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Abstract

The Bohr-Sommerfeld quantization rule and the Gamow formula for the width of quasistationary
level are generalized by taking into account the relativistic effects, spin and Lorentz structure of
interaction potentials. The relativistic quasi-classical theory of ionization of the Coulomb system
(Ve = —&/r) by radial-constant long-range scalar (Si.r. = (1 = A)(or 4 Vo)) and vector Vir. =
Mor 4 Vp)) fields is constructed. In the limiting cases the approximated analytical expressions for
the position E, and width I' of below-barrier resonances are obtained. The strong dependence of
the width T’ of below-barrier resonances on both the bound level energy and the mixing constant
\ is detected. The simple analytical formulae for asymptotic coefficients of the Dirac radial wave
functions at zero and infinity are also obtained.

Introduction

Wide range of problems from various fields of physics (elementary particle physics, nuclear physics,
physics of atomic collisions, etc.) is related to representations of formation and decay of non-stable
(quasistationary) states of quantum systems [1]. Properties of such states are of interest for investiga-
tion of ionization of atoms, ions and semiconductors under the influence of constant and homogeneous
electric and magnetic fields [2], for description of cluster decays of atomic nuclei [3] and effects of the
spontaneous creation of positrons [4, 5], in consideration of a vacuum shell of supercritical atom [4]-[6],
and from the point of view of studying the Dirac equation in the strong external fields as well.

The relativistic theory of decaying (quasistationary) states is elaborated quite well for the cases
when components of an interaction potential of a fermion with external fields belong to the vector type,
i.e. are Lorentz-vector A, components [2, 5]-[7]. However, from the point of view of new problems of
the strong interaction theory it is interesting to explore the more general case when a spin-1/2 particle
interacts with the scalar and vector fields simultaneously. As is known now there is a reason to think
that such interactions exist between quarks in hadrons.

Position of quasistationary states

Separating the angular variables in the Dirac equation with the spherically symmetric vector V/(r) and
scalar S(r) interaction potentials, we obtain the system of first-order ordinary differential equations
for the radial wave functions F and G (c = 1):

h%g - %F —[(E-V(r))+ (m+S(r)]G=0, O
hc—fl% - ;G +[(E-V(r))—(m+S(r)]F=0.

Here 1 is the Planck constant, k = ik, k = F(j + 1/2) is the motion integral of the Dirac particle in
a central field, jh is the total angular moment; the definition and normalization of the function F' and
G are the same as in the papers [8, 9].
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Figure 1: Barrier-type effective potential U(r, E); ro, r1 and ry are roots of the equation p?(r) = 0.

For the description of the phenomena related to the formation and decay of quasistationary states,
we consider the class of potentials V(r) and S(r) for which the effective potential (see (2)) of the
squared Dirac equation possesses a barrier (of the type shown in Fig. 1).

The systematic study of the theory of the semiclassical approximation (as & — 0) for the Dirac
equation with a scalar.vector interaction was started in [9]. Formal asymptotic expansions in powers
of h in initial Dirac system (1) for the radial functions F(r) and G(r) result in a chain of matrix
differential equations, which can be solved consecutively using the known technique of left and right
eigenvectors of the homogeneous system. For the effective potential (EP) of the barrier type (see Fig. 1)

E §2—-vZ k2
U(T,E)=EV‘|‘S+ Y +2mr2 (2)
semiclassical expressions were obtained for the wave functions in the classically forbidden and permitted
bands and also the quantization condition determining the real part of level energy E, = E, i in the
mixture of the scalar and vector potentials:

1
kw 1 1 vi-5 1
‘/Q”q;>”*<m+§>“ w—i(m+s+E_v‘;) ®

To

Here, n, =0,1,2,... is the radial quantum number, and
1/2
p(r) = [(E = V(1) = (m+ S(r)* - (k/r)}]" (4)

is the semiclassical momentum for the radial motion of the particle in the potential well ro < 7 < 71,
where ro and 7 are the turning points, i.e., the roots of the equation p?(r) = 0.
Now we explore one concrete example of the vector and scalar potentials

V(r)= —é + Xv(r), S(r)=(1-=Nov(r), v(r)=or+ Vo, (5)
in whose mixture at 1/2 < A < 1 and any o # 0 quasistationary states of the Fermi particles exist; here
Vo is a real constant, £ is the Coulomb coupling constant, and \ is the coefficient of mixing between
the vector and scalar parts of the long-range potential v(r). The potential v(r) includes contributions
of Lorentz-vector Vi, (r) = Av(r) and Lorentz-scalar Sy (r) = (1 — A\)v(r) components, of which (at
1/2 < XA <1) the first one dominates in all range of 7, 0 < r < oo.
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In the quantization condition (3) we integrate over the range of r where E—U(r,E;) > 0. For the
potentials (5) considered by us at 1/2 < A < 1 this means that ro = ¢ and r1 = b where c <7 < b
and r > a are classically allowed regions, and b < r < a is below-barrier region, in which p?(r) < 0;
at 7 > a the particle goes to infinity. The considered situation is schematically shown in Fig. 1 where
black dots indicate the position of turning points.

Using the technique of evaluation of quantization integrals from Sec. 4 of Ref. [8],we have obtained
the transcendental equation

2v2A —1 lorl(c—d)2 . _ = _ o - 51_17 _
k

I

(e d) (NI (74, %) + Nol1 (7, X)) + NoF <>z>]} = (n+ Jm O

defining (in the quasi-classical approximation) the real part E, = Ep, of complex energy of quasista-
tionary states at Upin < Er < Upaz. Here F (x), E(x) ¢ I(v, x) are the complete elliptic integrals of
the respective first, second, and third kind; the quantities v, v+, X, R, N, Nj (j=1,2,..,7) are ob-
tained from respective expressions (A.1)—(A.7) for v, va, x, R, R, N; (recently found by us in Ref. [8])
by making the simultaneous replacements a — b, b—c c—dandd— a.

Finding an “exact” solution of equation (20) in the general case is, of course, impossible, but
the situation is simplified in two special cases: o/¢m? < 1, E < m (where E, = E, — AVp and
m=m+ (1- )W) and 0y/E? < 1, E > m. _

Case A. If E, < m, Unin < Er < m (see Fig. 1, where Upin = U(Tmins Br)y Tmin = ¥2/Er€,
7?2 = k? — £2) and condition o/ém? < 1 is satisfied, the pair of classical turning points a and d is
rather distant from pair of points ¢ and b (see. Ref. [8]):

E{+0 Erfie( fnsng)
a,b~ 11— —— +—= o, 7
,U2 |: /_1,4 m 1 ()
cz_m—Er_ §~, z_m%—Er €~. (8)
o m— E, o(1-2X) m+E,

Hereafter, we use the notation

0= Ek? - @02, =\ —E2 m=Q-Nm+AE, m=Xn+(1-NE,

In this case the derivation of asymptotic expansions of quantization integrals (3) in a small parameter
o/ém? is carried out just as in item A of Sec. 4 of Ref. [8] and gives the former expression for the level

energy
~ o 527%2 2527%50 - 2
B = E _7_ e - Z.
r = Eo+ AVp + 5> [( 2 k ) 1o + ( 2 k|mo|+0 &) | (9)

- 52 -1/2

and the quantities o, mo and 72 are obtained from p, m and 72 by replacing E, by Eo.

The influence of weak radial-constant scalar and electric fields on the system of Coulomb levels has
been analyzed before (see, for example Refs. [8, 9]). The analysis was carried out both on the basis
of quasi-classical formulae (9) and by the numerical solution of the transcendental equation (20). In
particular, the calculations have shown that the sign change in o (0 — —0o) leads to small changes of
energy spectrum, if |o| < 0.2 GeV2.
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Case B. Let us now consider m < E, and m < Er < Upage (see Fig. 1, where Upgy = U (Pengay Br)
and Tmaz &~ Mm[(2X — 1)o]™1). Here the ratio o/ E2 plays a role of the small parameter. In this case
the quasistationary states in the composite field (5) exist only at the positive values of parameter o.

Under the requirements formulated above, we have obtained

P bk +~€~, b%ET_m—}-~6 , c,d%——irﬁie. (11)
o(2A-1)  E,. +m o E, — E2 — 2

It is seen that turning points ¢ and b are rather distant from one another (a,b>> c, |d|).

Further we shall give only the recipe of evaluation of the quantization integrals Jj . Just as in
the item B of Sec. 4 of Ref. [8], the integration range in 3 we divide into two domains ¢ < r < 7 and
7 < r < b by introducing the dividing point 7 satisfying the requirement ¢ < 7 < b. In the first
domain ¢ <7 <7 we calculate the integral 3 by expanding the quasimomentum p(r) in a power series
in the parameters 7/a < 1 and r/b < 1. In the second domain 7 < r < b the expansion of p(r) w
carry out in the small quantities ¢/r < 1 and |d|/r < 1.

When we add the asymptotic expansions of integrals over ¢ < r <7 and 7 < r < b the final result
will not contain the quantity 7. So, we have obtained the transcendental equation for the level energy
E, which we solve by the method of consecutive iterations. Thus, we arrive at the expression for the
energy (within O(cv/E?)

E, =C‘1{B+(B2+q:20('1—2/\)( ﬂlill;T)_+3£+)\§A+7rN>+>\ (1—AZ)])1/2}+AVO, (12)

where B _
EO=EO _xvp, A=(2r—1)""log [(1 FAHVA-T) (1- /\)_1] ,
C(=(1-N?A-X=20€(1 - 20)/(ED)2, B = (1—A)(1 — M) — 40€(1 — 2A)/E(°),
b ~ 1
oy 2 (e () <) 1= g (V) ]

(13)
and EO) = EO) AV, E9) is the zeroth approximation of energy, by the choice of which the quantity
E,, 1 depends very weakly and in most cases one can take E©) ~ E, (€ = 0). Accuracy of the calculation
of E; by the means of formulae (12) is fully appropriate (see Sec. 4 of Ref. [8]), and usually there is
no point to make the result more precise for practical purposes.

Width of quasistationary states

In the consideration above the quasistationary character of the Stark spectrum was ignored. Thereupon
it is necessary to remind that for 1/2 < A < 1 and any value of o # 0, U(r, E,) has the shape
of a potential with a barrier, owing to what there are quasistationary states with complex energy
E = E, —iI'/2 instead of discrete levels.

The probability of tunnel transition of a particle from the bound state (with energy E,) into
the continuum state is defined by the imaginary part (i.e. by the width I') of complex energy of
quasistationary states [9]:

I'= -2Im[G*(r)F(r)]r—00-

Having calculated the flux of the particles outgoing to infinity, we find the following expression for

the level width T’

r— %exp —20), (14)

b a
T:Q/Er_vdr, Qz/(q—k—w>dr. (15)
p qr

c b
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The obtained quasi-classical formula (14) is the relativistic generalization of the well-known Gamow
formula for the width of a quasistationary level. The nontrivial moment of such a generalisation is the
modification of expression for the period of oscillations T and the occurrence of the additional factor
in the preexponent of expression (14) that depends on a sign of the quantum number k and is caused
by the spin-orbit coupling in the mixture of the scalar S(r) and vector V(r) potentials.

Thus, in the quasi-classical approximation the problem is reduced to evaluation of two characteristic
phase integrals T' and Q. Using the technique of evaluation of quantization integrals from Sec. 4 of
Ref. [8], we have obtained the transcendental equationwe give only the final result

_ 4 5 e o (2o =D i
r= |a|¢<7—c><b—d><2x—1){‘“"E”f ’ (d 2<1—'7>>F(X)

it Comet:) (2;_; d)QE (x) + (c — d) [E — o (2d + (—%@ﬂ I (7, x)} , (16)

Q=

22X — 1 {_ lo| (b= c)?
(a—c)(b—d) R

xII (%V, x)} + m/\_f_l—)l_a_\ [(b—¢) (NsII (v4, x) + NeIl (v—, x)) + N7 F (X)]} .1

[N1F (x) + N2E (x) + N3II (v, x) + Na

The quantities v, v4, X, ®, X, N; ¢ 7, vx, X, ®, R, N; (j = 1,2,...,7) belonging to (16), (17) are
defined in (A.1)-(A.7) and (20).

The derived formulae (16), (17) are valid at large values of modules of phase integrals T, © and
together with (14) solve the problem of calculation of width I of Stark below-barrier resonances at
Upin < Er < Unae. However, these formulae are rather cumbersome and not too convenient for con-
crete calculations. With a purpose of deriving an analytical expression for the width of quasistationary
level T the calculations for the cases E, < m and E, > i should be carried out separately.

Case A. Let us begin with the simpler (in the sense of calculation) case of quasistationary levels
with E, > m (E; < Upmqz) when the under requirements oy < Ef, o > 0 the classical turning
points b and a are rather distant from the pair of points d and c. Asymptotic expansion of the
barrier integral € can be constructed by means of the procedure which is very similar to the procedure
applied to quantization integrals in the case of purely discrete spectrum in the item A of the previous
section. Omitting the details of the calculation, we give only the final formula for the width of the
quasistationary level [10]:

I~ %exp [-29@, A)] , (18)

i 2E,6/2) — 1
M yoeny 2EEV2AT LY (19)

ot s
QE-,\) =
(B, A) 2W2x—1 \ o(2A = 1) B2 — w2

where 7 is defined above in (8). Corresponding expansions for the energy E, are given by previous
formulae (12). Characteristic feature of the considered case is the fact that in the integral (15), which
defines a period of radial oscillations T', only the range of values of the integration variable r, where
the Coulomb potential can be considered a perturbation, is essential. By neglecting the Coulomb
interaction, we arrive at the expression

T~ Wi_%? [_M/Ez 24 (1) ;7772] . (20)

As can be seen from the Fig. 2 the function Q(E,)) decreases monotonically with increasing the
parameter \. Therefore, decreasing the relative weight (1— ) of the Lorentz-scalar Sy (r) in the long-
range part v(r) of the interaction (5) rapidly increases a probability of ionization of quasistationary
level.
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Q(E,,2) 2= 0.6
60 -

Figure 2: The function Q(E,, \) that defines the dependence of the exponential factor in the ionization
probability (18) on the level energy E,, 0.44 GeV< E, < 2 GeV.

Case B. At Er < . Upin < E, the asymptotic expansions of T and € in positive powers of
small dimensionless parameter o/¢m? are constructed by the same technique, as in the item B of the
previous section. By omitting the details, sense of which is clear, we give the asymptotic behavior of
the imaginary part of energy of quasistationary state to within terms O(o/ém?) [10]:

25y s
22 \ #o d(Ep, \)  2)

|0’|’I’]20 |J| 22—-1
2sgno [(1— A)n0p 710
1 [ o1 T X | arccos — sgno | ¢, (21)
where i
(§m — k po) po 12}
= 2
= [%WF Gt mi| R (22)

is the asymptotic coefficient of the normalized wave function in the Coulomb potential, and notations
Ey, 1o, 110 and 2o were introduced in (9), (10). The functions ®(Eyp, A) and p(Ep, A) from the exponent
(21) are given by the formulae

V2A -1

- 1 em? 282 E,
P(EO,A)ZW[(M—%—‘C Mo + 2 —k | no|-

Comparison of the results of calculations of level energies based on the “exact” quasi-classical
formulae (14), (16), and (17) with results of numerical calculations shows that relative error of (21)
and (23) does not exceed 2% at |o| ~ 1075 — 10~* GeV?2. So the formula (21) is convenient when used
for quick estimates of I'. As is shown in Fig. 3a (0 < 0), ®(Ep, A) increases with sinking of the level

_ 2
®(Eg,\) =2 —1)7! {L arccos (—%sgn a) + N1oto sgna} , (23)
20
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Figure 3: The function QJ(EO, A) that defines the dependence of the exponential factor in the ionization
probability (21) on the level energy Ey (in GeV): a) for o < 0, b) for o > 0.

Eo and decreases when the ‘mixing coefficient A (1/2 < A < 1) increases. In the case of the positive
values of o the function ®(Ey, \) decreases monotonically with increasing the parameter A (Fig. 3b),
therefore by decreasing the relative weight (1 — A) of the Lorentz-scalar S;, (r) in the long-range part
v(r) of the interaction (5) one rapidly increases the probability of ionization of quasistationary level
(at the same value of o).

In the case when in addition to the Coulomb field there is only the radial-constant electric field
(A =1), from the formula (21) at V) =0, 0 < 0 and ¢ = Za (Z is the nuclear charge, o ~ 1/137 is
the fine structure constant) we have obtained (h =m =c=1):

2EgZa
2ud\ Ho (B
I = 2u0 |Ac|? (ﬁ) " exp [~ |( IO) + 2Za arccos By — 2py/1 — Eg] , (24)
o o
where Ej is the energy of a bound state in the absence (o = 0) of an external long-range field, and
1 32202
= E, — k) —k|.
=gz |5 (75 )

The function ®(Ejp) in the exponent is given by the expression

®(Ey) = arccos Ey — Eg\/1 — E2, (25)

and possesses the obvious property ®(—Ey) = 7 — ®(Ep).
It is useful to consider the various limiting cases for the quantities appearing in the formula (24):

1
(1-EB)+z(1-E) 4. Bl
1
arccos By = g — FEo — f—}ES’ + ..., Ey — 0, (26)
m— (=B -2 (1-E) 4+, Bo— -,
25/2 3
L (1—-FE)3? |1 - (1 - Ep)+.. B = 1
3 ( 0)7* |1 20( o)+ .|, Eo—1,
1
®(Ep) = g — 2By + 3B + .., Eo — 0, (27)
5/2

W—T(1+EO)3/2+...7 E()—)—l
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Conclusions

By means of the formulae obtained above the spectrum of quasistationary levels is described for the
accepted hybrid version of SMSE. Such model qualitatively reproduces the following characteristic
features of quasistationary states in an mixture of scalar and vector potentials of barrier type (5): 1)
very strong (at small o) dependence of I" on the binding energy of tunneling fermion and on the mixing
coefficient \; 2) nonanalytic dependence of shift and width of level on the “force” o of scalar and vector
long-range interactions.

Appendix
aeb e — B+ 5 /(B + )2 — 4é0(1 - 2))
Y= a—e V:)\i—by’ S 2 (1—2)\) ) (A1)
X = I/(Zig §R=(1—1/)(X2—1/), (A.2)
_XP(b-¢o 3b-o (K-v) R
L (e IR A v G AL AL A I
No= 5 |1+ 5+ L2 (4.4)
_on?
NB:%E(” 2L — (3c2+2cf+g)+(b—c)((1+x2)v—3x2)+N(f+3C)Ja (4.5)
N4=‘<b3fc)év Ns=[(b-A)e =9l Ne=[b-A)0_—ah,  (46)
2 E+m
M= 909 (”m)’ S A B
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