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Abstract

In the framework of the paraxial Fock-Leontovich approximation the
three-dimensional version of WKB method is elaborated for solving the Dirac
equation with axially symmetrical potentials, which do not permit the com-
plete separation of variables. By means of this approach the relativistic
wave functions for the H-like atom in the parallel constant uniform elec-
tric and magnetic fields are constructed in the below-barrier and classically
allowed ranges. General analytical expression for probability of ionization
of the atom in the external electric and magnetic fields is obtained. The
comparison of the found formulas with results known previously is carried
out.

Introduction

The problem of hydrogen atom in electric and magnetic fields has fundamental
meaning for a quantum mechanics and the atomic physics and has many appli-
cations (see, for example, [1, 2, 3] and the references therein). Since the twenties
[4], properties of an energy spectrum of hydrogen atom and other atoms in ex-
ternal fields were rather intensively studied in the framework of the Schrédinger
equation.

At the same time the interior logic of development of study of atomic systems
with a high degree of ionization (the multiply charged ions) dictates, obviously,
formulation of various qualitatively new problems, similar to those which were
previously solved only for neutral or weakly ionized atoms. Essentially relativistic
character of motion of electrons in the fields created by multiply charged ions (the
characteristic velocity of the electron in H-like ions with nuclear charge Z is ~ aZc;
o is the fine structure constant, ¢ is the velocity of light) is the main feature of such
ions that distinguishes them from neutral atoms. Thus, the consistent theory of
tunnel ionization of such systems should be relativistic because relativistic effects
are not small corrections, and fundamentally determine the orders of spectral
characteristics. '

In order to construct such a theory one should have the solution of the rela-
tivistic problem of motion of an electron in the field of nucleus and in the constant
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uniform electric and magnetic fields. Since the Dirac equation with such superpo-
sitional potential does not permit complete separation of variables in any orthogo-
nal system of coordinates, the given problem has no exact analytical solution, and
numerical methods are rather onerous.

The relativistic calculations of the linear Stark effect are carried out by means
of perturbation theory [5, 6], and quadratic Stark effect was treated by means of
RCGF method in the form of the expansion in powers of Za [7]. However, the
most of papers was basically devoted to position of quasi-stationary level, and
there are only rare cases of calculation of width I' in the relativistic case. In
our previous paper [8] within quasiclassical approximation the hybrid version of
spherically symmetrical model of the Stark effect, taking into account the Lorentz
structure of interaction potential, was studied. Rather recently the probability
of ionization of s-level, whose binding energy can be of order of the rest energy,
in electric and magnetic fields has been calculated by means of generalization of
the imaginary time method [9] and of so-called ADK-theory [10]. However, in the
general case, widths of quasi-stationary states are not found until now.

Due to such situation in the theory and intensive experimental researches dur-
ing last years, asymptotic methods of calculation of ionization probability, which
are based on clear physical ideas about below-barrier electron transition, are gain-
ing in importance. From this point of view it is worthwhile to use the WKB
method (or quasi-classical approximation) which enables to find the approxima-
tive analytical solutions of the relativistic problem and to express required ioniza-
tion probability in terms of quantum penetrability of the potential barrier which
separates domains of discrete and continuous spectra. As is known, this method
has rather high accuracy even for small quantum numbers. For the first time the
three-dimensional version of WKB approximation for the Dirac equation with ax-
ially symmetrical potential was elaborated and used for the relativistic two-center
problem [11]. Recently, this method was applied to problem of tunnel ionization
of H-like multicharged ions in the constant uniform electric field [12].

In the present work we generalize our method by means of introduction into
the Dirac equation of the three spatial components of vector-potential A4,,, corre-
sponding to constant uniform magnetic field which is parallel to external electric
field. In this case the Dirac equation has an axial symmetry, and one can use the
main ideas of the method elaborated previously [12].

Quasi-classical approximation for the Dirac
equation with axially symmetrical potentials

For the bispinor ¥ the stationary Dirac equation is (m, =e=h=1)

G (f—Alc)eE=(E-V+3) <§>
& (f—AJc)n=(E—-V —c2)¢ n)’
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Using the substitution ¢ = (W+)/2®, W* = E — V £ ¢?, we arrive at the matrix
equation

. . 1 . 1 o
2 _ 2 - _ 2 _ 4 _ 2 R Y-
AD+k® =0, K = [(E VY2 -t - A ] - [z(aV)( 74) +22Av}
FVV, A AV 3 (VV '
w+ | 2w+ 4 (W) m w7 [VV V] )

Let us consider the case when electric field is constant, and magnetic field is
constant, uniform and directed along axis z. Besides that both fields are axially

symmetrical V' = V(z,p), A, = —%Hy, Ay = %Hw, A, = 0. Then we can
represent the solution of (2) in the form
= < Fl("’p) exp (m - 1/2> ] > (3)
Fa(z p)expli (m +1/2) ¢]
By substituting (3) into (2), we obtain the matrix differential equation
q ([ F1
(a+d)F <h2+g+72>F F_(F2>, (4)
1 o H2p? 4 1 0 -1 ov.eo oV 0o
= — 4 _ _ — _
¢ c\/c (E-V) 4 7 9= W+ 0 dp 0z 0z 0p)’
ov ov &
p p
_H [ M2t amg, oW+ oz
e __p OV m_1ja- P
2W+ 0z 2W+ 0p
_ [ 9m-1/2 bm+1/2 ) 6
7 ( bm—1/2 A—m-1/2 : ( )
a<zp>=“2+i wov 2 (7). bule ) = e O (7)
HA W+ | p dp 2 4 W+ |7 T pW+ 0z

We seek a solution of equation (4) in the form of a WKB expansion:
F=gexp(hi™'S), ¢= Z o™, (8)

Here (™ is a bispinor (the upper component corresponds to the function F, the
lower to F»). Having substituted F, determined by (8), into (4) and equated to
zero the coefficients of each power of 7, we arrive at the hierarchy of equations

LoN2
(vs) —f =0, (9)
VS - Vp® + ASp©® + 8Sp© = 4, 0©@ (10)

VS - Vet £ ASo D 4 55+ 1 Ap(™ 4§ — yyp(M) = 4y (1)
(11)
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n=20,1,2,...
Consider equation (9) and assume that

= 1 9%¢%(2,0
F0) =G0+ QA 0= 0, Q=

(12)
Solution of equation (9) can also be represented in the form of an expansion in
powers of coordinate the p:

= Z Sp(z)p™. (13)
n=0

By inserting (13) into (9) and equating to zero the coefficients of each power of p,
we obtain

(S5)? — a3 =0, ' (14)
2848 + 452 — @, =0,... (15)

It is easy to show that the solution of equation (14) is
Sy = i/qodz + Cp, Cy = const. (16)

Equation (15) is the nonlinear Riccati differential equation and are not solvable
analytically in a general case. However, by making the substitution

1 / / -
5o 82 (14020 )
2 \2q(2) o(2)
one can proceed from (15) to the linear second-order equation
1/g\* 1
o+ —(q—‘)) —q——@ o =0. (18)
4\ 290 @

The solutions of the equations (10), (11) are sought in the form

plm=1/2l Z o) (2) 2
¢™ (2,p) = : (19)

p[m+1/2| kZ SDZk Z) p2k
=0

By substituting (19) into the corresponding equations and equating to zero the
coefficients of each power of p in the each of the two components, we obtain the
system of ordinary first-order differential equations, which is solvable. For m > 0
the solutions are expressed as follows:

+ m—1/2
9:(1%) _ C_2 (@) exp { (m‘L 1/2)H / qOJ 0) =0, (20)
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For m < 0 these solutions are

O _9g, 0= %2-_— (@)mﬂ/? exp {_Mﬁ / %} (21

Y10 = 20 = - 2% %

The lower component 7 of ¥ is obtained from the upper one £ by the operation

£ m——i .

W+—-W-

Quasi-classical solutions of the relativistic problem
of atom in the parallel constant electric and mag-
netic fields

If besides the magnetic field the H-like atom is placed in the constant uniform
electric field, then an interaction potential is

VA

JEi

If we write the quantity qo(z) as go = 1/2(Uess — Eeyy), then the effective
energy Ecpr = —A\2/2 (A = cv/1 — €2, ¢ = E/c?) and effective potential

V(z,p) =— — Fz, (22)

Ueff(z,e) ZEV()——VI)Q/QCQ (23)

correspond to the expressions (4), (12).
When F ~ H <« A\ /4Z then point 2 (2Z/)\? < zy < A\?/2F) exist that

upm—— C (24)

zZ—r 20

(O .
\Ilo(f’)_<ig(:)gjj/m8_i)), l=j7x1/2, U'=25j-1, n=r/r (25)

U, sz, ¢)

Z i — Z,

Figure 1: The effective potential Ueys(z,€).
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gé:; } = £VT E godreeZ/M ol o0 = Ey/c?, Ao =cy/1—e2.  (26)

1/2
_ €02/ M0 Z/ho —k
4 =2 (2)0) (22 n T (27 + np + 1) ' (&7

Energy of relativistic H-like atom in weak parallel constant electric and magnetic
fields can be calculated within the first order of perturbation theory

, F
E = By +sgnk’ 3 NTZ ("—J%;EZ—+AEH, (28)

where N = /n2 —2n,([k| —v), Eo = ¢*/\/1+[Za/(n, +7)]? is the energy of
nonperturbed relativistic H-like atom, AEy is the correction due to the magnetic
field.

Let us find the wave function ¥ in the range 20 < z < z».

50(2) == [ afa)do + Co. (29)
From boundary condition (24) follows that
€02
So —— —Xoz20 + /\— In zg. (30)
zr~zo 0

In the range zp < z < z2, an 1nﬂuence of the Coulomb potential is weak.
Therefore,
Z ?-F z £0Z VA

aNFE 2YTF 2-B T Mo

where e = 2.718....
Similarly we find constants

o _ AV (=D 2sgnk (j + Im|)! _ o (2)lmi+i/2
' ¢ 2mi=12(Im| — 1/2)1 4x(j — [m])V’

— Zaarccoseg, (31)

sgnk.

(32)
and the wave function

(%) Im|—-1/2 r:
o _C (\/q—op) . {_ /[qo(x)+sgnm<|m|+1/2H> e

o o 2¢qo(z)

Ve + Ey -V 5m,]m}
V2 +Eyg—Vol_mim
+ S1(2)p* +i(m F1/2)¢} i\/cz—‘gﬁém]lmll , (33)
—ivc? — Eo + Vo 6—;n,|m]

where upper (lower) sign corresponds to the case m > 0 (m < 0),

1 Z
Q=-Vc—-(E-V)? Vo=-—-Fz

C z
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Z 502/)\0
C<i):C§i)\//\_()( > > e—Zaarccosaol (34)
2)ge
Wave function in the classically allowed domain.

Width of below-barrier resonance

Transition through the turning point z = zo into classically allowed domain is
performed within the Zwaan method and reduced to the replacement ¢(® — —ip(©®)
in the wave function where p(© = ¢=1\/(E + Fz)2 — ¢

B m|=1/2 r & 1/2)H
o — \/Pop _— po(z) — sgnm(|m| +1/2) et
o o 2¢po ()

vVE —-Vy+ CQém,|my

| JE—VoT s
$1(2)p° 1/2 A R
510+ imF D0} | g™ | (9)

—\/E — VO = CQé—m,\mI
where
_ % senm(ml+1/2HY g0y . / ’
BE) — o), zfl (QO(Z)J{"—QCL;()(Z,‘ —) z+im/ 5= ipo (o' 1@ . (36)
2 1% 2 po

The ionization rate is equal to the total probability flux through the plane
which is perpendicular to z-axis and located in the domain z > zs:

27 oo
w=c / UHawds = ¢ / / (T, O) pdpdo, (37)
S 0 0

Having substituted (35) into (37) and calculating the integral, we obtain:

2e02
)\0|A’2 (j + ]m|)l < A >/\—0 e—2Zaarccos eo

= 1 ><
O T T m =172 G = ImI) \2X3e SImI+i72
_2}2 go(z)+ 552 m,z((\:Z:,Etl/Z)H d=
el o) , (38)

where © = Reo(z)Imo’(z) — Reo’(z)Imo(z).
In order to calculate the quantity © let us assume that o(z) = Cio1(2) +
Cs09(2) is the solution of equation (18). Then

e = (Re C’lIm CQ —Im ClR,e CQ)W’(U],JQ) e (39)

where W (o1,09) = const is the Wronskian of Eq. (18). In the vicinity of point 2o

z

7z = Vil oa(2) = Vil |

z2

dx
po(z)
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So W(Ul,O'Q) =1.
Approximative solution of equation

1 I\ 2 14"
cf”+[Z (q—°> —~q—°—@}a:o, (40)

90 290 g
with the boundary condition 0 —— 29+/go(z0) is
z~zo

22

I dr . dz [ dr
o= Aov/J0 —— e~ "4\ /Do / +i/* , 41
0 q“/ qo(z) > VPO ) %z po() 4D

d z2

and the quantity © is

z2

dz
42
9= )\O/QO(CE).

21

Therefore we yield

2o
2027 —2 f(qo(z)—{—w)dz—ZZaarccossg

200lA2 G+ m) [ Z o e A1 2¢q0 (=)
w =
2)\Ze

(Im[ = 1/2)! (4 — |m])! - ml+1/2
<4)\g q:fé))
1 (42)

The integrals in (42) can be approximately calculated in the same way as it
was done in one-dimensional case [8]. Omitting details of these calculations we
write the final result for the ionization rate:

2eqgZ
QAO!AIQ (] + Imi)| e2Zaarccoseg 2)\3 v —|m|-1/2
- (Im] = 1/2)! (j — |m|)! (2carccos g¢)ImI+1/2 (? X
3(1) H
exp {—C_.F@ — F arCCOSEo} s (43)

where
®(c) = arccose — /1 — &2, (44)
Special cases

i) Ionization rate of s-level (j = m = 1/2). Consider ionization rate of s-level
by the constant uniform electric field (H = 0):

A®() H
Py~—Fp  ~ parcossop, (45)

2¢0Z
202 9
2o

o )\O[A|262Zaarccosao 2)\%
Wg = —
carccos &g F

that within the factor 2 coincides with the result of [9].
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For H-like ions our expression (45) becomes

zz3e2Za arccos €9 473 2e0—1 CSCD(EQ)
Wis,,, = — exXpy ———— (s (46)
12 T(2g9 + 1)carccoseg \ F F

and coincides with result obtained in [10].

ii) Ionization of s-level of negative ions (e.g. H™, Na~ etc)
Here Z = 0 and at r > a the unperturbed radial wave functions is of the form

—>\()'I‘
F(r) } — VT FegdeS—, (47)
g(r) r
If a < 1 then |Ag|?> ~ Ao and
| A (ep)
- _ — L 48
Ws0 = 9carccos =0) i { F } (48)

In the nonrelativistic limit formula (48) becomes the known result of paper [14].
iii) Limiting cases without magnetic field (H = 0)

In the nonrelativistic limit ¢ — oo using the replacements A — K, ¢ — 1 —
k?/2¢2, A = B/v/2, |m| = |m| +1/2,

ey

(J + m])!
(G = [m[)!

we obtain result of article [13].
For level near lower continuum ¢ — —1 exponential factor becomes exp(—mc?/F)
as in the Schwinger’s formula [16].
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