectrum and in the scattering theory [16]. Some
particularities of the quasi-classical discrete spectrum at binding energies that have
the same order as the rest energy mc2 were mentioned in [15]. Nevertheless, many
interesting problems of the atomic collisions theory, nuclear physics and elementary
particles physics [18–20] are reduced to solving the Dirac equation with spherically
symmetrical barrier potentials for which the energy levels are quasistationary. The
properties of these states represent the interest for study of one- and two-electron
processes with a rearrangement in the collisions of heavy multiply charged ions
with other particles (ions, atoms, molecules) [21], for describing the effects of spon-
taneous creation of positrons at slow collisions of heavy nuclei [22], at consideration
of the vacuum shell of the supercritical atom [22, 23], and from the point of view
of the study of the S-level ionization (with binding energy of order mc2) of heavy
atoms under influence of external fields.
The earlier applications [13, 14] of the WKB method to the strong external field

were based on squaring the Dirac equation (the effective potential method [12, 15]).
This approach is good at E > −mc2. However, at E < −mc2 the substitution
χ(r) = (mc2+E−V (r))1/2F (r) used in that approach becomes singular at r = rg,
where V (rg) = mc2 + E (the attractive potential V (r) < 0, 0 < r < ∞ was
considered) and usual quasi-classical formulae fail at r ≈ rg due to divergence
of the phase integral (

∫
pdr). Various authors overcome this difficulty differently,

sometimes rather originally and wittily, but no common method was proposed, and
therefore probably the mentioned version of the WKB method was not used for
that problem hereinafter.
To rescue the situation, the new variant of the quasi-classical analysis of the

Dirac equation in a strong spherically symmetric external field [17] was developed
at the end of 1970s. It turns out that the mentioned difficulty has a formal character
because the original Dirac equation is not singular at r = rg. The singularity does
not arise if we apply the WKBmethod to the initial system of radial Dirac equations
for the radial wavefunctions F and G which correspond to the upper and lower
components of the Dirac bispinor instead of the second order differential equation
for the function χ(r). The simple quasi-classical expressions obtained in this way
for the number of levels which are immersed into lower continuum have numerous
application to the theory of supercritical atoms. So it is natural to try to apply the
WKB method to two problems: the spherically symmetrical Stark effect and quark
potential models. These two problems represent a peculiar test for possibilities of
the WKB method.
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The problems connected with ionization of atoms and ions in external fields have
gained specific topicality after the discovery of lasers. In 1960s the quasi-classical
theory of the ionization in an electric field was set up and, besides, below-barrier
motion of the electron was considered as nonrelativistic one, which is fulfilled for
the valence electrons in all atoms from the hydrogen to the uranium. But, in the
case of the ionization of K-shell of heavy atoms the relativistic effects represent the
serious interest. Thus the generalization of the quasi-classical approximation for
the relativistic case is necessary. This generalization can be useful in the relativistic
nuclear physics and quantum chromodynamics.

2 The WKB method for the Dirac equation
in spherically symmetrical field

The problem which will be discussed here is finding the WKB-type approxima-
tion to the solution of the Dirac radial wave equation. A resume of the differential
equations which are involved and of the usual WKB approximation to their solution
will be given first.
The Dirac radial equation wave equation arise in discussing the motion of a

particle in a spherically symmetric a scalar potential S(r) and a vector potential
V (r) simultaneously present. We now consider the Dirac Hamiltonian

Ĥ = αp̂+ β(m+ S(r)) + V (r), c = 1. (1)

Ĥ acts on bispinor

Ψ = r−1

(
F (r)ΩjlM (n)
iG(r)Ωjl′M (n)

)
, (2)

where Ω is the spherical spinors are eigenfunctions of the operators J2 and Jz with
eigenvalues j(j + 1) and M l is the orbital moment (l + l′ = 2j), n = r/r.
After separation of angular variables in the Dirac equation (1), system of equa-

tion for the radial wavefunctions F (r) and G(r) can be written in the matrix form

χ′ =
1
h̄
D χ, χ =

{
F
G

}
, (3)

D =
(

−h̄k/r E − V (r) +m+ S(r)
−E + V (r) +m+ S(r) h̄k/r

)
, (4)

where the prime means the derivative with respect to r, k = ∓(j + 1/2) denotes
the eigenvalues of operator K̂ = β(σL + h̄) which commutes with Ĥ. By analogy
with the WKB treatment of one-dimensional Dirac problem as developed by [9] we
look for the solution of Eq. (3) in a formal power series

χ(r) = ϕ(r) exp




r∫
y(r) dr


 , (5)
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y(r) = 1
h̄y−1(r) + y0(r) + h̄y1(r) + h̄2y2(r) + . . . ,

ϕ(r) =
∑∞

n=0 h̄
nϕ(n)(r), as h̄ −→ 0.

(6)

Here ϕ and ϕn are two-component column-vectors. The upper component cor-
respond to F and lower component correspond to G.
Substituting (5) through (6) into Eq. (3) and equating the coefficients of equal

power of h̄, we obtain equations to determine successively yn and ϕ(n):

(D − y−1I)ϕ(0) = 0, (7)

(D − y−1I)ϕ(n+1) = ϕ(n)′ +
n∑

k=0

yn−kϕ
(k), n = 0, 1, 2, . . . (8)

where I is the identity 2×2 matrix. We see that every ϕ(n+1) is determined in turn
by the previous equations. The equation of (7) determines eigenvalues y−1 ≡ λi

and eigenvectors ϕ(0) ≡ ϕi(r) of the matrix D:

y−1 ≡ λi = ±q, q =
√
(m+ S)2 − (E − V )2 + (k/r)2, (9)

ϕi = A1

(
m+ S +E − V

λi + kr−1

)
= A2

(
λi − kr−1

m+ S −E + V

)
, (10)

here and further h̄ = 1, the index i = ±, A1 and A2 are normalizing factors which
will be determined later.
Since the matrix D is not symmetric we may introduce left eigenvectors ϕ̌i

which are not the same as the right eigenvectors ϕi. The left eigenvectors ϕ̌i are
defined by the following equations

ϕ̌i(D − λiI) = 0 (11)

ϕ̌i = B1(m+ S −E + V, λi + kr−1)
= B2(λi − kr−1, m+ S +E − V ). (12)

In addition a pair of vectors ϕ̌i and ϕi are orthogonal:

(ϕ̌i, ϕj) =
2∑

α=1

(ϕ̌i)α(ϕj)α = const δij . (13)

Let us now determine y0. To do so, we take the first equation of the set (8), substi-
tute ϕ0 = ϕi and multiply this equation by ϕ̌i (on the left). Then by Eq. (11) the
left-hand side of considered equation is zero and we obtain

y0(r) = − (ϕ̌i, ϕ
′
i)

(ϕ̌i, ϕi)
. (14)

Now we choose the normalizing factors A1, A2, B1, and B2 in Eq. (10) and (12) so
as to satisfy the equation

(ϕ̌i, ϕ
′
i) = (ϕ̌′

i, ϕi). (15)
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In this case
r∫
y0(r)dr = ln[(ϕ̌i, ϕi)−1/2] (16)

and we obtain

χi = (ϕ̌i, ϕi)
−1/2 exp




r∫
λi(r)dr


ϕi, (17)

that is similar to usual expression for quasi-classical wavefunction in nonrelativistic
quantum mechanics

ψ ∼ p−1/2 exp


i

r∫
p(r)dr


 .

In similar manner we may find all the other terms y1, y2, . . . , ϕ
(1), ϕ(2), . . . in the

expansions (6). However, the formulae are very complicated, so we restrict our
computing to the order O(h̄). In principle this is connected with the circumstance
that generally the expansion (6) in power h̄ does not converge and represent so-
called asymptotic series. Since the parameter of expansion is the Planck constant
h̄ which is small enough we obtain a good approximation for χ if we take finite
number of terms of the expansions (6).
The condition (15) can always be satisfied. Substituting the expression (10) and

(12) into (15) yields

A1B
′
1 −A′

1B1

A1B1
= − (m+ S)V ′ + (E − V )S′

q(q ± kr−1)
. (18)

Then we have

χ± =
[
2q

(
q ± k

r

)]−1/2

× exp


±

r∫
qdr +

1
2

r∫
(m+ S)V ′ + (E − V )S′

q (q ± kr−1)
dr



(

m+ S +E − V
kr−1 ± q

)
.(19)

Using the second way of writing the eigenvectors ϕi and ϕ̌i with factors A2 and B2

in (10) and (12) and doing analogous calculation we obtain the following formula

χ± =
[
2q

(
q ∓ k

r

)]−1/2

× exp


±

r∫
qdr − 1

2

r∫
(m+ S)V ′ + (E − V )S′

q (q ∓ kr−1)
dr



(

±q − kr−1

m+ S −E + V

)
.(20)

Let us discuss the meaning of these formulae. First we note that y−1 and y0

contain no imaginaries in the below-barrier region r− < r < r+. Here q is (to
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within a factor i) the radial momentum of the relativistic particle, q(r)2 > 0 for
r− < r < r+. The signs +(−) in Eqs. (19) and (20) correspond to the solutions
increasing (decreasing) with increasing r. For decreasing solution (sign −) Eq. (19)
must be used for k < 0 and Eq. (20) for k > 0, and the reverse for the increasing
solution. The choice of a convenient form for the solution is determined in such
a way as the quantity Q = q + |k|/r is positive in the below-barrier region. One
then gets formulae for F and G which are free from singularities. Accordingly, the
version of the WKB method given here completely eliminates the difficulty with the
effective potential which was mentioned in Sect. 1. For another choice, singularities
can appear (at Q = 0) for F and G. But these singularities are fictitious because in
this case the numerator is zero too. To get F and G which are free from singularities
we need to reveal this indeterminacy that is connected with additional evaluations.

Fig. 1. The type of the effective potential Ueff (r,E).

We now rewrite q in form q =
√
2m(Ueff −Eeff), where Eeff = (E2 −m2)/2m

is a binding energy and

Ueff (r, E) =
E

m
V + S +

S2 − V 2

2m
+

k2

2mr2
(21)

is an effective potential. We consider the case when effective potential has barrier
shape (see Fig.1).

Then the wavefunctions take different form in the three regions: 1. r0 < r < r−
(potential well, q2 < 0); 2. r− < r < r+ (below-barrier region, q2 > 0); 3. r > r+
(classically accessible region, q2 > 2, continuous spectrum). Here r0, r−, and r+
are the turning points. The behaviour of wavefunctions is described in the following
section.
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3 The wavefunction of the Dirac particle in classical allowed and
forbidden regions

The region r0 < r < r− is classically allowed region. Then the wavefunctions
(19) and (20) oscillate, we have

F (r) = C±
1

[
E − V +m+ S

p(r)

]1/2

cosΘ1,

G(r) = C±
1 sgnk

[
E − V −m− S

p(r)

]1/2

cosΘ2,

(22)

where p(r) is the quasiclassical momentum for radial motion of the Dirac particle

p(r) = [(E − V )2 − (m+ S)2 − (k/r)2]1/2 (23)

and the phases Θ1 and Θ2 are given by

Θ1(r) =
r∫

r−

(
p+

kw

pr

)
dr +

π

4
, Θ2(r) =

r∫
r−

(
p+

kw̃

pr

)
dr +

π

4
,

w =
1
2

(
V ′ − S′

m+ S +E − V
− 1

r

)
, w̃ =

1
2

(
V ′ + S′

m+ S − E + V
+
1
r

)
,

(24)

and C±
1 are normalization constants. Signs ± correspond to k > 0 and k < 0,

respectively.
Considering that the level width Γ is small (it is justified by the result) we

can neglect penetration into classically forbidden regions r < r0 and r > r−, and
normalize the wavefunction to single particle located in region 1:

r−∫
r0

(F 2 +G2)dr = 1.

Thus contribution from exponential “trails” of the function F and G are neglected
in regions r < r0 and r > r−. Here cos2 Θi (r) can be replaced with average value
1/2:

|C±
1 | =




r−∫
r0

E − V (r)
p(r)

dr




−1/2

=
(
2
T

)1/2

, (25)

where T is the period of the executed periodic motion of the relativistic particle.
We note that in the turning points r0 and r−

E − V =
[
(m+ S)2 +

k

r2

]1/2

,

and E − V > m+ S in the region 1.
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The below-barrier region r− < r < r+ is classically forbidden. Here p = iq but
quantities q, y−1, and y0 are real. As we know [1], the wavefunction must decrease
exponentially with increasing r. For the state with k > 0 we have

χ =
C+

2√
qQ
exp


−

r∫
r+

[
q +

(m+ S)V ′ + (E − V )S′

2qQ

]
dr




(
−Q

m+ S −E + V

)

(26)
and for k < 0

χ =
C−

2√
qQ

exp


−

r∫
r+

[
q − (m+ S)V ′ + (E − V )S′

2qQ

]
dr




(
m+ S +E − V

−Q

)
,

(27)
where Q = q + |k|r−1.
The most interesting results are for a continuous spectrum (r > r+). For r > r+

the wavefunction corresponding to the quasistationary state is divergent (outgoing
particle):

χ =
C+

3√
pP

exp




r∫
r+

[
ip+

(m+ S)V ′ + (E − V )S′

2pP

]
dr




(
iP

m+ S −E + V

)
,

(28)
where k > 0, and

χ =
C−

3√
pP

exp




r∫
r+

[
ip− (m+ S)V ′ + (E − V )S′

2pP

]
dr




(
m+ S +E − V

iP

)
,

(29)
for k < 0. Here P = p+ i|k|r−1.
The formulae obtained determine quasiclassical asymptotics of solution to the

Dirac equation (3) as h̄ → 0 and cover almost the entire range of values of r, except
the neighborhoods of the turning points r− and r+. To go around these points we
can use the usual method which enable us to match the solutions on both sides
of the turning point and to obtain relation between the normalization constants.
Near the points r− and r+ the Dirac equation is reduced to the Schrödinger-like
equation with an effective potential depending linearly on r−r±. Then the solution
is represented by the Airy function. One can also use the Zwaan method [1, 3]. The
connection formulae are of the form

C±
2 = −iC±

3 = ∓C±
1

2

[
E − V (r−) +m+ S (r−)

|k| r−1
−

]±1/2

× exp


−

r+∫
r−

[
q ± (m+ S)V ′ + (E − V )S′

2qQ

]
dr


 . (30)
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As applications of these formulae we can solve a number of problems. For ex-
ample the position Er and width of quasistationary level E = Er − iΓ/2. In the
case of exponentially small barrier Eqs. (22) lead to the quantization rule

r−∫
r0

(
p+

k w

p r

)
dr =

(
nr +

1
2

)
π, nr = 0, 1, 2, . . . , (31)

which determines the level energy. Here nr is the radial quantum number. Eq. (31)
differs from the standard Bohr–Sommerfeld quantization rule by the relativistic
expression for the momentum and in the term ∼ w(k) which takes into account the
spin-orbit interaction and splits the levels with different signs of k.
The particle current at r → ∞ determines the width of the level, i.e., the

probability of tunneling
Γ = −2 Im[G∗(r)F (r)]. (32)

Joining the solutions (28) and (29) and using (25) and (30) we obtain

Γ =
1
T
exp


−2

r+∫
r−

(
q − k w

q r

)
dr


 . (33)

4 An analytical examination of the quantization condition

Any approximative theory is never complete without a proper examination of
its applicability to concrete problems. To examine the validity of the quantization
condition (31) we apply it to four problems whose analytic solutions are well known.
If one applies the eigenvalue condition (31) to the Coulomb problem where V (r) =
−αZ/r (α = 1/137, S(r) = 0) then

p(r) =

[(
E +

αZ

r

)2

−m2 −
(
k

r

)2
]1/2

, w =
1
2




αZ

r2

E +
αZ

r
+m

− 1
r


 .

The equation p2(r) = 0 has two positive roots

r0,− =
EαZ ∓ ((EαZ)2 − (m2 −E2)γ2)1/2

m2 −E2
, γ =

√
k2 − (αZ)2.

Having calculated the integral from r0 to r− in quantization condition (31), we
arrive at the expression

EαZ√
m2 −E2

= n+ γ, n = nr +
1 + sgn k

2
=

{
0, 1, 2 . . . for k < 0,
1, 2 . . . for k > 0,

whence we get expression, which is similar to the Sommerfeld–Dirac fine structure
formula

E = m

[
1 +

(
αZ

n+ γ

)2
]−1/2

.
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The Dirac equation also possesses an exact solution for superposition of a vec-
tor and scalar potential. Let us put V (r) = −α/r, S(r) = −α′/r [24]. The vector
Coulomb potential is derived from the exchange of massless photons between nu-
cleus and the leptons orbiting around it, the scalar potential is created by exchange
of massless scalar mesons.
In the subsequent calculation we follow a very similar procedure used in the

previous case. We consider

p(r) =

[(
E +

α

r

)2

−
(
m− α′

r

)2

−
(
k

r

)2
]1/2

,

and

w =
1
2




α− α′

r2

E +
α− α′

r +m

− 1
r


 .

The roots of p2(r) = 0 are

r0,− =
Eα+mα′ ∓ ((Eα+mα′)2 − (m2 −E2)γ2)1/2

m2 −E2
.

Performing the integration between limits r0 and r− in (31), we obtain

Eα+mα′
√
m2 −E2

= n+ γ, γ =
√

k2 − α2 + α′2,

which leads to

E = m




−αα′

α2 + (n+ γ)2
∓


( αα′

α2 + (n+ γ)2

)2

− α′2 − (n+ γ)2

α2 + (n+ γ)2




1/2

 .

The result obtained is identical with result in [24].
In papers [25] the problem of bound states of the Dirac equation with S(r) =

V (r) = a r2/4 (a > 0) has been studied. In this case (23) and (24) take form

p(r) =

[
E2 −m2 − 1

2
(E +m) a r2 −

(
k

r

)2
]1/2

, w(r) = −1/2r.

The limits of the integral in (31) are

r0,− =
1√
a

[
E −m∓

√
(E −m)2 − 2 a k2(E +m)−1

]1/2

.

Carrying out the integration of the left-hand side of (31) we obtain equation for E

E −m

2

√
E +m

2a
− |k|
2

− 1
4
sgn k = nr +

1
2
,
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input K = |k|+ (1 + sgn k)/2, get

(E −m)
√
2 (E +m) = (4nr + 2K+ 1)

√
a.

The last equation for the energy is cubic, its real solution is

Enr ,K = 1
6

(
2m+ 8× 22/3m2A−1/3 + 21/3A1/3

)
,

where A = −B +
√
B2 − 1024m6, B = 32m3 − 27a (1 + 2K+ 4nr)

2. This result
totally coincides with results obtained in [25].
Let’s consider the motion of a massless fermion in the scalar field S(r) = −α′/r+

σr, σ > 0; V (r) = 0. Integration in quantization condition (31) from r0 to r−
gives following result:

E2 + 2σ(α′ − γ)
4σ

− k

σ(r0 + r−)π

[
2r0

(
Π(ν2

+, ξ)
r2
0 − P 2

+

+
Π(ν2

−, ξ)
r2
0 − P 2

−

)

−
(

1
r0 + P+

+
1

r0 + P−

)
F (ξ)

]
= nr +

1
2
, (34)

where

r0,− =
1

21/2σ

√
E2 + 2α′σ ∓

√
(E2 + 2α′σ)2 − (2σγ)2, γ =

√
k2 + α′2,

P± =
1
2σ
(−E ±

√
E2 + 4α′σ), ξ =

√
E2 + 2σ(α′ − γ)
E2 + 2σ(α′ + γ)

, ν2
± = ξ

P± + r0
P± − r0

,

F (ξ) and Π(ν2
±, ξ) are the complete elliptic integrals of the first and third kind,

respectively.
In (34) taking into account the asymptotics of the elliptic integrals [26] at

σγ/E2
nr,k � 1, one obtains the following spectrum

E2
nr ,k

4σ
= nr +

1
2
+

γ − α′

2
+

k

4γ
+

σk

2πE2
nr ,k

(
0.38 + ln

E2
nr,k

σγ

)
+O


(

σγ

E2
nr ,k

)2

 .

(35)
The form (35) is exact for small (σγ/E2

nr,k)
2, and the accuracy can be tested by

comparison with the exact formula (34); two sets of lowest levels with k = ±1
coincide within 2% and for higher levels the precision is less than 1%. At α′ = 0
expression (35) is reduced to Simonov’s result [27].
In case of E2

nr ,k 
 σγ in formula (35) expression
(
0.38 + lnE2

nr ,k/σγ
)/

π tends
to 1 and one can obtain the following expression for energies:

εnr ,k =
Enr ,k√

σ
= ±

√
N − α′ + [(N − α′)2 + 2k]1/2

, N = 2nr + 1+ γ +
k

2γ
. (36)
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5 Spherical model of the Stark effect of the hydrogen-like atom

In this section we study atomic level of the hydrogen-like atom in spherically
symmetric field. Let us consider the potential

V (r) = −Zα

r
− Fr, S(r) = 0, (37)

where Z is the nuclear charge, α = 1/137, F is the electric field strength. Now
h̄ = c = m = 1, and ε is the energy of an electron in units of mc2. For a small
electric field there is region for which the distances from a hydrogen-like ion are
much greater than the dimension of a ion (r 
 2Zα/λ) and much smaller than F−1.
It means that in this region we can neglect the penetration through the potential
barrier r− < r < r+ and normalize the wavefunction to one electron localized in
broad potential well r0 < r < r− of an ion.
In order to find an analytical form of constants C±

1 it is necessary to solve
equation p2(r) = 0. Taking into account that F can be neglected in surroundings
of a nucleus then we obtain for the turning points

r0 = r
(0)
1 ≈ εZα− ν

λ2
, r− = r

(0)
2 ≈ εZα+ ν

λ2
,

ν =
√
(εZα)2 − (λγ)2, λ =

√
1− ε2.

(38)

The substitution (37), (38) into (25) and calculation of the corresponding inte-
gral yield

(C±
1 )

2 =
λ3

πZα
. (39)

We note that the value |C±
1 |α−1 = π−1/2ZN−3/2 (N = Zα/λ) is the relativistic

analogue of the corresponding nonrelativistic formula for normalized constant a =
π−1/2Zn−3/2 of the H-like atom in the Schrödinger theory.
There is another method for determination of the constants C±

1 . We join the
solution in region 2Zα/λ2 � r � F−1 and asymptotics (r → ∞) of unperturbed
atomic wavefunctions

Fas(r)
Gas(r)

}
= ±A

√
1± ε [1 +B±r−1 + . . .] rεZα/λe−λr,

where

A = λ(2λ)εZαλ




Zα

λ
− k

2ZαΓ

(
ε
Zα

λ
− γ + 1

)
Γ

(
ε
Zα

λ
+ γ + 1

)



1/2

,

B± =
1
2λ

(
k +

Zα

λ

)(
k − Zα

λ
± 1

)
. (40)
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In this case

C±
1 = 2Aλ1/2

( ν

7λ2e

)εZα/λ
(
Zα+ kλ

Zα− kλ

)1/4 (
εZα+ λγ

εZα− λγ

)γ/2

. (41)

The results (39) and (41) differ within the error between n! and the Stirling formula.
Now we calculate position of the quasistationary level with an accuracy of

O(F 2). Therefore it is necessary to evaluate the turning point with more accu-
racy and we must also find the other two solutions of the equation p2(r) = 0.
Then

r1,2 = r0
1,2

[
1 +

r0
1,2F

λ2

(
ε∓ Zα

ν

)]
, r3,4 =

∓1− ε

F
+

Zα

ε± 1 , (42)

where r0 = r1, r− = r2, r+ = r4. The position of close (“atomic”) turning points
r1,2 depends on F weakly and is determined principally by the Coulomb field of
a nucleus. The turning points r3,4 distances from the atom depend principally
on the field but their value is “controlled” by quantity Zα/(ε ± 1) ≈ 1 that is
determined by long distance Coulomb interaction. If F � 1 (weak field) then
{|r3|, r4} 
 {r1, r2}. It allows to expand quasi-momentum in positive powers of F
in the region r1 ≤ r ≤ r2.

p (r) = F

√
(r − r1)(r − r2)(r − r3)(r − r4)

r

≈ F
√
−r3r4

(r − r1)(r − r2)
r

[
1− r3 + r4

2r3r4

]
. (43)

Taking into account (42), (43), and calculating the integral in (31), we obtain

ε = ε0 +
F

2Zα

[
k − ε0

(
3Z2α2

λ2
0

− k2

)]
, (44)

where

λ0 =
√
1− ε2

0, ε0 =

[
1 +

(Zα)2

n+
√

k2 − (Zα)2

]−3/2

, n = nr +
1 + sgn k

2
.

To determine ε we can also use the perturbation theory (at F � 1) in which the
restriction to quantum numbers does not exist unlike the quasi-classical method. It
is surprising but calculations lead to the same expression (44). So the quasiclassical
condition (31) gives excellent results even for low-energy levels of discrete spectrum.
Now, we evaluate the width by (33). We rewrite q in the form

q(r) =
F
√
(r − r1)(r − r2)(r − r3)(r4 − r)

r
. (45)

As in the case of quasi-momentum we expand q in power series of F . Practical
expansion is realized in following form. We divide the integration region r2 �
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r � r4 into two regions introducing the point r′0 ≈ F−1/2 which satisfies the
condition r2 � r′0 � r4. In the first region (r2 � r � r′0) the Coulomb interaction
predominates but the interaction between the electron and an electric field can be
regarded as the perturbation.
Expanding q(r) in this region in powers of a small parameter (perturbation)

yields the asymptotic representation

q(r) ≈ F
√
−r3r4

√
(r − r1)(r − r2)

r

(
1− r3 + r4

2r3r4
r

)
. (46)

On the contrary, the potential of an electric field dominates in the region r′0 ≤ r ≤ r4
but the Coulomb field of the nucleus can be regarded as a perturbation

q(r) ≈ F
√
(r − r3)(r4 − r)

(
1− r1 + r2

2r

)
. (47)

Calculating integrals in (33) and taking (39), we obtain

Γ = 2λ|A|2
(
2λ2

F

)2εZα/λ

exp
(
−Φ(ε)

α3F
+ 2Zα arccos ε

)
, (48)

where
Φ(ε) = arccos ε− ε

√
1− ε2. (49)

It is seen from (48) the width of an atomic level is proportional to |A|2. It is
not surprising because for F � 1 the ionization comes from “a tail” of atomic
wavefunction and the barrier is broad.
Next let us investigate some limiting cases of the obtained expression (48).

1. We begin from the ionization of the s-level, which is bound by short range
forces (Z = 0). In this case (48) gives

Γ = 2λ|A|2 exp
(
−Φ(ε)

α3F

)
. (50)

This is the same result as in [28, 29] for the Stark ionization of the s-level of
negative ions (H−,Na− etc.).

2. At present Coulomb field it is appropriate to consider different limiting cases
for the functions in the square brackets of the formula (48):

arccos ε =



(1− ε2)1/2 + 1

6 (1− ε2)3/2 + . . . , ε → 1,
1
2π − ε− 1

6ε
3 − . . . , ε → 0,

π − (1− ε2)1/2 − 1
6 (1− ε2)3/2 − . . . , ε → −1.

(51)

Φ(ε) =




1
32

5/2(1− ε)3/2
[
1− 3

20 (1− ε) + . . .
]
, ε → 1,

1
2π − 2ε+ 1

3ε
3 − . . . , ε → 0,

π − 1
32

5/2(1 + ε)3/2 + . . . , ε → −1.
(52)
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In the nonrelativistic limit (α → 0, ε → 1) the formula (48) passes into the ex-
pression obtained in [30]. At ε → −1 (when the level enters the negative-energy
continuum) the exponential factor equals exp [−π/(α3F )] that coincides with the
corresponding factor in the Schwinger formula [31] for the probability of electron-
positron pairs creation from vacuum in a constant electric field obtained within the
framework of quantum field theory.

6 Description of an energetic spectrum of the quark system with the
Cornell potential

As it is known, the formulation of the two-body problem within the frame-
work of the relativistic quantum theory strikes on principal difficulties which have
mathematical and logical character. Until now there is no satisfactory relativistic
theory of two-particle systems. But the great need of the logically uncontradictory
two-body equations exists since we know that the wide class of really existing fun-
damental particles (mesons) are considered as the bound states of the two-quark
systems.
It seems also by now to be proven that the quantum chromodynamics (QCD)

is able to correctly describe the most pronounced features of the quark-antiquark
interaction. However, the standard perturbative QCD gives rather reliable recipes
for the calculation of various characteristics only for description so-called “hard”
processes characterized by the large transmitted momentum, and not applicable for
calculation of the characteristics defined by “soft” processes (the mass spectrum,
confinement of quarks, decay widths of hadrons). At the same time the nature of
the formation of the bound states of interacting particles must be determined un-
doubtedly by nonperturbative effects. The confinement is the result of circumstance
that, unlike quantum electrodynamics in which interaction mediators — photons
— are electroneutral, exchange particles in quantum chromodynamics — gluons
— possess non-zero colour charge and therefore can interact one with other. Thus
confinement is not nested in the framework of the perturbation theory. Because of
this, at the present time the structure of interquark forces cannot be completely
defined from the principles of quantum chromodynamics.
The utilization of dynamical equation represents the most effective way of the

construction of the theory for bound states. The point is that even if we are able to
construct the kernels (potentials) of dynamic equations only for the lower orders of
the perturbation theory, then elaboration of the methods for exact or approximative
solving of these equations allows to take into account contributions of nonperturba-
tive effects of the interaction for calculation of observable characteristics of bound
states. In the nonrelativistic constituent quark model the meson is basically de-
scribed by the Schrödinger equation with appropriate potential which describes
the quark-antiquark interaction. This interaction is a sum of the linearly rising po-
tential responsible for confinement in long range and of the quasi-Coulomb short
range interaction caused by the one-gluon-exchange. Overview of the results and
successes of nonrelativistic approach is given for example in [32].
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However, the consideration of meson containing the light quarks is a compli-
cated task, and it demands the relativistic effects to be taken into account. A more
ambitious approach is based on the generalization of the Schrödinger equation to
the relativistic Bethe–Salpeter equation or the Salpeter equation (see e.g. [33]). An-
other form used to describe the two-quark system is the two-body Dirac equation
or the one body Dirac equation (see e.g. [34]).
In the paper [18] attempts were made to give the theoretical reasons (though

it is not full consistent) to the relativistic potential model of the quark-antiquark
systems consisting of one heavy quark (antiquark) Q (b and c quarks) with the
mass m2 and one light antiquark (quark) q (u, d, s - quarks) with mass m1 much
less. Such heavy-light quark systems are QCD analogues of the hydrogen atom
and thus of fundamental importance. Hydrogen-like quark systems are e.g. B+ =
b̄u, B0 = b̄d, B0

s = b̄s, D0 = c̄u, D− = c̄d, D−
s = c̄s. Using the Dirac equation we

implement explicitly relativistic dynamics and can study relativistic properties of
the spectrum, and also spin splittings of energy levels. We use the Dirac equation
with a static QCD-motivated potential to describe the light quark or antiquark
motion in the field of the heavy quark.
In the present paper, the color Coulomb interaction between quarks is of a

vector nature and the confining interaction is scalar. It was shown in [18] that:

1. When we have superposition of the scalar potential S(r) = µr and the vector
potential V (r) = −α/r then the Dirac equation has discrete spectrum.

2. When S(r) = 0 and V (r) = −α/r + µr the discrete spectrum is absent, and
all solutions of the Dirac equation, if any, are quasistationary.

3. For purely scalar interaction S(r) = −α/r + µr, V = 0 the spectrum is
discrete. In this case the scalar potential explicitly breaks the chiral symmetry
and states with opposite parities are not degenerate.

It is widely accepted that interaction between the two quarks is very well described
by the Cornell potential [33].
It is interesting to note that some authors assumed that the confinement part

of the potential is a pure vector [35], but a further search showed that confining
potential which, in principle, is scalar can contain a small fraction of the vector
potential [36].
We are also inclined to the Cornell potential. In previous paper [37] a very good

spin average mass-spectrum of the light and heavy quark-system was also obtained
by this potential.
Let’s assume

V (r) = −α

r
, S(r) = µr, (53)

where α = 4/3αs, µ = 0.18GeV2, αs is the running coupling constant.
Both the Schrödinger equation and the Dirac equation with Cornell potential

has no analytical solutions. The ordinary WKB method was used in the paper
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[38] for solving the first equation. For finding asymptotic solutions of the Dirac
equation (3) with potential (53), we shall use the version of the WKB approximation
elaborated by us recently.
Due to the confinement of quarks we are interested in only classically allowed

region (r0 < r < r−, q2 < 0, a potential well) that corresponds to only the discrete
energy spectrum of the quark-antiquark system. Then on the basis of (23)

p (r) =

[(
E +

α

r

)2

− (m+ µr)2 −
(
k

r

)2
]1/2

. (54)

We represent the left-hand side of the quantization condition (31) in the form of a
sum of two integrals I1 and I2:

I1 =

a∫
b

p(r)dr, I2 =

a∫
b

k w

p(r)r
dr. (55)

The integration is between the two turning points r0 = b and r− = a, which are
real and positive (a > b > 0) roots of the equation p2(r) = 0. Two roots of this
equation are real and negatives (d < c < 0):

a, b = − 1
4h+

1
2 (Ω ±∆+) , c, d = − 1

4h− 1
2 (Ω ∓∆−) , (56)

where

Ω =

[
h2

4
− 2f
3
+

u

3

(
2
Z

)1/3

+
1
3

(
Z

2

)1/3
]1/2

, ∆± =

√
F ± D

4Ω
,

F =
h2

2
− 4f
3

− u

3

(
2
Z

)1/3

− 1
3

(
Z

2

)1/3

, Z = v +
√
−4u3 + v2,

D = −h3 + 4hf − 8g, v = 2f3 − 9hfg + 27g2 + 27h2l− 72fl,
u = f2 − 3hg + 12l

(57)

and

h =
2m
µ

, f = −E2 −m2

µ2
, g = −2Eα

µ2
, l =

k2 − α2

µ2
. (58)

Formulae (55) can now be re-expressed in terms of a, b, c and d as

I1 = −µ

a∫
b

r3 + hr2 + fr + g + lr−1

R
dr, (59)

I2 = − k

2µ


 a∫

b

dr
(r − λ+)R

+

a∫
b

dr
(r − λ−)R


 , (60)
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where

R = [(a− r) (r − b) (r − c) (r − d)]1/2
,

λ = λ+ − λ−, λ± = −E +m∓
√
(E +m)2 − 4µα
2µ

.

By replacement

r =
b(a− c)− c(a− b) sin2 φ

a− c− (a− b) sin2 φ
(61)

the integrals (59) and (60) can be expressed through elliptic integrals. Then the
quantization condition (31) gives the transcendental equation for the energy Enr ,k:

−µ (b− c)2

�1

[
N1F (ξ) +N2E (ξ) +N3Π (ν, ξ) +N4Π

(c

b
ν, ξ

)]

+
k

µ

[
b− c

2
(N5Π (ν1, ξ) +N6Π (ν2, ξ)) +N7F (ξ)

]
= 1

2

√
(a− c)(b− d)

(
nr + 1

2

)
π, (62)

where

�1 = (1− ν)
(
ξ2 − ν

)
, ℵ1 = ξ2 (3− 2ν) + ν (ν − 2) ,

ξ =

√
(a− b)(c− d)
(a− c)(b− d)

, ν =
a− b

a− c
, ν1 =

λ+ − c

λ+ − b
ν, ν2 =

λ− − c

λ− − b
ν,

N1 =
ξ2 (b− c)

4
− 3ℵ1 (b− c)
8 (1− ν)

− ξ2 − ν

2
(h+ 3c)

+
�1

(b− c)2

(
c3 + c2h+ cf + g +

l

c

)
,

N2 = −ν

2

[
h+ 3c+

3
4
(b− c)ℵ1

�1

]
,

N3 =
1
2

[
3
4
(b− c)ℵ2

1

�1
+

2�1

(b− c)
(
3c2 + 2ch+ f

)
+ (b− c)

((
1 + ξ2

)
ν − 3ξ2

)
+ ξ2ℵ1 (h+ 3c)

]
,

N4 = − �1

(b− c)
l

bc
, N5 = [(b− λ+)(λ+ − c)]−1,

N6 = [(b− λ−)(λ− − c)]−1, N7 =
(
c+

E +m

2µ

)
[(λ+ − c)(λ− − c)]−1

and F (ξ), E(ξ), and Π(ν, ξ) are the complete elliptic integrals of the first, second,
and third kinds, respectively.
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Table 1. The eigenvalues εnr,k of the Dirac equation with α = 0.

m = 0 m = 0.3
2s+1Nj k, nr

[18] (62) (63) [18] (62)

2S1/2 −1, 0 1.6194 1.6229 1.4142 1.8444 1.8484
−1, 1 2.6026 2.6038 2.5887 2.8068 2.8082
−1, 2 3.2912 3.2918 3.2886 3.4908 3.4915
−1, 3 3.8554 3.8558 3.8555 4.0530 4.0534

2P3/2 −2, 0 2.1465 2.1473 2.0000 2.3676 2.3686
−2, 1 2.9520 2.9524 2.9208 3.1585 3.1590
−2, 2 3.5735 3.5738 3.5616 3.7751 3.7754
−2, 3 4.0995 4.0996 4.0941 4.2985 4.2987

2D5/2 −3, 0 2.5693 2.5696 2.4495 2.7885 2.7889
−3, 1 3.2685 3.2687 3.2287 3.4765 3.4767

2F7/2 −4, 0 2.9322 2.9323 2.8284 3.1503 3.1505
2P1/2 1, 0 2.2940 2.2925 2.3178 2.4921 2.4911

1, 1 3.0310 3.0303 3.0359 3.2275 3.2269
1, 2 3.6260 3.6255 3.6265 3.8216 3.8213

2D3/2 2, 0 2.7044 2.7040 2.7443 2.9065 2.9057
2, 1 3.3538 3.3535 3.3693 3.5522 3.5520

2F5/2 3, 0 3.0597 3.0558 3.1021 3.2618 3.2598
2G7/2 4, 0 3.4087 3.3695 3.4183 3.6000 3.5750

In the case m = 0, α = 0, by asymptotics of elliptic integrals [26], the formula
(62) leads to expression

εnr,k =
Enr ,k√

σ
= ±

√
N + (N2 + 2k)1/2

, N = 2nr + 1 + |k|+ 1
2
sgn k, (63)

which coincides with equation (36), where one takes α′ = 0.
We show in Tables 1 and 2 the values of the energy obtained with the aid of

(62), (63), and the values calculated by numerical solution of the system (3) in [18].
Analysis of results in Tables 1 and 2 shows that for α = 0 the general formula

(62) gives good coincidence with [18] (for k = ±1 states the relative error is less
than 2%). Formula (63) has worse accuracy, but precision of both (62) and (63)
rapidly increases with increasing quantum numbers. In the case α = |k| the relative
error of formula (62) does not exceed 2.5% (besides the ground state).
Corresponding wavefunctions for light quarks in the quasi-classical allowed re-

gion (a potential well) are determined by formulae (22), where the normalized
constants have the following form:

|C±
1 | =

[
µ
√
(a− c)(b− d)

2((Ec+ α)F (ξ) +E(b− c)Π(ν, ξ))

]1/2

, (64)
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Table 2. The eigenvalues εnr,k of the Dirac equation with α = |k|.

m = 0 m = 0.3
2s+1Nj k, nr

[18] (62) [18] (62)

2S1/2 −1, 0 0.0000 0.0769 0.0000 0.0000
−1, 1 1.0690 1.0922 1.1749 1.2008
−1, 2 1.9685 1.9887 2.1171 2.1379
−1, 3 2.6786 2.6954 2.8428 2.8600

2P3/2 −2, 0 0.0000 0.0385 0.0000 0.0000
−2, 1 0.6444 0.6549 0.7095 0.7216
−2, 2 1.3977 1.4079 1.5108 1.5213
−2, 3 2.0853 2.0940 2.2234 2.2323

2D5/2 −3, 0 0.0000 0.0257 0.0000 0.0000
−3, 1 0.4500 0.4568 0.4957 0.5036

2F7/2 −4, 0 0.0000 0.0193 0.0000 0.0000

2P1/2 1, 0 0.6402 0.7090 0.7901 0.8502
1, 1 1.6259 1.6561 1.7974 1.8268
1, 2 2.3902 2.4116 2.5702 2.5914

2D3/2 2, 0 0.3692 0.4059 0.4615 0.4929
2, 1 1.1200 1.1362 1.2506 1.2662

2F5/2 3, 0 0.2545 0.2793 0.3193 0.3404
2G7/2 4, 0 0.1933 0.2120 0.2428 0.2587

the quasi-momentum is defined by (23) and phases Θ1, Θ2 are

Θ1 = − 2√
(a− c)(b− d)

[
µ(b− c)2

�1

[
N1F (Φ, ξ) +N2E(Φ, ξ) +

+ N3Π(Φ, ν, ξ) +N4Π(Φ,
c

b
ν, ξ) + L

]
+

k

µ

[
b− c

2
(N5Π(Φ, ν1, ξ) +N6Π(Φ, ν2, ξ)) +N7F (Φ, ξ)

]]
+

π

4
, (65)

Θ2 = − 2√
(a− c)(b− d)

{
µ(b− c)2

�1
[N1F (Φ, ξ) +N2E(Φ, ξ)

+ N3Π(Φ, ν, ξ) +N4Π(Φ,
c

b
ν, ξ) + L

− k

µ

[
b− c

2
(N8Π(Φ, ν∗

1 , ξ) +N9Π(Φ, ν∗
2 , ξ)) +N10F (Φ, ξ)

]}
+

π

4
. (66)

Here

Φ = arcsin

√
(a− c)(r − b)
(a− b)(r − c)

, ∆ =
√
1− ξ2 sin2 Φ,
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L =
ν2(b− c)3

�1

∆ sinΦ cosΦ
1− ν sin2 Φ

[
3(b− c)ℵ2

1

8�1
+

1
4
(
1− ν sin2 Φ

) + h

2 (b− c)

]
,

λ∗ = λ∗
+ − λ∗

−, λ∗
± =

E −m±
√
(E −m)2 + 4µα
2µ

,

N8 = [(b− λ∗
+)(λ

∗
+ − c)]−1, N9 = [(b− λ∗

−)(λ
∗
− − c)]−1, ν∗

1 =
λ∗

+ − c

λ∗
+ − b

ν,

N10 = (c− (E −m)/(2µ)) [(λ∗
+ − c)(λ∗

− − c)]−1, ν∗
2 =

λ∗
− − c

λ∗
− − b

ν;

F (Φ, ξ), E(Φ, ξ) and Π(Φ, ν, ξ) are the elliptic integrals of the first, second, and
third kind, respectively.
For determination of various characteristics of mesons (size of Qq̄ system, po-

larization coefficient of meson in an external field, etc.) it is necessary to know the
mean value of ri (i ∈ Z). In the WKB approximation it is of the form

〈
ri
〉
=

r−∫
r0

Ψ+riΨ dr =

r−∫
r0

(
|F (r)|2 + |G (r)|2

)
ridr

=
2
T

r−∫
r0

E − V (r)
p (r)

ridr. (67)

Specifically the mean radius of heavy-light quark system is given by the expression

〈r〉 = λ1F (ξ) + λ2E (ξ) + λ3Π (ν, ξ)
λ4F (ξ) + λ5Π (ν, ξ)

, (68)

where

λ1 = αc+E

(
c2 − (b− c)2

2 (1− ν)

)
, λ2 = −ν (b− c)2

2�1
E,

λ3 = (b− c)
[
α+E

(
2c+

(b− c)ℵ1

2�1

)]
, λ4 = α+Ec, λ5 = (b− c)E.

7 Summary

We have shown in this paper that the relativistic version of the WKB approx-
imation is an accurate and powerful method. It makes possible the derivation of
reliable analytical formulas, from which one can easily study, e.g., the dependence
of some physical quantities (the relativistic mass spectrum, confinement of quarks,
decay widths, wavefunction of Dirac particle, etc.) on the parameters of potentials,
quarks masses, quantum numbers. Though sometimes the WKB method yields
complicated formulas, it is often possible to extract interesting information from
approximate analytical relations and in this way guide full quantum calculations.
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