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The problem of interaction of two quasimolecular electrons located at an arbitrary dis-
tance from each other and near different atoms (nuclei) is solved. The interaction is
considered as a second-order effect of quantum electrodynamics in the coordinate rep-
resentation. It is shown that a consistent account for the natural condition of the inter-
action symmetry with respect to both electrons leads to an additional contribution
to the relativistic interaction of the two quasimolecular electrons compared with both
the standard Breit operator and the generalized Breit operator known previously. The
generalized Breit–Pauli operator and the operator of electric dipole–dipole interaction
of two quasimolecular electrons located at an arbitrary distance from each other are
obtained. Modern methods of accounting for the relativistic and correlative effects in
the problem of ion–atom interactions are discussed.

Keywords: Interelectron interaction; retardation effects; Breit operator; quantum electro-
dynamics; quasimolecular electron.
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1. Introduction

For a long period of time, one of the most acute problems of the theory of slow ion–
atom collisions has been clarification of mechanisms of multielectronic processes
with rearrangement, such as two-electron charge exchange and charge exchange
with simultaneous excitation or ionization. Large values of total cross-sections and
velocity constants allow us to assume that the specified processes with rearrange-
ment are determined by electron transitions when the internuclear distance R is
rather large. The presence of a small parameter 1/R gives a chance to elaborate a
consistent asymptotic theory of such processes. It is no wonder that precisely this
path has allowed us to obtain many approved results in the analytical theory of
two-electron processes with rearrangement in slow ion–atom and ion–ion collisions
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(see, for example, Refs. 1–5 and references therein). The experimental confirmation
of a dominating role of effects of the strong exchange-correlative interaction of
two electrons, located near different nuclei, in the dynamics of these processes has
allowed us to understand and explain the basic properties of such processes on the
unified ground.

Investigation into collisions of slow atomic particles with participation of highly
charged ions and bare nuclei has become more and more urgent in the light of the
further development of physical ideas about mechanisms of multielectronic processes
with rearrangement (see, for example, the review Ref. 6). In the case where under
favorable conditions the mechanisms of nonadiabatic coupling result in strongly cor-
related electron transitions with involvement of electrons of internal (nonoptical)
shells, the relativistic effects become essential, and a consistent account for them
demands the generalization of the adiabatic asymptotic theory of multielectron
processes with rearrangement1–3,7 to the range of relativistic binding energies. It is
necessary to stress here that the followed exchange mechanism is typical of all speci-
fied two-electron processes with rearrangement (see Refs. 1 and 7 and the references
therein): one of the active electrons of atom (ion) A(Za−2)+ tunnels to a “foreign”
ion (or bare nucleus) BZb+, followed by the strongly correlated simultaneous tran-
sition of two electrons belonging to different nuclei. For such transitions, relativistic
effects are manifested not only in the modification of one-electron wave functions
which are solutions to the Dirac equation for the two-Coulomb-center problem,8,9

but also in the distinction of interelectron interaction from the purely Coulomb one
due to the retardation, for example. Therefore, rather general problems of the role
of magnetic interactions and retardation effects in immediate interaction between
the two active electrons located at arbitrary distances from each other near different
centers require the special investigation. Moreover, one can even say that without
such study it is impossible to understand the dynamics of strongly correlated motion
of particles during the collision process.

In reality, even the formulation of the two-particle problem in relativistic quan-
tum theory immediately encounters principal mathematical and logical obstacles.
It can be reasonably said (with the known reservations) that a satisfactory relati-
vistic theory of two-particle systems is still lacking. A direct generalization of the
Dirac equation to multielectron systems is impossible due to the absence of a local
Lorentz-invariant operator that takes into account the relativistic character of inter-
electron interaction (the retardation effects).

Skipping a detailed discussion on the poorly investigated problems of relativis-
tic multiparticle interactions, we note only that the modern quantum field theory
of electromagnetic interactions [quantum electrodynamics (QED)], based on the
S-matrix formalism and Feynman diagram technique, gives only the recipe for con-
struction of such an operator in the form of expansion in powers of the fine structure
constant α. As early as 1929, Breit demonstrated10,11 that up to the first correction
term such an expansion provides a good approximation for the relativistic inter-
action between two electrons under the assumption that retardation effects in the
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spectrum of a helium-like atom are small. He obtained the following relativistic
operator of the interelectron interaction:10,11

V (r12) = VC(r12) + VB(r12)

=
e2

r12
− e2

2r12

[
α1α2 +

(α1r12)(α2r12)
r2
12

]
, (1)

where α1 and α2 are the commuting sets of the Dirac matrices, r12 = r1 − r2,
r12 = |r12|, and the subscripts 1 and 2 distinguish the quantities relating to the first
and the second electron, respectively. We have to remember that the applicability
of the Breit operator (1) is limited by the condition that the interelectron distance
r12 be smaller than the characteristic wavelength λ0 in the spectrum of interacting
electrons. This approximation fails in two-electron problems related to slow atomic
collisions, because large interelectron distances r12, in contrast, are operating in
this case.1 Therefore, interest in the problem of two electrons belonging to two
hydrogen-like atoms located at an arbitrary distance from each other was renewed
at the beginning of the 1970s as a result of the intensive study of multiatomic
systems in a radiation field. The credit for the realization and development of new
ideas in this direction goes to the authors of Refs. 12–15, where the problem of
the interaction of two bound electrons belonging to two hydrogen-like atoms was
studied by quantum-electrodynamic methods in the general formulation without
imposing any restriction on the interatom distances. However, in turning to these
works we discovered16,17 that the generalized Breit operator constructed there does
not manifest the symmetry with respect to the interacting particles and, therefore,
cannot be utilized in the consistent relativistic quantum theory. The correct account
for a natural condition for symmetry of the retardation factor with respect to both
electrons gives (as is shown in the current article) the additional contribution to
the relativistic operator of interaction between two quasimolecular electrons when
compared with the corresponding operator from Refs. 12–15.

This article is organized as follows. In Sec. 2, the formulation of the problem
of interaction of two quasimolecular electrons via the field of virtual photons in
the framework of the second-order effects of quantum electrodynamics is described.
The relativistic operator of interaction of two bound electrons, which is a general-
ization of the Breit operator (1) to the range of arbitrarily large interelectron dis-
tances, is obtained in the next section. In Sec. 4, as a result of conversion from
the relativistic Dirac bispinors to nonrelativistic Pauli spinors in a matrix of the
effective energy of interaction, the explicit form of the generalized Breit–Pauli oper-
ator for interaction of two quasimolecular electrons located at an arbitrary dis-
tance from each other is found. Section 5 presents a discussion on modern methods
of accounting for relativistic and correlative effects in the problem of ion–atom
interactions. In the last section, the final results are discussed and compared with
the corresponding results of the previous articles devoted to the problem of two
electrons.
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Fig. 1. The Feynman diagram for the second-order effects of QED for interaction of two quasi-
molecular electrons.

2. Matrix of the Effective Energy of Interaction of
Two Quasimolecular Electrons

We consider the interaction of two electrons in an external electrostatic field as a
second-order effect of quantum electrodynamics defined by the Feynman diagram
shown in Fig. 1. The corresponding matrix element of the second-order scattering
operator S(2) can be represented in the form18,19

S
(2)
i→f ≡ 〈f |S(2)|i〉 = −i

∫
d4x1

∫
d4x2 j

(2)µ
fi (x2)DF (x2 − x1)j

(1)
fi µ(x1) , (2)

where DF is the photon propagator and the transition current densities j
(1)
fi µ(x1)

and j
(2)µ
fi (x2) are defined by

j
(1)
fi µ(x1) = eΨ̄(1)

f (x1)γ(1)
µ Ψ(1)

i (x1) , j
(2)µ
fi (x2) = eΨ̄(2)

f (x2)γ(2)µΨ(2)
i (x2) . (3)

Here, e = −|e| is the electronic charge; γµ (µ = 0, 1, 2, 3) are the Dirac matrices
in the covariant representation; Ψ(n)

i and Ψ(n)
f are wave functions of the respective

initial and final states of the nth electron, n = 1, 2; Ψ̄(n)
f = Ψ(n)+

f γ0 is the Dirac-

adjoint bispinor; and Ψ(n)+
f is the Hermitian-adjoint bispinor. In the expression (2),

we use the relativistic units � = c = 1, the notation xµ
1 = (t1, r1) and xµ

2 = (t2, r2)
for the radius four-vectors, and d4x1 = d3x1 dt1 and d4x2 = d3x2 dt2 for the four-
volume elements. The superscripts (1) and (2) distinguish quantities related to
different electrons. The subscripts i and f denote quantities pertaining to the initial
and final states of the interacting electrons. In the expressions (2) and (3), we use
the following representation for the Dirac matrices:

α =
(

0 σ

σ 0

)
, β =

(
I 0
0 −I

)
,

where the matrix γ0 = β is diagonal, the relations γj = βαj , j = 1, 2, 3, are
satisfied, σ are the known Pauli matrices, and 0 and I are, respectively, 2 × 2 zero
and unit matrices.

The wave functions of stationary states

Ψ(1)
i,f (x1) = Ψ(1)

i,f (r1)e−iE
(1)
i,f t1 , Ψ(2)

i,f (x2) = Ψ(2)
i,f (r2)e−iE

(2)
i,f t2 (4)
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correspond to the external electron lines of the diagram. The quantities E
(1)
i

(
E

(1)
f

)

and E
(2)
i

(
E

(2)
f

)
are the initial (final) energies of the first and the second electron,

respectively. Taking into account the formulas (4), we factorize the time factors in
the transition currents:

j
(1)
fi µ(x1) = j

(1)
fi µ(r1)eiω

(1)
fi t1 , j

(2)µ
fi (x1) = j

(2)µ
fi (r2)eiω

(2)
fi t2 , (5)

where the transition frequency is ω
(n)
fi = E

(n)
f − E

(n)
i , n = 1, 2.

In the Feynman gauge the propagator

DF (x2 − x1) =
∫

d4k

(2π)4

(−4πe−ik(x2−x1)

k2 + iε

)
(6)

corresponds to the internal photon line of the diagram. Here k = (ω, k), k and
ω are respectively the wave vector and frequency of the photon, and the infinite-
simal imaginary term in the denominator fixes the rules for bypassing poles in the
complex plane. Having substituted (5) and (6) into (2), we arrive at the following
representation for the S matrix:

S
(2)
i→f = −i

∫
d4x1

∫
d4x2

∫
d4k

(2π)4
j
(2)µ
fi (r2)eiω

(2)
fi t2

×
(−4πe−ik(x2−x1)

k2 + iε

)
j
(1)
fi µ(r1)eiω

(1)
fi t1 . (7)

After integration over time t2 the formula (7) becomes

S
(2)
i→f = 4πi

∫
d3x1

∫
d3x2

∫
dt1

∫
dω δ

(
ω − ω

(2)
fi

)

× ei(ω
(1)
fi +ω)t1j

(2)µ
fi (r2)j

(1)
fi µ(r1)

∫
d3k

(2π)3
eik(r2−r1)

ω2 − k2 + iε
. (8)

Integrating over d3k [using the rules for bypassing poles at the points k =
±(ω + iε′ sgnω)], we find the representation

S
(2)
i→f = −i

∫
d3x1

∫
d3x2

∫
dt1

∫
dω δ

(
ω − ω

(2)
fi

)

× e
i
(

ω
(1)
fi +ω

)
t1j

(2)µ
fi (r2)

ei|ω||r1−r2|

|r1 − r2| j
(1)
fi µ(r1) . (9)

After integration over time t1 and the frequencies of virtual photons ω, the last
expression becomes

S
(2)
i→f = −2πi δ

(
ω

(1)
fi + ω

(2)
fi

)∫
d3x1

∫
d3x2j

(2)µ
fi (r2)

e
i
∣∣∣ω(2)

fi

∣∣∣|r1−r2|

|r1 − r2| j
(1)
fi µ(r1) . (10)

Let us now proceed from the scattering matrix S
(2)
i→f to the matrix U

(2)
i→f of the

effective interaction energy of the system of two charges defined by the equality

S
(2)
i→f = −2πiU

(2)
i→fδ

(
E

(1)
f − E

(1)
i + E

(2)
f − E

(2)
i

)
. (11)
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The factorization of the one-dimensional δ function, depending on the difference
between the final and initial total energies of the electrons, expresses the energy
conservation law

E
(1)
f + E

(2)
f = E

(1)
i + E

(2)
i , (12)

which is the manifestation of symmetry under the continuous time-shift operation.
In view of the conservation law (12), let us write

∣∣∣ω(1)
fi

∣∣∣ and
∣∣∣ω(2)

fi

∣∣∣ in the simplified

form |ωfi|
(
implying that |ωfi| =

∣∣∣ω(1)
fi

∣∣∣ =
∣∣∣ω(2)

fi

∣∣∣). Then by (10) and (11) the matrix
of the effective energy of interaction between two electrons is of the form

U
(2)
i→f =

∫
d3x1

∫
d3x2 j

(2)µ
fi (r2)

ei|ωfi||r1−r2|

|r1 − r2| j
(1)
fi µ(r1) . (13)

All the equations displayed in this section pertain to the matrix element (2).
In order to obtain the complete expression for S

(2)
i→f , the corresponding exchange

matrix element expressing the indistinguishability of electrons must be added to
the matrix element (2).

3. The Generalized Breit Operator of a Long-Range Type

Using the definitions (3)–(5) we express the interaction currents in terms of wave
functions in the formula (13) for the matrix element of the effective interaction
energy,

U
(2)
i→f = e2

∫
d3x1

∫
d3x2 Ψ(2)+

f (r2)Ψ
(1)+
f (r1)

1 − α1α2

|r1 − r2|
× ei|ωfi||r1−r2|Ψ(2)

i (r2)Ψ
(1)
i (r1) , (14)

where α1 and α2 are the Dirac matrices acting on different one-electron wave
functions: α1 acts on Ψ(1)

i (r1), and α2 acts on Ψ(2)
i (r2). Since the “retardation

factor” exp{i|ωfi|r12}, which depends explicitly on the initial and final energies of
the system, enters into this expression, in the general case we cannot introduce a
Hamiltonian of interaction between two electrons, i.e. an operator V for which the
relation

U
(2)
i→f = 〈f |V |i〉 =

∫
d3x1

∫
d3x2 Ψ(2)+

f (r2)Ψ
(1)+
f (r1)V Ψ(2)

i (r2)Ψ
(1)
i (r1) (15)

is satisfied. Here, we assume that the operator of the effective potential energy V

of two electrons is a 16-component matrix in the spinor indices.
However, such an operator can be constructed in the approximation of small

velocities (v/c � 1, where v is the velocity of electrons in the atom and c

is the velocity of light in the vacuum). Indeed, for atomic electrons we have
|ωfi| ∼ m(αZeff)2 in our units, where Zeff is the effective charge of the nucleus,
whose interaction with a given electron is equivalent to the interaction of a nucleus,
screened by all the other electrons in the atom. Further, take into account that
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the characteristic interelectron distance in an atom is r12 ∼ (mαZeff)−1. Hence,
the exponent |ωfi|r12 in (14) is of the order of αZeff . In fact, the ratio v/c, being
of the order of αZeff , is much smaller than unity for all atomic electrons, including
the internal ones. Therefore, we can approximately take into account the retar-
dation and all other relativistic effects by dropping terms of the order v3/c3 and
higher in the v/c expansion of the matrix element (14). This approximation results
in the known expression (1) for the Breit operator,10,11,20 which depends not only
on the relative position r12 = r1 − r2 of the pair of electrons but also on their
spins. We claim now that this expression approximates quite well the relativistic
electron interaction only in the intra-atomic domain but becomes inapplicable in
the domain of large interelectron distances (r12 ≥ λ0 = 2πc/ω0). In this domain,
which we shall call the domain of far electron correlations, the effects of retardation
of interaction of electrons are essentially amplified.

Let us now consider a two-electron atom (or ion) A(Za−2)+ and the bare nucleus
BZb+ located at an arbitrary distance R from the atom. Here Za and Zb are the
charges of the atomic nuclei AZa+ and BZb+, which are assumed to be stable in
the proposed two-center model. Let rna and rnb be the position vectors of the nth
electron with respect to the nuclei AZa+ and BZb+, n = 1, 2. We now assume that
one of the electrons of the atom A(Za−2)+ — the first electron, for instance —
tunnels into the vicinity of the foreign nucleus BZb+, while the second electron is
located near its host nucleus, AZa+. If the domains of spatial localizations of the
electrons near the different nuclei (the first electron near BZb+ and the second one
near AZa+) are rather small (of the order of the atom size) and rather far from each
other, then under the condition ∆r < R < ∞ the relative distance r12 between the
electrons can be represented in the form of the expansion in powers of the ratio
∆r/R:

|r1 − r2| = R

(
1 +

R∆r
R2

+
M

R

)
. (16)

Here ∆r = r1b−r2a, ∆r = |∆r|, r1b and r2a are the position vectors of the first and
the second electron with respect to the corresponding nuclei, and M = M(∆r, R)
are small corrections containing higher powers of ∆r/R.

In the matrix of effective interaction energy (14), let us consider the factor

K(r1, r2; ωfi) =
ei|ωfi|r12/c

r12
, (17)

which is responsible for the virtual photon exchange between the two electrons.
Hereinafter, we use the system of units in which c �= 1. In the previous arti-
cles,10,11,20 only the quantity ω0r12/c � 1 (or, formally, 1/c) was assumed to be
a small parameter when constructing the expansion of the retardation factor. This
condition is obviously satisfied for not-too-large interelectron distances, such as
intra-atomic distances in He-like atoms. An asymptotic expansion of the K factor
(17) is constructed below for the case where simultaneously 1/c and ∆r/R are
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natural small parameters. Such a selection of small parameters differs from the
limiting case of a single (united) He-like atom (R = 0) studied in Refs. 10, 11 and
20, and is realized within the used model when the electrons are located rather far
from each other near different centers, for instance.

Further, we transform the K factor (17) as follows:

K(r1, r2; ωfi) = ei|ωfi|R/c ei|ωfi|(r12−R)/c

r12
. (18)

For electrons belonging to different atoms, this transformation is convenient due
to the factorization of the relativistic factor exp{i|ωfi|R/c} of the amplification
of the effects of retardation, which are encoded in the dependence of this factor
on both the internuclear distance R and the difference of energies of one-particle
states: |ωfi| =

∣∣ω(n)
fi

∣∣ =
∣∣E(n)

f − E
(n)
i

∣∣, n = 1, 2. However, the basic argument in
favor of expediency of such transformation consists in the fact that by means of
it the problem of expansion of the retardation factor exp{i|ωfi|r12/c} is reduced to
expansion of the specialized (for the quasimolecular model of two electrons near
different centers) exponential factor exp{i|ωfi|(|r1 − r2| − R)/c}. The presence of
the difference r12 −R in the last exponent indicates that such an expansion should
be carried out not only in powers of 1/c but also in powers of the small parameter
∆r/R.

In line with this notation, we assume that

|ωfi|
c

R∆r
R

� 1 . (19)

Internuclear distance therewith can vary over the wide range ∆r ≤ R < ∞. When
the condition (19) is satisfied, the exponent |ωfi|(r12 − R)/c on the right-hand side
of (18) is a small quantity and we can expand the K factor (17) in powers of 1/c.
So we obtain the expansion to within the terms ∼ c−2:

K(r1, r2; ωfi) = ei|ωfi|R/c

{
f0(r12) +

i

c
|ωfi|f1(r12) − ω2

fi

2c2
f2(r12)

}
. (20)

The coefficients

f0(r12) =
1

g0(r12)
=

1
r12

,

f1(r12) =
g1(r12)
g0(r12)

=
r12 − R

r12
,

f2(r12) =
g2(r12)
g0(r12)

=
(r12 − R)2

r12

(21)

of the expansion (20) are in turn power series in ∆r/R. Actually, this means that
if the domains of space localization of electrons near different centers are rather far
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from each other, then one can use the formulas

g0(∆r, R) = R

(
1 +

R∆r

R2
+

M

R

)
,

g1(∆r, R) =
R∆r

R
+ M ,

g2(∆r, R) =
(

R∆r

R
+ M

)2

and re-expand the functions f0, f1 and f2 from (20) in powers of ∆r/R. If one does
not do such a re-expansion, then one can take into account (in c−2 approximation)
the interaction of quasimolecular electrons of all multipolarities in the closed form.

Let us eliminate frequencies in the expression (20) by using the Dirac equations:

Ĥ(n)(rn)Ψ(n)
i (rn) = E

(n)
i Ψ(n)

i (rn) , Ĥ(n)(rn)Ψ(n)
f (rn) = E

(n)
f Ψ(n)

f (rn) . (22)

Here, the index n takes the values 1, 2, and the one-electron relativistic Hamiltonian
Ĥ(n)(rn) acts on the space of Dirac wave functions Ψ(n)

i,f (rn) of the electron with
the number n.

The expansion of the K factor in the form (20) has no symmetry under inter-
change of the interacting particles. In order to obtain the required symmetry in the
last two terms of the expansion (20), we use the relation ω

(1)
fi = −ω

(2)
fi , which ex-

presses the energy conservation law (12). Having the two possibilities E
(1)
f > E

(1)
i

and E
(1)
f < E

(1)
i , we should consider the two cases ω

(1)
fi > 0 and ω

(1)
fi < 0. If

E
(1)
f > E

(1)
i

(
E

(1)
f < E

(1)
i

)
, then ω

(1)
fi = −ω

(2)
fi > 0

(
ω

(1)
fi = −ω

(2)
fi < 0

)
and

|ω(1)
fi | = ω

(1)
fi

(
|ω(1)

fi | = −ω
(1)
fi

)
. Using these relations, one can transform the second

term of (20) into the symmetric form:

|ωfi|f1(r12) =
∣∣∣ω(1)

fi

∣∣∣f1(r12) = ±ω
(1)
fi f1(r12)

= ±1
2

(
E

(1)
f − E

(1)
i + E

(2)
i − E

(2)
f

)
f1(r12) . (23)

The plus sign in (23) corresponds to the case E
(1)
f > E

(1)
i

(
ω

(1)
fi > 0

)
, and the

minus sign to the case E
(1)
f < E

(1)
i

(
ω

(1)
fi < 0

)
. We could start with the equality

|ωfi|f1 = |ω(2)
fi |f1 instead of the equality |ωfi|f1 = |ω(1)

fi |f1 in order to symmetrize
the quantity |ωfi|f1. It is easy to see that the representation for |ωfi|f1 obtained in
this way is equivalent to the representation (23).

Since we multiply the expression (20) by Ψ(2)
i (r2)Ψ

(1)
i (r1) from the right and

by Ψ(2)+
f (r2)Ψ

(1)+
f (r1) from the left and subsequently integrate over r1 and r2, we

can replace the energies E
(1)
i and E

(2)
i in (23) with the operators Ĥ(1) and Ĥ(2)

to the right of the factor f1(r12) and replace the energies E
(1)
f and E

(2)
f with the
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operators Ĥ(1) and Ĥ(2) to the left of the factor f1(r12):

|ωfi|f1(r12) → ±1
2

{
Ĥ(1)f1(r12) − f1(r12)Ĥ(1) + f1(r12)Ĥ(2) − Ĥ(2)f1(r12)

}

= ±1
2

{[
Ĥ(1), f1(r12)

]
+

[
f1(r12), Ĥ(2)

]}
. (24)

Hereinafter, the square brackets denote the commutators of the corresponding quan-
tities.

Using the relation ω
(1)
fi = −ω

(2)
fi , we transform the third term of the expansion

(20) into the symmetric form:

− ω2
fif2(r12) =

(
E

(1)
f − E

(1)
i

)(
E

(2)
f − E

(2)
i

)
f2(r12)

→ f2(r12)Ĥ(1)Ĥ(2) − Ĥ(1)f2(r12)Ĥ(2)

− Ĥ(2)f2(r12)Ĥ(1) + Ĥ(1)Ĥ(2)f2(r12)

=
[
Ĥ(1), [Ĥ(2), f2(r12)]

]
. (25)

Substituting the operator expressions (24) and (25) into the right-hand side of (20),
we obtain the transformation of the K factor:

K(r1, r2; ωfi) → ei|ωfi|R/c

{
f0(r12) ± i

2c

([
Ĥ(1), f1(r12)

]
+

[
f1(r12), Ĥ(2)

])

+
1

2c2

[
Ĥ(1),

[
Ĥ(2), f2(r12)

]]}
. (26)

Here
∣∣ωfi

∣∣ =
∣∣ω(1)

fi

∣∣ =
∣∣ω(2)

fi

∣∣ and the functions f0, f1 and f2 are still given by the
equalities (21).

Therefore, the K factor (17) is represented by means of the double expansion
(20) in powers of 1/c and ∆r/R. In the expansion in terms of 1/c we retain only the
first three terms, imposing no restrictions on the expansion in the small parameter
∆r/R because the function M contains all the higher correction terms. For this
reason, we take into account interaction of two quasimolecular electrons of arbitrary
multipolarity.

The motion of separate electrons in a two-center system A(Za−2)+ +BZb+ is de-
scribed by the relativistic one-electron Hamiltonian for the problem of two Coulomb
centers located at the distance R from each other:

Ĥ(n) = cαnp̂n + βnmc2 + V (rn) , n = 1, 2 , (27)

V (rn) = −
(

Zae2

rna
+

Zbe
2

rnb

)
, rna,nb =

∣∣∣∣rn ± R
2

∣∣∣∣ . (28)

Hereinafter, � �= 1, p̂n = −i�∇n is the momentum operator of the nth electron,
∇n is the three-dimensional gradient with respect to the coordinates rn of the
electron with the number n, and the index n on αn and βn indicates that these
matrices act on the function Ψ(n)

i (rn).
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With the performed calculations in mind, it is easy to see that the result (26)
can obviously be generalized by introducing the additional terms into the Hamil-
tonians (27), such as taking into account a finite size and the spin of the nucleus,
or screening the nucleus field by the electron shell of the atomic core. However, we
have to remember that except for limiting cases (for example, large internuclear
distances8,9) the eigenvalue problem (22) for such a Hamiltonian cannot be solved
in an explicit form.

Let us now calculate the commutators appearing in (26). First of all, note that
only one term in Ĥ(n), namely cαnp̂n, is noncommuting with f1(r12) and f2(r12).
For this reason we can disregard all terms not containing the matrices αn in the
expressions (27) for the operators Ĥ(1) and Ĥ(2) when they are substituted into
the commutators in (26):

[
Ĥ(1), f1

]
= c[α1p̂1, f1] ,[

f1, Ĥ
(2)

]
= c[f1, α2p̂2] ,[

Ĥ(1),
[
Ĥ(2), f2

]]
= c2[α1p̂1, [α2p̂2, f2]] .

(29)

Having calculated the commutators (29) by the means of the easily checkable for-
mula [αnp̂n, f1,2] = −i�(αn∇n)f1,2, we find that the contributions of the second
and third terms to the expansion (26) are determined by the following operator
expressions:

± i

2c

(
[Ĥ(1), f1] + [f1, Ĥ

(2)]
)

= ±�R
α1n + α2n

2r2
12

, (30)

1
2c2

[
Ĥ(1),

[
Ĥ(2), f2

]]
= −�

2

2
(α1∇1)(α2∇2)r12

− �
2R2

2
(α1∇1)(α2∇2)

1
r12

, (31)

where n = r12/r12.
Therefore, the quantity 〈f |V |i〉 can indeed be represented in the form (15), where

the operator V , which describes the virtual photon exchange between particles in
the matrix U

(2)
i→f , is (here again � = 1)

V (±)(r1, r2; R) = e2 exp
(

i

c
|ωfi|R

){
1

r12
− α1α2 + (α1n)(α2n)

2r12

± R
α1n + α2n

2r2
12

− R2 α1α2 − 3(α1n)(α2n)
2r3

12

}
. (32)

In this equality, the plus sign of the term containing the factor R corresponds to
the case E

(1)
f > E

(1)
i and the minus sign to the case E

(1)
f < E

(1)
i . We calculate the

matrix element (15) of the operator (32) with the four-component wave functions
Ψ(n)

i (rn) and Ψ(n)
f (rn). The first term of (32) is the energy of the instant (Coulomb)

interaction between electrons, and the remaining terms take into account corrections
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due to the retardation of relativistic interaction and due to the presence of electron
spins.

In the limiting case of a united atom (R → 0), the operator (32) transforms
into the relativistic Breit operator (1) of the interaction of two atomic electrons
in helium-like systems. Therefore, we can consider the operator (32) as a direct
generalization of the Breit operator10,11,20 to the domain of arbitrarily large inter-
electron distances. Such a generalization is nontrivial because the expression (32),
in contrast to the Breit expression (1), contains retarded terms which depend on
both R and spin operators of the electrons. This additional contribution to V (±)

has essentially a relativistic character and appears due to an additional retardation
of the relativistic interaction between the two electrons located at an arbitrarily
large distance when compared to λ0 = 2πc/ω0.

According to the improvement of the Breit operator made in this article, it
is worthwhile to call the expression (32) the generalized Breit operator of a long-
range type (in order to stress the possibility of using it to solve two-electron prob-
lems in the physics of slow atomic collisions,1–3 in the theory of quasimolecular
Auger spectroscopy,4,5 and in several important problems of nonlinear and quantum
optics12–15,21).

Also, let us call attention to the fact that the obtained operator (32) is sym-
metric with respect to both interacting particles. This is due to the appropriate
symmetrization of all retained terms in the c−1 expansion (20) of the K factor with
respect to both electrons.

In the series of articles12,13 that actually initiated the present stage of investi-
gations of the problem of two electrons, the following result has been obtained for
the relativistic operator of interaction of two atomic electrons via the field of vir-
tual photons without emission (absorption) of real photons at an arbitrary distance
from each other within the effects of the third order of QED:

Û (2)(r1, r2; R) = e2 exp
(

i

c
|ωfi|R

){
1

r12
− α1α2 + (α1n)(α2n)

2r12

+ R
α2n
r2
12

− R2 α1α2 − 3(α1n)(α2n)
2r3

12

}
. (33)

A principal drawback of this operator is the absence of symmetry in the descrip-
tion of the pair of interacting particles. It is most simply seen from the structure
of the third term of (33), which is proportional to R.

The important remark which follows from comparison of the formulas (32)
and (33) consists in the fact that consistent application of the procedure of sym-
metrization of the K factor [see (26)] with respect to both electrons leads to the
appearance of a new term, ±R(α1n)/2r2

12, in the final expression (32) for the opera-
tor V (±)(r1, r2; R) when compared with terms of the representation (33). This term
is caused by the additional retardation in the interaction of electrons located at arbi-
trarily large distances from each other. Therefore, one can expect erroneous results
when using the operator (33) from Refs. 12–15 in calculations.
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4. Conversion to Two-Component Pauli Spinors

4.1. Generalized two-particle Breit Pauli operator

The conversion to approximative two-component wave functions Φ(n)
i and Φ(n)

f in

the matrix U
(2)
i→f [Eq. (15)] is performed through the transformations20

Ψ(n)
i,f (rn) =




ϕ
(n)
i,f (rn)

σnp̂n

2mc
ϕ

(n)
i,f (rn)


 , ϕ

(n)
i,f (rn) =

(
1 − p̂2

n

8m2c2

)
Φ(n)

i,f (rn) . (34)

Here the two-row spin Pauli matrices σn and operators p̂n act on the variables on
which the wave functions Φ(n)

i and Φ(n)
f depend. The formulas (34) demonstrate

the convenience of realization of Pauli approximation, when considering the non-
relativistic limit of the four-component spinors Ψ(n)

i,f (rn), because in this limit c →
∞ and the spinors (34) become effectively two-component.

Let us transform the matrix element

〈f |V (±)|i〉 =
〈
Ψ(1)∗

f (r1)Ψ
(2)∗
f (r2)

∣∣∣V (±)(r1, r2; R)
∣∣∣Ψ(1)

i (r1)Ψ
(2)
i (r2)

〉
(35)

by means of the functions (34) so that it takes the form〈
Φ∗

f (1, 2)
∣∣V (±)

BP |Φi(1, 2)〉

=
∫

d3x1

∫
d3x2Φ

(1)∗
f (r1)Φ

(2)∗
f (r2)V

(±)
BP (r1, r2; R)Φ(1)

i (r1)Φ
(2)
i (r2) , (36)

where V
(±)
BP (r1, r2; R) can be considered as the operator of interaction energy of

two quasimolecular electrons at an arbitrary distance from each other. The wave
functions Φi(1, 2) = Φ(1)

i (r1)Φ
(2)
i (r2) and Φf (1, 2) = Φ(1)

f (r1)Φ
(2)
f (r2) in (36) are

the nonsymmetrized products of the two-component normalized wave functions (34)
of separate electrons in the initial and the final state, respectively. The electron
coordinates in the functions Ψ(2)

if (r2) and Ψ(1)
i,f (r1) are measured from the nuclei

AZa+ and BZb+, respectively.
First, let us consider the problem transforming the matrix element (35) of the

operator of the Coulomb electron interaction e2/r12 into the form (36). By sub-
stituting the functions (34) into (35) and using the necessary transformations, we
obtain the following expression to within terms O(1/c2):

e2 exp
(

i

c
|ωfi|R

)
〈f | 1

r12
|i〉

= e2 exp
(

i

c
|ωfi|R

) ∫ {
Φ(1)∗

f (r1)Φ
(2)∗
f (r2)Φ

(1)
i (r1)Φ

(2)
i (r2)

− 1
8m2c2

Φ(1)∗
f (r1)Φ

(2)∗
f (r2)Φ

(1)
i (r1)

[
p̂2

2Φ
(2)
i (r2)

]

− 1
8m2c2

Φ(1)∗
f (r1)Φ

(2)∗
f (r2)

[
p̂2

1Φ
(1)
i (r1)

]
Φ(2)

i (r2)
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− 1
8m2c2

Φ(1)∗
f (r1)

[
p̂2

2Φ
(2)
f (r2)

]∗
Φ(1)

i (r1)Φ
(2)
i (r2)

− 1
8m2c2

[
p̂2

1Φ
(1)
f (r1)

]∗
Φ(2)∗

f (r2)Φ
(1)
i (r1)Φ

(2)
i (r2)

+
1

4m2c2

[
σ1p̂1Φ

(1)
f (r1)

]∗[
σ1p̂1Φ

(1)
i (r1)

]
Φ(2)∗

f (r2)Φ
(2)
i (r2)

+
1

4m2c2
Φ(1)∗

f (r1)Φ
(1)
i (r1)

[
σ2p̂2Φ

(2)∗
f (r2)

]∗[
σ2p̂2Φ

(2)
i (r2)

]}d3x1d
3x2

r12
. (37)

The expression (37) can be transformed into

〈Φ∗
f (1, 2)|V1|Φi(1, 2)〉

=
∫

d3x1

∫
d3x2Φ

(1)∗
f (r1)Φ

(2)∗
f (r2)V1Φ

(1)
i (r1)Φ

(2)
i (r2) . (38)

For this purpose, first of all, it is necessary to carry out the integration by parts. We
take into account that for the considered quasimolecular model of two electrons near
different centers, the higher powers of quantity 1/r12 do not become infinity when
the internuclear distance R varies over the interval ∆r < R < ∞. However, there
is a situation where taking into account the higher powers of quantity 1/r12 results
in nontrivial δ-functional contributions to the operator of electrostatic energy of
two electrons. Obviously, it takes place in the limiting case of the united atom, i.e.
when R → 0. Actually, as R decreases, the field in which electrons move resembles
increasingly the field in the united helium-like atom with the total nuclear charge
Z = Za + Zb. This really means that on the interval 0 ≤ R < ∆r, where the
overlap of wave functions from different centers is essential, the electrons perceive
both nuclei as a single Coulomb center. Over this interval the replacement of exact
quasimolecular wave functions by simpler wave functions of united atom is phys-
ically justified. In this case all electronic coordinates should be measured from a
single point, where for the sake of convenience we arrange the origin of the coordi-
nate system. As the integrand in (37) contains the higher powers of the quantity
1/r12, first of all it is necessary to separate out the specified point (r1 = r2), i.e.
the origin of coordinates. At r1 → r2 the integral over the sphere around the origin
of coordinates gives a finite quantity. As this quantity depends only on the inte-
grand at r1 = r2, it can also be represented in the form of a volume integral of the
expression containing a three-dimensional Dirac δ function, δ(r1 − r2).

On a more formal level, there are δ-functional terms which usually arise when
integrated by parts or, more exactly, when the action of the operators p̂1 = −i∇1

and p̂2 = −i∇2 transfers from the functions Φ(n)
f (rn) onto the quantity 1/r12. The

singular expressions obtained in this way can be represented in the operator form

p̂2
1

1
r12

= p̂2
2

1
r12

= −(p̂1p̂2)
1

r12
= 4πδ(r12) . (39)
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Further, the products of the Pauli matrices σ that appear in the course of trans-
formations described above, we write by means of the known matrix relations20

(σa)(σb) = (ab) + i(σ[a × b]) , (40)

(σa)σ = a + i[σ × a] , σ(σa) = a + i[a × σ] , (41)

where a and b are arbitrary vectors.
The specified transformations allow us to write the expression (37) in the form

(38), where the required operator V1 is given by the equality

V1 = e2 exp
(

i

c
|ωfi|R

){
1

r12
− π

m2c2
δ(r12) +

1
4m2c2

σ2[n × p̂2] − σ1[n × p̂1]
r2
12

}
.

(42)

In the united-atom limit (R → 0), the first term,

V1C = e2 exp
(

i

c
|ωfi|R

)
1

r12
, (43)

on the right-hand side of (42) tends to the Coulomb electron interaction VC(r12) =
e2/r12. Thus, it is reasonable enough that the operator V1C [Eq. (43)] is an analog of
the Coulomb interaction of electrons at an arbitrary distance from each other but,
unlike VC(r12), depends on the initial and final energies of the system explicitly:
|ωfi| = |ω(n)

fi | = |E(n)
f −E

(n)
i |, n = 1, 2. First and foremost, it reflects pure relativistic

effects of retardation of interaction of charged particles at arbitrary distances from
each other, including arbitrarily large ones.

We return to detailed interpretation of other terms of the operator V1 [Eq. (42)]
later in this article. Here we only point out the key property of the operator V1C

[Eq. (43)], namely its periodic dependence on the internuclear distance R.
Let us transform the matrix element (35) of the remaining terms of the operator

V (±) [Eq. (32)] by means of the wave functions (34). Note that for transformation
of the retarded terms containing α matrices [see (32)], it is sufficient to replace
ϕ

(n)
i,f (rn) by Φ(n)

i,f (rn) because the functions Φ(n)
i,f (rn) already contain the factor 1/c2.

We carry out the transformations in the same way that we have used when
obtaining the explicit expression (42) for the operator V1. But, as the integrand
contains the strong singularity at the origin of coordinates in the limiting case
R → 0, the mathematical treatment for atomic (0 ≤ R < ∆r) and quasimolecular
(∆r < R < ∞) domains differs slightly.

At large internuclear distances (∆r < R < ∞), the domains of configuration
space, which are responsible for localization of electrons near different centers, can
be considered as being nonoverlapped. Actually, this means that, unlike in the case
of a single helium-like atom (R → 0) considered in Ref. 20, higher powers of the
quantities

(an)(bn)
r12

,
R(an)

r2
12

,
R2(an)(bn)

r3
12

, (44)
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where a and b are arbitrary vectors, do not become infinite when R varies over
the quasimolecular domain ∆r < R < ∞. In this domain, even within the roughest
approximation, it is necessary to take into account the distinction between local-
izations of nuclei (unlike the interval 0 ≤ R < ∆r) and to consider the interaction
between electrons and fixed nuclei.

Carrying out the transformations described previously, we repeatedly encounter
the operator expressions of the form

(p̂1a)(p̂2b)
1

r12
= − 1

r3
12

{
ab − 3(ar12)(br12)

r2
12

}
, (45)

containing the constant vectors a, b. However, the last formula is valid only in
the case where the wave functions in the matrix elements (35) and (36) are not
spherically symmetric. For spherically symmetric functions, the matrix element of
the operator on the right-hand side of (45) becomes zero. This can be verified at
once by elementary integration over angles.

Let us now proceed to investigation of singularities of the higher powers of the
quantities (44) and (45) when R tends to zero. The limiting expressions obtained
here prove to be improper and can contain δ-functional singularities at the origin
of coordinates.

Consistent and mathematically rigorous treatment of the specified singularities
can be carried out only in the framework of the theory of generalized functions.22

However, one can elucidate the structure of the basic singularities, using leading
considerations based on systematic use of symmetry properties of the considered
system. So, for example, in the spherically symmetric case, which can be realized
only in the limiting case of the united atom (R → 0), the substitution (x = x1−x2,
y = y1 − y2, z = z1 − z2)

(∇1a)(∇2b)
1

r12
=

(
axbx

∂2

∂x2
+ ayby

∂2

∂y2
+ azbz

∂2

∂z2

)
1

r12
(46)

can be made in the integrand. Indeed, due to symmetry considerations it follows
that the terms, containing mixed partial derivatives like ∂2/∂x∂y, disappear when
integrating over angular variables. Also, all three terms on the right-hand side of
(46) give equal contributions due to the spherical symmetry. Therefore,

(∇1a)(∇2b)
1

r12
=

1
3

(ab)∆
1

r12
= −4π

3
(ab)δ(r12) . (47)

The expressions (45) and (47) thus obtained can be combined into the formula

(p̂1a)(p̂2b)
1

r12
= − 1

r3
12

{
ab − 3(ar12)(br12)

r2
12

}
+

4π

3
(ab)δ(r12) , (48)

which is valid for an arbitrary case.
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The structure of other singularities, arising from transformations described
above, can be studied by means of the same considerations, which have led us
to the representation (48), and by the subsequent reduction of similar terms. There
is the specific delicacy which consists in the fact that all higher powers of the quan-
tities (44), which contain R (or R2) in the coefficients, give zero contributions in
the limit R → 0 due to the factor R (or R2). Certainly, nontrivial δ-functional
singularities will arise at R → 0 only from those higher degrees of the quantities
(44) which do not contain R or R2 as a factor.

Combining the expressions coming from both the Coulomb term and the re-
tarded terms in (32), we write at once the final result for the operator of the
electrostatic energy of two quasimolecular electrons to within the terms ∼ 1/c2

inclusive:

V
(±)
BP = V1C + Ṽ

(±)
BP = V1C + VD + V

(±)
LL + VSS + VSL . (49)

Here, the following notations are used:

VD = −π

(
e�

mc

)2

exp
(

i

c
|ωfi|R

)
δ(r12) , (50)

V
(±)
LL = − e2

2m2c2
exp

(
i

c
|ωfi|R

)

×
{

p̂1p̂2 + n(np̂1)p̂2

r12
+

R2

r3
12

[
p̂1p̂2 − 3n(np̂1)p̂2

]}

± e2

2mc
exp

(
i

c
|ωfi|R

)
R

r2
12

[np̂1 + np̂2] , (51)

VSS =
(

e�

2mc

)2

exp
(

i

c
|ωfi|R

){
1

r3
12

[σ1σ2 − 3(σ1n)(σ2n)]

+
R2

r5
12

[15(σ1n)(σ2n) − 9σ1σ2] − 8π

3
(σ1σ2)δ(r12)

}
, (52)

VSL =
e2

�

4m2c2
exp

(
i

c
|ωfi|R

)

×
{−(σ1 + 2σ2)[n × p̂1] + (σ2 + 2σ1)[n × p̂2]

r2
12

+
3R2

r4
12

(σ1[n × p̂1] − σ2[n × p̂2])
}

. (53)

All terms of the operator V
(±)
BP [Eq. (49)] have a clear physical interpretation and

describe the well-known physical effects arising in a system of the two interacting
quasimolecular electrons. So the operators VD [Eq. (50)] and V

(±)
LL [Eq. (51)] have

a clear orbital origin. Therefore, the physical meaning of the operator VD is easily
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seen from its δ-like structure: in the limit R → 0, VD is transformed into the two-
particle singular part −π(e�/mc)2δ(r12) of the known Darwin (contact) interaction
of electrons with nuclei and with each other.10,11,20 From the δ-functional structure
of (50), it also follows that the operator VD should be taken into account only in
the atomic domain 0 ≤ R < ∆r.

Let us discuss the physical meaning of the operator V
(±)
LL [Eq. (51)]. When R

tends to zero, it turns into the usual operator of the retarded interaction between
two electrons in the united He-like atom.20 Therefore, it is reasonable to consider
the operator V

(±)
LL as an operator of the retarded interaction of two quasimolecular

electrons at an arbitrary distance from each other.
In order to obtain the same result for the operator V

(±)
LL from the classical

Hamiltonian of the system of interacting charges, which move in the external
electromagnetic field,23 one should replace classical momentums of particles by
the corresponding quantum-mechanical operators of momentums in this Hamil-
tonian.12 The specified agreement between classical and quantum theories is the
base, on which the more perfect relativistic quantum-mechanical theory of ion–
atom interactions can be constructed.

Let us give the expression for the operator of retarded interaction of two quasi-
molecular electrons that was found in Refs. 12–15. In our notation it is of the form

VLL = − e2

2m2c2
exp

(
i

c
|ωfi|R

)

×
{

p̂1p̂2 + n(np̂1)p̂2

r12
+

R2

r3
12

[p̂1p̂2 − 3n(np̂1)p̂2]
}

+
e2

mc
exp

(
i

c
|ωfi|R

)
R

r2
12

np̂1 . (54)

This expression does not possess the property of symmetry with respect to the
interacting particles and therefore cannot be applied in the consistent relativistic
quantum theory. As one would expect, the operator V

(±)
LL [Eq. (51)] constructed in

the present article is universal and symmetrical in description of both particles. It
is seen directly from its structure.

The comparison of the formulas (51) and (54) shows that the operator V
(±)
LL

differs from the operator VLL not only by the additional factor ±1/2 in the last
term of (51), but also by the additional retarded term

± e2

2mc
exp

(
i

c
|ωfi|R

)
R

r2
12

np̂2 ,

which is proportional to R. Thus, the expression (51) gives a more complete de-
scription of the retardation effects in the interaction of electrons than the expression
(54) found in the previous articles.12–15

Let us now discuss the physical meaning of the operator VSS [Eq. (52)]. First
of all, note that in the limiting case R → 0 it is transformed into the usual
operator of the spin–spin interaction of electrons in a He-like atom.20 Thus, VSS
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is a natural generalization of the operator of the spin–spin interaction to the
case of two quasimolecular electrons located at an arbitrary distance from each
other.

It must be emphasized that the expression (52) is in agreement with the cor-
responding result of Refs. 12–15 only in the quasimolecular domain ∆r < R < ∞.
Note, however, that the singularities of the integrand of (35) in the atomic domain
0 ≤ R < ∆r were not studied in these articles. As is known,18,20 the singular
part of the operator VSS [Eq. (52)] is a manifestation of the so-called spin–contact
interaction between electrons (Fermi interaction) and is related to the δ-functional
singularity of the expression (48) in the origin of coordinates. As well as in the case
of the operator VD [Eq. (50)], the δ-functional term [∼ (σ1σ2)δ(r12)] entering into
(52) gives the nontrivial contribution to the matrix element (36) only at R → 0.
In the other cases, when the overlap of wave functions from various centers can be
neglected, this term disappears at ∆r ≤ R < ∞.

Finally, let us clarify the physical meaning of the operator VSL [Eq. (53)]. In the
limiting case R → 0 it becomes the corresponding spin–orbit term in the Breit–Pauli
operator,18,20 which describes the interaction between spin and orbital magnetic
moments of electrons in a He-like atom. Thus, the last term of (49), VSL is nothing
but the operator of spin–orbit retardation of two quasimolecular electrons at an
arbitrary distance from each other.

Also, let us call attention to the fact that the second term, −3R2(σ2[n ×
p̂2])/r4

12, entering into the last square brackets of the expression (53) is lost in
Refs. 13 and 14. It is absent in the review Ref. 15 as well [see the formula (3.8)].
As is seen from (53), the operator VSL is symmetric with respect to both electrons
and, therefore, takes into account the spin–orbit retardation of two quasimolecular
electrons more completely than the corresponding operator of Refs. 14 and 15.

The following remark needs to be made regarding the expression obtained
for the generalized Breit–Pauli operator V

(±)
BP . Although we are mainly interested

in the quasimolecular domain (∆r < R < ∞), the formulas (49)–(53) are written in
the form valid in all interval of variation of R (0 ≤ R < ∞). When R tends to zero
the operator V

(±)
BP [Eq. (49)] becomes the corresponding two-particle part of the

known Breit–Pauli operator in the coordinate space.18,20 Therewith, it turns out
that, regardless of the coupling constant smallness, the terms containing δ functions
become the “operating” ones in the limiting expression. Thus, the role of these δ-
functional terms in the generalized Breit–Pauli operator [Eqs. (49)–(53)] is reduced
to providing the mathematical correctness of the limiting transition to the case of
a single helium-like atom (R → 0) investigated in Ref. 20.

Finally, we emphasize that one should not assign any meaning (of the presence
of especially strong coupling, for example) to the formal transformation of singular
parts of the operators VD [Eq. (50)] and V

(±)
SS [Eq. (52)] into infinity (at R = 0

and r1 = r2). The integral values of all correction terms Ṽ
(±)
BP in the operator of

interaction V
(±)
BP are identical and, from the standpoint of performed expansion,
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all of them should be considered as small corrections in comparison with the first
term, V1C [Eq. (43)], which is an analog of the Coulomb interaction.

4.2. Electric dipole dipole interaction of

two quasimolecular electrons

The role of various terms in the interaction operator (49) is determined by the
type of quantum transition in the spectrum of the quasimolecule (AB)(Za+Zb−2)+.
Here, we shall consider the interaction of two electrons located near different nuclei
taking into account only the orbital degrees of freedom. The operator V1C + V

(±)
LL ,

corresponding to this part of interelectron interaction, has a purely orbital origin.
Further, we shall consider the case ω0R/c ∼ 1, where distances between nuclei
are comparable with the characteristic wavelength in the spectrum of interacting
electrons. At large R one can expand the functions 1/r12, 1/r2

12 and 1/r3
12, entering

into the operator V1C +V
(±)
LL , in multipoles and restrict oneself to several first terms

of the expansion. The convenient form of multipolar expansion for the operator
1/r12 has been obtained in Ref. 24 (see also Ref. 25). In the case considered here,
when the position vectors r1b and r2a of electrons 1 and 2 are measured from the
nuclei BZb+ and AZa+, respectively, and the axes zA and zB of the corresponding
systems of coordinates are parallel to R, the bipolar expansion of the operator
1/r12 takes the form

1
r12

=
1
R

+
(nRr2a) − (nRr1b)

R2
+

3(nRr2a)2 − r2
2a + 3(nRr1b)2 − r2

1b

2R3

+ W (r1b, r2a) + O(R−4) . (55)

Here, r1 and r2 are the position vectors of the first and second electrons in an
arbitrary system of coordinates, and nR is the unit vector oriented in the direction
of R. The correlative term W (r1b, r2a) depends on the products of coordinates of
both electrons:

W (r1b, r2a) =
r1br2a − 3(nRr1b)(nRr2a)

R3
, (56)

and other terms of (55) depend on coordinates of only one of the electrons 1 and
2. The replacement of the initial operator r−1

12 by the multipolar series (55) is valid
when the condition R � r1b + r2a is satisfied. The bipolar expansions of r−2

12 and
r−3
12 have similar structure and can be obtained from the multipolar expansion (55),

(56) for r−1
12 without special difficulties.

In practical calculations, one usually has to deal with the dipole–dipole and
quadrupole–quadrupole interactions. Here we shall restrict ourselves to considering
the electric dipole transitions for which the corresponding operator is of the form

V1C,dip + V
(±)
LL,dip

= exp
(

i

c
|ωfi|R

){
d1bd2a − 3(nRd1b)(nRd2a)

R3
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± e

2mc

[
d1bp̂2 − 3(nRd1b)(nR p̂2)

R2
− d2ap̂1 − 3(nRd2a)(nR p̂1)

R2

]

− e2

m2c2

p̂1p̂2 − (nR p̂1)(nR p̂2)
R

}
, (57)

where d1b = er1b and d2a = er2a are the operators of the electric dipole moments
of separate electrons. The operator (57) is the operator of electric dipole–dipole
interaction of two electrons located at an arbitrarily large distance from each other,
near different nuclei. The difference of this operator from the corresponding operator
[see the formula (3.9) in Ref. 14] consists in the fact that the expression (57) contains
the additional retarded term

∓ e

2mc

d2ap̂1 − 3(nRd2a)(nR p̂1)
R2

,

whose value is comparable with the term ∼ R−3 when R ∼ c/ω0.
In the first order of the perturbation theory, the dipole–dipole interaction gives

the contribution only when pairs of states of the isolated atoms, which have different
parity, enter into initial functions of the zero approximation. Such a situation arises,
for example, at the resonance and near-resonance transmission of excitation in
collisions of atoms of alkali metals.26,27

5. Accounting for Relativistic Effects in a Problem of
Ion Atom Interactions

There are some ways to account for relativistic effects in two-electron problems
of the theory of slow atomic collisions connected with nonresonance transitions of
electrons from one center to another. In the case where the atom (or ion) A(Za−2)+

and the bare nucleus BZb+ are not too heavy, one can introduce additional terms of
the generalized Breit–Pauli operator Ṽ

(±)
BP [Eqs. (49)–(53)] into the nonrelativistic

Hamiltonian H
(0)
nr

1,2 of the system (AB)(Za+Zb−2)+:

Hr = Hnr + Ṽ
(±)
BP = H(1)

nr + H(2)
nr + V1C + Ṽ

(±)
BP . (58)

Here H
(1)
nr and H

(2)
nr are the Hamiltonians of separate electrons in the field of two

fixed point charges Za and Zb located at a distance R from each other.28 Thus, we
obtain the Schrödinger equation for two quasimolecular electrons in the configura-
tion space

HrΦn(r1, r2; R) = E(r)
n (R)Φn(r1, r2; R) , (59)

where E
(r)
n is the energy of the stationary state. The wave functions Φn should

satisfy the antisymmetry condition.
It is significant that, in contrast to the operator V1C [Eq. (43)], it makes sense

to use the operator Ṽ
(±)
BP [Eqs. (49)–(53)] only in the first order of the perturbation

theory. The same applies to the expression (32). The cause consists in the fact
that when deriving (32) and (49)–(53) we essentially used, firstly, the expansion
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(20) and, secondly, the smallness of “lower” components of the Dirac bispinors.
Both are valid as long as we consider that there are positive frequency one-electron
Dirac wave functions in the matrix elements (35) and (36). When transiting to the
second order of the perturbation theory, the summation over the complete set of
one-electron states including negative frequency states arises.

For not-too-heavy quasimolecules, the position of energy levels (terms) is
basically determined by the Hamiltonian Hnr, and Ṽ

(±)
BP leads to splitting of levels

of Hnr, which gives the so-called fine structure of energy levels E
(r)
n of the system

(AB)(Za+Zb−2)+. In such a situation, it is natural to first find the wave functions
and energy levels in the nonrelativistic approximation, and then take into account
Ṽ

(±)
BP by means of one or another method of the perturbation theory. Here, the

functions of zeroth-order approximation are eigenfunctions of the Hamiltonian Hnr

in which the operators of the relativistic interactions are lacking.
Let us now briefly analyze the possibilities of application of the obtained effects

to calculation of matrix elements of exchange correlative interaction of multiply
charged ions with heavy (relativistic) atoms. First of all, note that for all two-
electron processes with rearrangement which are mentioned in the Introduction,
the following exchange mechanism is characteristic: one of the active electrons of
the atom A(Za−2)+ tunnels to the ion BZb+, followed by strongly correlated (as
a rule, a dipole–multipole) simultaneous transition of two electrons located near
different centers. When one is calculating the exchange correlative interaction being
responsible for simultaneous transition of two electrons, it is necessary to know
the asymptotics (at R → ∞) of the two-Coulomb-center wave function of the
electron of the atom A(Za−2)+ near the “foreign” nucleus BZb+. Such asymptotics
has previously been found7 in the quasiclassical approximation.

In a general case, the matrix element of the exchange interaction is determined
as a nondiagonal matrix element of the electron Hamiltonian (58) between elec-
tron wave functions of the system (AB)(Za+Zb−2)+ which correspond to the cases
of various localizations of electrons in the initial and final states (see, for example,
Refs. 1 and 2). For the electrons localized near different nuclei, the correct two-
electron wave function of the zeroth approximation, satisfying the Pauli exclusion
principle, can be written in the form of an antisymmetrized product of the two-
center wave functions of separate electrons.7 We shall consider in detail the calcula-
tion of the exchange interaction, responsible for the course of two-electron processes
with rearrangement (such as two-electron charge exchange, or charge exchange with
simultaneous excitation or ionization), in the next articles. Here we only note that
with the increase of charges of the nuclei Za and Zb relativistic effects become more
and more significant, and the direct numerical solution of the Schrödinger equation
(59) with the generalized Breit–Pauli operator (58) is necessary. However, such an
approach is extremely complicated and onerous for the problem considered here.

The alternative approach, which is obviously acceptable for the heavy multiply
charged quasimolecules (AB)(Za+Zb−2)+, consists in construction of the adiabatic
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asymptotic (at large internuclear distance R) theory of two-electron processes with
rearrangement on the basis of the generalized Dirac–Breit equation. Within this
approach the motion of separate electrons in the quasimolecule is described by the
one-electron Dirac Hamiltonian of the two-center problem (27), and the interelec-
tron interaction is given by the generalized Breit operator V (±) [Eq. (32)]. As a
result, we arrive at the generalized quasirelativistic Dirac–Breit equation

HΨn(r1, r2; R) =
(
H(0) + V (±)

)
Ψn(r1, r2; R)

=
(
H(1)(r1) + H(2)(r2) + V (±)

)
Ψn(r1, r2; R)

= En(R)Ψn(r1, r2; R) , (60)

which describes the motion of two electrons interacting with each other in the field
of two fixed Coulomb centers with the charges Za and Zb. Here Ψn(r1, r2; R) is the
16-component spinor wave function (four components for each of the electrons 1 and
2), and En is the total energy (including the rest energy) of the stationary state of
the system of two interacting quasimolecular electrons. In addition to the equation
(60), the wave functions Ψn(r1, r2; R) should satisfy the antisymmetry condition.
The operator H(0) = H(1)(r1) + H(2)(r2) completely takes into account the one-
electron relativistic effects (except for radiative corrections), and V (±) [Eq. (32)]
includes all two-electron relativistic corrections to within terms ∼ α2.

Let us discuss the possibilities arising when one is using the equation (60)
for the description of strongly correlated motion of electrons in the quasimolecule
(AB)(Za+Zb−2)+ in the framework of the second-order effects of QED. Firstly, such
a description allows one to clarify the basic features and possible mechanisms of
processes with rearrangement, to take into account orbital and spin degrees of free-
dom of atomic electrons, the jj scheme of coupling of the angular moments (which
is the most natural for heavy atoms), and effects of retardation of interaction of two
quasimolecular electrons located at an arbitrary distance from each other. Secondly,
the considerable achievement of such consideration is an elaboration of the method
of deriving new integral relations,8 relating asymptotic solutions to the relativistic
problem of two spaced Coulomb centers (Za, e, Zb) which correspond to different
regions of electron motion. In particular, the integral relations allow us to find the
approximate analytical solution to the relativistic problem (Za, e, Zb) which satisfies
the Dirac equation with the potential of two spaced Coulomb centers to within small
terms. This means that in this approximation most of the one-particle relativistic
effects are already taken into account in zeroth approximation. Using the operator
(32) and asymptotic formulas for solutions to the relativistic problem (Za, e, Zb)
found previously,8,9 one can calculate the parameters of exchange correlative inter-
action of atomic particles in the course of collision. In point of fact, all of this gives
a natural basis both for the generalization of the adiabatic asymptotic theory of
two-electronic processes with rearrangement1 to a range of the relativistic binding
energies and for the correct formulation of some problems of the modern theory of
an electronic structure of the complicated molecules and atomic clusters.28
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6. Conclusion

In this section, we shall briefly sum up the results of studying the problem of two
quasimolecular electrons in the framework of the second-order effects of quantum
electrodynamics and outline the path for further investigations. It is shown that
when solving this problem one has to abide by natural conditions of symmetry of
interaction with respect to both electrons. The given circumstance makes it neces-
sary to represent c−1 expansion of the retardation factor in the totally symmetrical
(with respect to coordinates of both electrons) form (26). In turn, this leads to the
representation (32) for the relativistic operator of interaction between two electrons
V (±)(r1, r2; R), in which [unlike (33)] dependence on both orbital and spin vari-
ables of the pair of electrons is represented in the maximally symmetrical form. Let
us indicate the main properties of this operator.

There are two domains of the configuration space where the generalized Breit
operator V (±)(r1, r2; R) behaves differently, depending on the distance r12 between
the two electrons. For instance, in the united-atom limit, the formula (32) becomes
the usual Breit expression (1), which correctly describes the retardation effects
of the relativistic interaction only at small interparticle distance r12. To be more
exact, the applicability domain for the Breit formula (1) is restricted by the follow-
ing condition on the coordinate variables:

ω0r12

c
� 1 , (61)

where ω0 is the characteristic frequency of the spectrum of the interacting electrons.
Let ΩI denote the corresponding domain in the configuration space, which we call
the domain of close electron correlations. However, in the domain ΩII, where the
electrons belong to different nuclei and the condition (19) is satisfied for all ∆r ≤
R < ∞, the Breit operator (1) fails to describe the relativistic interaction of two
electrons even on the qualitative level. At the same time, the relativistic operator
V (±)(r1, r2; R) [Eq. (32)] constructed here makes it possible to describe the retarded
interaction of two electrons in both the domain ΩI of close electron correlations
and the domain ΩII of far electron correlations. This operator can therefore be
used to solve many two-electron problems in atomic and molecular spectroscopy,
astrophysics, the theory of slow atomic collisions, etc.

Specific time scales of interaction transfer and specific calculation approxima-
tions, making it possible to find small parameters and take into account different
types of interaction, are characteristic of each domain (ΩI, ΩII) of interelectron
distances r12. Thus, we reiterate not only that we can use the generalized Breit
operator V (±)(r1, r2; R) to solve the multielectron two-center problems, but also
that the quantum electrodynamic treatment of two-electron interaction based on
the standard Breit operator (1) is incomplete.

As shown in Sec. 3, the standard assumption in the derivation of the Breit
operator (1) is that the only small parameter, with respect to which the retardation
factor must be expanded, is the quantity (61).20 This means that in addition to the
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characteristic (mean) electron transition time T0 = 2π/ω0, the unified time scale
Tint = r12/c, corresponding to the domain ΩI, is used. We can interpret this time
as an interaction transfer time. Then, the condition 2πTint � T0, meaning that
a substantial change in the electron density in the system of the two interacting
electrons occurs during the interaction transfer time, must be satisfied.

At rather large interelectron distances (in the domain ΩII), where the interaction
transfer time Tint = R/c is much larger than the mean electron transition time T0 =
2π/ω0, the natural small parameter is the dimensionless quantity (19). Exchange
by virtual photons at such a distance results in the interelectron interaction (32),
which, apart from the Coulomb and Breit interactions (1), contains additional terms
caused by the amplification of effects of retardation of the spin interactions of
the two quasimolecular electrons. The parameter that determines the degree of
amplification of the retardation effects in the electron interaction is the ratio Tint/T0

or R/λ0, where λ0 = 2πc/ω0.
The derivation of the explicit representation for the generalized two-particle

Breit–Pauli operator V
(±)
BP [Eq. (49)] is performed by means of conversion from the

relativistic four-component Dirac bispinors to the nonrelativistic two-component
Pauli spinors in the matrix U

(2)
i→f [Eq. (15)] of effective energy of the interaction

V (±) [Eq. (32)]. It is shown that the correct account for the natural condition
of the interaction symmetry with respect to both electrons results in new terms
in the operators of spin–orbit (53), spin–spin (52) and retardation (51) interac-
tions which are missed in the corresponding operators in Refs. 12–15. Thus, the
generalized Breit–Pauli operator [Eqs. (49)–(53)] constructed in the present article
allows one to rigorously take into account orbital and spin degrees of freedom, and
retardation effects of interaction of two quasimolecular electrons located at an arbi-
trary distance from each other. All of this opens up possibilities for mathematically
correct calculations of both molecular structures and atomic clusters, and param-
eters of exchange correlative interaction of atomic particles during the course of
collision.
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