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We construct a relativistic potential quark model of D, Ds, B, and Bs mesons in which the light quark

motion is described by theDirac equationwith a scalar-vector interaction and the heavyquark is considered a

local source of the gluon field. The effective interquark interaction is described by a combination of the

perturbative one-gluon exchange potentialVCoulðrÞ ¼ ��=r and the long-rangeLorentz-scalar andLorentz-

vector linear potentials Sl:r:ðrÞ ¼ ð1� �Þð�rþ V0Þ andVl:r:ðrÞ ¼ �ð�rþ V0Þ, where 0 � � < 1=2. Within

the quasiclassical approximation, we obtain simple asymptotic formulas for the energy andmass spectra and

for the mean radii ofD,Ds, B, and Bs mesons, which ensure a high accuracy of calculations even for states

with the radial quantum number nr � 1. We show that the fine structure of P-wave states in heavy-light

mesons is primarily sensitive to the choice of two parameters: the strong-coupling constant �s and the

coefficient � of mixing of the long-range scalar and vector potentials Sl:r:ðrÞ and Vl:r:ðrÞ. The quasiclassical
formulas for asymptotic coefficients of wave functions at zero and infinity are obtained.
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I. INTRODUCTION

The heavy-light quark-antiquark (Q �q) systems, being
QCD analogues of relativistic hydrogenlike atoms, are
ideal objects for investigations and permit very precise
experimental verification of quantum theory results.
Theoretical description of the mass spectra and decay
probabilities of such composite objects requires the con-
struction of a consistent theory of bound states, which
should be based on the fundamental principles of local
quantum field theory and use its apparatus [1]. However,
calculating these characteristics of composite systems di-
rectly in the local quantum field theory is not always
possible, because the only known calculation method in
this theory is still based on the perturbation theory, while
the nature of creation of a bound state of interacting
particles must undoubtedly be determined by nonperturba-
tive effects.

When constructing the theory of bound states, the most
effective way of leaving the framework of the perturbation
theory is the use of dynamic equations. The point is that
even if we can construct kernels of dynamical equations
only in the lower orders of the perturbation theory, devel-
oping methods for solving them exactly or approximately
(but without using the perturbation theory) allows taking
into account nonperturbative effects of interaction when
evaluating observable characteristics of the bound states.
In a nonrelativistic case, such a theory is formulated in the
language of the classical potential using the dynamical
Schrödinger equation. But at large bound energies, the
corresponding theory must be essentially relativistic. In

this regard, the way to solve this problem was indicated
about half a century ago based on using the dynamical
equations in the local quantum field theory, examples of
which are the Bethe-Salpether equation [2], the quasipo-
tential equation [3], and other equations [4].
The Dirac equation with a mixed scalar-vector interac-

tion plays an important role in the contemporary develop-
ment of the relativistic theory of bound states. It is valuable
because it provides an adequate mathematical model for a
wide circle of problems in hadronic physics in which it is
possible to transit consistently from a two-particle problem
to the external field approximation. This equation indicates
the presence of the spin and spin moment for the quark and
antiquark, and the problems of describing fine and super-
fine structures in the energy spectra of heavy-light (Q �q)
mesons, which are the QCD analogues of hydrogenlike
atoms, arise naturally from this equation. Treating the
Dirac equation in the limit of an infinitely heavy quark Q
as an equation for a single light antiquark �q (similarly for
the case of hydrogenlike atoms), we can study several
important aspects of the theory of heavy-light quark-
antiquark systems, in particular, the relativistic dynamics
of the light antiquark �q in the external field of the
heavy quark Q, the Lorentz structure of the long-range
component of the Q �q interaction, the fine structure of the
spectrum of heavy-light mesons, and the influence of
the spontaneous breaking of chiral symmetry on the
spectrum, etc.
The mathematical theory of the Dirac equation with a

scalar-vector interaction was developed in [5] (see [6–8]
for a detailed bibliography). Certain progress was achieved
in constructing the exact solutions of equations of this type
with potentials corresponding to different types of interac-
tion [5]. However, in most cases attempts to construct
exact solutions of this equation for more or less realistic
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potentials encounter difficulties that have not yet been
overcome. The known methods of investigation of this
equation (the perturbation theory in the coupling constant,
etc.) do not provide complete knowledge about the behav-
ior of the wave functions and mass spectrum in the most
interesting domain of values of the coupling constant for
hadronic systems containing one light quark together with
one (D and B mesons) or two (doubly heavy � and �
baryons) heavy (anti)quarks; relativistic and nonperturba-
tive effects evidently play an important role in such sys-
tems. Therefore, when constructing approximate methods
for investigating bound states of the Dirac equation, non-
perturbative methods, in which the expansion parameter in
the potential is not considered small, are especially impor-
tant. One of the most widely used methods is the method of
asymptotic expansion in the Planck constant ℏ, which is
called the quasiclassical approximation.

The apparatus of quasiclassical asymptotic behavior
which has arisen soon after making quantum mechanics
is now one of the most powerful and is (frequently) also a
unique way of studying a wide class of theoretical and
mathematical physics problems. The fundamental nature
of a quasiclassical method is caused, in particular, by its
embodiment of the important (for physical theories) prin-
ciple of correspondence between quantum and classical
problems.

In the one-dimensional spectral, problems of quantum
mechanics and the strict mathematical formulation of this
principle composes the Wentzel-Kramers-Brillouin
approach (WKB). Namely, the one-dimensional WKB ap-
proximation historically began to be applied first for solv-
ing some of the quantum mechanical problems and in
problems of the collisions theory. The WKB method has
allowed for general expressions for reflectivities and tran-
sition of particles to be obtained through a potential barrier,
for quasiclassical phases and scattering amplitudes in a
central field, for Bohr-Sommerfeld quantization condi-
tions, and for probabilities of nonadiabatic transitions at
pseudocrossing of levels.

The rigorous theory of quasiclassical asymptotic expan-
sions, including the scattering problem together with spec-
tral problems, was constructed in Maslov’s fundamental
monograph [9] and subsequent articles [10]. The WKB
method for fermions satisfying the Dirac equation with a
purely vector interaction (including states lying near the
boundary of the lower continuum) was developed in detail
in [11–13]. No wonder that the framework of the quasiclass-
ical methods has solely allowed to obtain many approved
results in the known theory of superheavy atoms [14].

The construction of quasiclassical solutions of the spinor
equation with a scalar-vector interaction was reported in
[15,16]. The scheme of quasiclassical quantization pro-
posed in [16] allows the connection of quasiclassical
asymptotic behavior in spectral problems for the Dirac
equation in external scalar and vector fields with the

Lorentz structure of interaction potentials corresponding
to them to be made clear.
To elucidate how the Lorentz structure of interaction

potentials is manifested at solving spectral problems of
hadron physics, in the present article we study the behavior
of a relativistic spin-1=2 particle in the presence of both the
scalar and the vector external fields with potentials of the
confining-type by WKB method. More definitely, in creat-
ing the relativistic version of the potential model and
taking into account the Lorentz structure of potentials of
interquark interaction, we relied on the Cornell model
offered in [17] in which the effective color Coulomb
attraction, at small distances r, and string interaction at
large r are considered. Corresponding to such model ofQ �q
interaction, the effective potential (EP)Uðr; EÞ of the Dirac
equation complicatedly depends on energy E and on mix-
ing coefficient � (0 � � � 1) of scalar and vector long-
range potentials and has an essentially different form at
� < 1=2 [18], � > 1=2 [19] and � ¼ 1=2. For all further
consideration, the important moment here is that the same
model with a scalar-vector variant of interactions leads
(depending on range of values of the mixing parameter �)
both to bound states and to decaying (quasistationary) ones.
Therefore, other fields of application in the potential model
used concerns a rather important problem related to the
study of quasistationary states of quantum objects.
For this reason, as an example of the chosen model of
interaction, in the present article the problems of decaying
states theories are considered together with spectral
problems.
The structure of the article is as follows. In the next

section, we set out the construction of the quasiclassical
solutions of the Dirac equation with a scalar-vector
coupling. In Sec. III, we consider the model of relativistic
particle interactions with both scalar and vector fields
given by the potentials VðrÞ ¼ ��=rþ �ð�rþ V0Þ)
SðrÞ ¼ ð1� �Þð�rþ V0Þ and study the dependence of
the effective potential on the Lorentz structure of the
external field. In Sec. IV and V, in the framework of the
considered model with mixing parameter 0 � � < 1=2
we obtain simple asymptotic formulas for the energy and
mass spectra and for the mean radii of D, Ds, B, and Bs

mesons. Our results are compared with results of numerical
calculations and existing experimental data. Section VI is
devoted to deriving asymptotic coefficients of the wave
function at zero and infinity in the quasiclassical approxi-
mation. In Sec. VII we calculate the energy spectrum of the
massless fermion in the external scalar field described by
the combined funnel potential.

II. QUASICLASSICALAPPROXIMATION FORTHE
DIRAC EQUATION WITH AVECTOR AND

SCALAR INTERACTION POTENTIAL

After separation of angular variables in the Dirac
equation with a mixed scalar-vector coupling (c ¼ 1), the
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system of equation for the radial wave functions FðrÞ and
GðrÞ is of the form

ℏ dF
dr þ ~k

r F� ½ðE� VðrÞÞ þ ðmþ SðrÞÞ�G ¼ 0;

ℏ dG
dr � ~k

r Gþ ½ðE� VðrÞÞ � ðmþ SðrÞÞ�F ¼ 0:

�
(1)

Hereafter, we use the notation FðrÞ ¼ rfðrÞ and
GðrÞ ¼ rgðrÞ, where fðrÞ and gðrÞ are the radial functions
for the respective upper and lower components of the
Dirac bispinor [20], E and m are the total energy and rest
mass of the particle, SðrÞ is the Lorentz-scalar potential,
and the potential VðrÞ up to a multiplier coincides with
the zeroth (temporal) component of the four-vector
potential A� ¼ ðA0;AÞ, where A ¼ 0, VðrÞ ¼ �eA0ðrÞ,
and e > 0. In system (1), ~k ¼ ℏk, where the quantum
number k ¼ �ðjþ 1=2Þ for l ¼ j� 1=2, j is the total
angular moment of the fermion, and l is the orbital
moment (for the upper component of FðrÞ), and hence
jkj ¼ jþ 1=2 ¼ 1; 2; . . . .

In [16] the system (1) was consecutively solved using
the known technique of left and right eigenvectors of the
homogeneous system. For the effective potential (EP) of
the barrier type (see Fig. 1)

Uðr; EÞ ¼ E

m
V þ Sþ S2 � V2

2m
þ k2

2mr2
(2)

quasiclassical expressions were obtained for the wave
functions in three regions.

(i) in the classically allowed region r0 < r < r1 the
asymptotic approximation of the WKB radial func-
tions F and G are oscillatory:

FðrÞ ¼ C�
1

�
E� V þmþ S

pðrÞ
�
1=2

cos�1;

GðrÞ ¼ C�
1 sgnk

�
E� V �m� S

pðrÞ
�
1=2

cos�2;

(3)

where

pðrÞ ¼ ½ðE� VðrÞÞ2 � ðmþ SðrÞÞ2 � ðk=rÞ2�1=2
(4)

is the quasiclassical momentum for the radial motion
of a particle, and

�1ðrÞ ¼
Z r

r1

�
pþ kw

pr

�
drþ �

4
;

�2ðrÞ ¼
Z r

r1

�
pþ k ~w

pr

�
drþ �

4
;

w ¼ 1

2

�
V 0 � S0

mþ Sþ E� V
� 1

r

�
;

~w ¼ 1

2

�
V 0 þ S0

mþ S� Eþ V
þ 1

r

�
:

Hereafter, the normalization constants Cj related to

the states with k > 0 and k < 0 are denoted by the
superscripts þ and �. The normalization constant
C�
1 is determined by the relation

jC�
1 j ¼

�Z r1

r0

E� VðrÞ
pðrÞ dr

��1=2 ¼
�
2

T

�
1=2

; (5)

where the quantity T coincides with the period of
radial oscillations of a classical relativistic particle
with the energy E in the potential well r0 < r < r1.

(ii) in the below-barrier region r1 < r < r2, the
quantity p takes purely imaginary values, p ¼ iq,

q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm þ SðrÞÞ2 � ðE � VðrÞÞ2 þ ðk=rÞ2p
. An

oscillating-type WKB solution (3) is then continued
here by a solution exponentially decreasing as the
distance increases in the classically forbidden re-
gion r1 < r < r2. For states with k > 0, we have

�¼ Cþ
2ffiffiffiffiffiffiffi
qQ

p exp

�
�
Z r

r2

�
qþðmþSÞV 0þðE�VÞS0

2qQ

�
dr

�

� �Q

mþS�EþV

 !
; (6)

where Q ¼ qþ jkjr�1. The solution for the states
with k < 0 can be found in [16].

(iii) in the ‘‘exterior’’ classically allowed region r > r2,
a quasistationary state is associated with the diver-
gent wave

�¼ Cþ
3ffiffiffiffiffiffiffi
pP

p exp

�Z r

r2

�
ipþðmþSÞV 0 þðE�VÞS0

2pP

�
dr

�

� iP

mþS�EþV

 !
: (7)

This expression must be used to study the states
with k > 0 (k < 0, see [16]); here, P ¼ pþ ijkjr�1

and the radial momentum pðrÞ is again positive.

( )

Umax

Umin

E

rmaxrmin r1 r2r0 r

FIG. 1. The form of the EP Uðr; EÞ of the barrier type; r0, r1,
and r2 are roots of the equation p2 ¼ 0.
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The quasiclassical representations (3)–(7) constructed
are invalid in small neighborhoods of turning points
rj (j ¼ 0, 1, 2). To bypass these points and match the

solutions one can use the Zwaan method [21] that allows
for the establishment of relations between normalization
constants:

C�
2 ¼ �iC�

3

¼ �C�
1

2

�
E� Vðr1Þ þmþ Sðr1Þ

jkjr�1
1

��ð1=2Þ

� exp

�
�
Z r2

r1

�
q� ðmþ SÞV 0 þ ðE� VÞS0

2qQ

�
dr

�
:

(8)

Also in [16] the following quantization condition, de-
termining the energy (position) of the bound state E in the
mixture of the scalar and vector potentials, was obtained:

R
r1
r0

�
pþ kw

pr

�
dr ¼

�
nr þ 1

2

�
�: (9)

Here, nr ¼ 0; 1; 2; . . . is the radial quantum number. The
new quantization rule (9) differs from the standard Bohr-
Sommerfeld quantization condition [22] by the relativistic
expression for the momentum pðrÞ and by the correction
proportional to wðrÞ, which takes into account the spin-
orbital interaction and results in the splitting of levels with
different signs of the quantum number k.

Having calculated the flux of the particles outgoing to
infinity by means of quasiclassical formulas (7) and (8), we
find the following expression for the level width:

� ¼ 1

T
exp½�2��; (10)

T ¼ 2
Z b

c

Er � V

p
dr; � ¼

Z a

b

�
q� kw

qr

�
dr; (11)

which is valid for both signs of k [16].
The obtained quasiclassical formula (10) is the relativ-

istic generalization of the well-known Gamow formula for
the width of a quasistationary level. The nontrivial moment
of such a generalization is the modification of expression
for the period of oscillations T and the occurrence of the
additional factor in the preexponent of expression (10) that
depends on a sign of the quantum number k and is caused
by the spin-orbit coupling in the mixture of the scalar SðrÞ
and vector VðrÞ potentials.

The described scheme of quasiclassical quantization is
applicable for deriving the asymptotic behaviors of level
energy and corresponding eigenfunctions, generally speak-
ing, at ‘‘large’’ quantum numbers. However, in well-known
exactly solvable spectroscopic problems of the relativistic
quantum mechanics, for example, for scalar SðrÞ and
vector VðrÞ potentials of Coulomb (SðrÞ ¼ ��0=r,
VðrÞ ¼ ��=r) or oscillatory (SðrÞ ¼ VðrÞ ¼ !r2=4,
!> 0) types, formulas of quasiclassical quantization
reproduce an energy spectrum precisely (even for lowest

states) [16]. This circumstance allows to suppose that
quasiclassical calculation methods developed in the pre-
sent article will also be useful for problems of hadronic
spectroscopy in the range of small quantum numbers.
The spectral problem for the Dirac equation with the

potentials SðrÞ and VðrÞ of the confining-type that are con-
sidered in subsequent sections illustrates applying these
methods to problems in hadronic physics. Other types of
the potentials, SðrÞ and VðrÞ, and also a more detailed
mathematical description of the WKB method for the Dirac
equationwith a scalar-vector interaction canbe found in [16].

III. THE DEPENDENCE OF THE EP Uðr;EÞ
ON THE LORENTZ STRUCTURE

OF THE EXTERNAL FIELD

The simplest model of the interaction of a relativistic
spin 1=2 particle simultaneously with both scalar and
vector external fields, which we meet below when calcu-
lating the quasiclassical spectrum of relativistic bound
states (see Sec. IV), is governed by the potentials

VðrÞ � VCoulðrÞ þ Vl:r:ðrÞ ¼ ��

r
þ �vðrÞ;

SðrÞ � Sl:r:ðrÞ ¼ ð1� �ÞvðrÞ; vðrÞ ¼ �rþ V0;

(12)

where V0 is a real constant, � is the Coulomb coefficient,
and � is the parameter of mixing between the vector and
scalar long-range potentials Vl:r:ðrÞ and Sl:r:ðrÞ; 0 � � � 1.
Below, in this section, we do not restrict the value or even
the sign of the parameter �.
The relation between the EP Uðr; EÞ and initial poten-

tials (12) directly entering the Dirac equation is rather
complicated: Uðr; EÞ depends not only on r and model
parameters (12), but also on the level energy E and on
the total moment j. What is especially important for us
here is that the EP Uðr; EÞ takes essentially different forms
for the cases � < 1=2, � > 1=2, and � ¼ 1=2.
Our goal is to investigate the behavior of the EP Uðr; EÞ

at large and small r. Substituting VðrÞ and SðrÞ of form (12)
in (2) and keeping only the most singular terms when
r ! 0, and only the leading terms (in r) when r ! 1,
we obtain

Uðr; EÞ � ð1� 2�Þ�2

2m
r2 þ . . . ; r ! 1; � �

1

2
; (13)

Uðr; EÞ � Eþm

2m
�rþ . . . ; r ! 1; � ¼ 1

2
; (14)

Uðr; EÞ � �2

2mr2
; r ! 0; �2 ¼ k2 � �2: (15)

For rather large values of the Coulomb coupling constant �
in EP Uðr; EÞ at small distances r, the singular attraction,
/ r�2 arises, which can lead to what is known as ‘‘falling
to center’’ in quantum mechanics [22–24]. In order to show
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this, we consider the finite trial function which is nonzero
in the range 0< r < r0. In accordance with the
Heisenberg’s indeterminacy relation hp2ir20 	 1=4,
whence follows

hHi¼hp2i
2m

þhUi�ðjþ1=2Þ2��2

2mr2
þO

�
1

r0

�
; r0
1:

At � > jkj ¼ jþ 1=2 the spectrum of the effective
Hamiltonian H is unbounded below, because hHi ! �1
at r0 ! 0. In classical mechanics such a situation corre-
sponds to a particle falling to a force center. In the case of
the Dirac equation the energy eigenvalues Enrk have the

square-root singularity at � ! jkj that leads to states with
complex energy Enrk at the formal continuation of the one-

particle solutions into the domain � > jkj ¼ jþ 1=2. It
does not mean, however, that at � > jkj the Dirac equation
has no solutions. For determination of energy levels in this
case it is necessary to impose some boundary condition at
r ! 0 (that is equivalent to determination of the self-
conjugate expansion of the energy operator [25]). From
the physical point of view the formulation of a boundary
condition at zero means the cutoff of the (color-) Coulomb
potential VCoulðrÞ at small distances, i.e. taking into ac-
count finite sizes of an extended source (heavy quark,
nucleus):

VðrÞ ¼
8><
>:
� �

r þ �vðrÞ for r > rN;

� �
rN
f

�
r
rN

�
for 0< r < rN

(16)

(here rN is the cutoff radius, and fð0Þ<1). The form of
the cutoff function fðr=rNÞ is determined by distribution of
(color) electrical charge over volume of a nucleus (quark)
(see [26,27]).

Under the requirement rN 
 j�j�1=2 which is satisfied
for small values of the Coulomb parameter � < jkj, level
energy Enrk depends weakly on a concrete form of VðrÞ at
small r. Therefore, we carry out the passage to the limit
(rN ! 0) of the pointlike Coulomb potential in (16). If
� > jkj then the dependence of Enrk on the form of cutoff

function fðxÞ becomes rather strong which is characteristic
for all problems with ‘‘falling to center’’.

Let us now consider behavior of EP Uðr; EÞ and wave
functions at large distances r in more detail. First note that
only the quadratic term ðS2 � V2Þ=2m is essential in
the asymptotic domain in formula (2) for � � 1=2 and
has the behavior ð1� 2�Þ�2r2=2m when r ! 1. It is
hence obvious that for any sign of the parameter �, the
EP Uðr; EÞ of model (12) under consideration (at suffi-
ciently large distances) is an attractive potential for
� > 1=2 and a repulsive potential for � < 1=2. Both types
of behavior (i.e., attraction for � > 1=2 and repulsion for
� < 1=2) are purely relativistic effects related to the fact
that the interaction of the fermion with the scalar external
field SðrÞ is added to the scalar quantity m, the particle

mass, while the vector potential VðrÞ is introduced into the
free Dirac equation minimally as the temporal component
of the Lorentz-vector A�.

It is clear from what was said above that for � < 1=2, the
EP Uðr; EÞ of model (12) is an unboundedly increasing (as
r increases) confining potential with only a discrete spec-
trum of energy levels; it is then essential that the quadratic
dependence of the EP Uðr; EÞ on r (and hence the confine-
ment property) appears because of the relativistic terms
ðS2 � V2Þ=2m. An example form of the EP Uðr; EÞ for
� < 1=2 is shown in Fig. 2. It is amazing that bound states
are present in a composite field (12) under consideration
for � < 1=2, even in the case where the initial long-range
potential vðrÞ ¼ �rþ V0 corresponds to attraction
(�< 0, V0 < 0).
But for � > 1=2 and an arbitrary value of � � 0, the

effective Hamiltonian H of the squared Dirac equation in
an external field (12) has complex eigenvalues of energy
because the EP Uðr; EÞ becomes negative in this case (at
sufficiently large distances) and less than the effective
particle energy �E ¼ ðE2 �m2Þ=2m, which corresponds
to attraction. Therefore, for � > 1=2, the EP Uðr; EÞ of
model (12) has the form of a well separated from the
external domain by a wide potential barrier (for j�j 
 1;
see Fig. 1). It is obvious that the leading contribution to
forming the barrier of the EP Uðr; EÞ comes from the
Lorentz-vector component Vl:r:ðrÞ of the long-range poten-
tial vðrÞ. Furthermore, as follows from (2) and (13), in the
presence of only a vector field (� ¼ 1), the EPUðr; EÞ does
not have the confining property even when the initial long-
range potential vðrÞ ¼ �rþ V0 corresponds either to at-
traction (�< 0, V0 < 0) or to repulsion (�> 0, V0 > 0).
This is the principal difference between a relativistic
potential model (12) under consideration and the ana-
logous nonrelativistic model in which the EP Un:r:

eff ðrÞ ¼
��=rþ �rþ V0 þ lðlþ 1Þ=2r2 in the radial Schrödinger
equation has the barrier for negative values of the parame-
ters � and V0, which results in quasistationary states with

b

FIG. 2. The EP Uðr; EÞ of Dirac system (1) with potential (12)
in the case where � < 1=2, �> 0, and ~E> ~m; a, b, c and d are
the quasimomentum roots in (22).
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complex energies appearing instead of discrete levels. On
the contrary, if �> 0, then the EP Un:r:

eff ðrÞ becomes an

unboundedly increasing confining potential with only the
discrete spectrum of energy levels. The absence of bound
states in the Dirac equation with a linearly increasing
vector potential VðrÞ was first noted in [28].

The quasiclassical formulas for the wave functions in the
domain r > r2 [16] imply the asymptotic form of the radial
functions FðrÞ and GðrÞ as r ! 1. It then happens that the
wave functions decrease exponentially at large distances
for 0 � � < 1=2 and oscillate if 1=2< � � 1. As an illus-
tration, we present this asymptotic behavior for the radial
function corresponding to the upper component of the
Dirac bispinor (r ! 1):

F�

8>>><
>>>:
exp

�
�

ffiffiffiffiffiffiffiffiffi
1�2�

p j�j
2 r2

�
for 0 � � < 1=2;

exp

�
i
ffiffiffiffiffiffiffiffiffi
2��1

p j�j
2 r2

�
for 1=2< � � 1:

(17)

It hence follows that the relativistic solutions for potential
model (12) (depending on the value of the mixing parame-
ter �) constitute stationary or quasistationary systems sat-
isfying different boundary conditions (17) for � < 1=2 or
� > 1=2.

We point out one more important particular case realized
at � ¼ 1=2. Substituting potentials (12) with the value
� ¼ 1=2 in expression (2), we see that the quadratic de-
pendence of the ‘‘tail’’ of Uðr; EÞ on r disappears and the
long-range components Vl:r:ðrÞ and Sl:r:ðrÞ of the first two
terms dominate EP (2) at large r, which results in a practi-
cally linear dependence of Uðr; EÞ on r (see (14)). We note
that we again obtain a linear confining potential, which has
only the discrete spectrum, at positive values of �, while
for negative (sufficiently small) values of �, the EPUðr; EÞ
of model (12) has a wide barrier. Because of this, level
decay by percolation through the potential barrier becomes
possible, i.e., the bound level becomes a quasistationary
exponentially decaying state with the complex energy E ¼
Er � i�=2. From the analyticity standpoint, the above
behavior of the EP Uðr; EÞ for �< 0 and �> 0 allows
for studying how the discrete spectrum continues from the
real axis to the complex plane.

Summarizing, we can say that varying one of the pa-
rameters of interaction model (12), the coefficient � of
mixing the scalar and vector long-range potentials Sl:r:ðrÞ
and Vl:r:ðrÞ, in the interval 0 � � � 1, we obtain qualita-
tively different forms of the EPUðr; EÞ: from the confining
potential with only the discrete spectrum for � < 1=2 to the
potential with the potential barrier and quasistationary
energy levels for � < 1=2 through the physically important
intermediate case � ¼ 1=2, where the asymptotic behavior
(as r ! 1) of the tail of the EP Uðr; EÞ switches from
quadratic (13) to linear (14) (see above).

For the squared Dirac equation in composite field (12),
the form of the EP becomes more complicated: expression

(2) for Uðr; EÞ acquires small corrections due to the
particle spin and the related spin-orbital interaction. It is
clear from the nature of the conclusions about the behavior
of the EP Uðr; EÞ for � < 1=2, � > 1=2, and � ¼ 1=2 that
the indicated changes of the form of Uðr; EÞ do not change
the results qualitatively.
Everything said above remains valid for the spherically

symmetric potentials SðrÞ and VðrÞ with the power-
like or logarithmic behavior (vðrÞ � �r	, 	> 0, or
vðrÞ � g logr) of the long-range part vðrÞ at infinity.
Having clarified the qualitative aspects, we now concen-

trate on a practical application of the above apparatus of
quasiclassical asymptotic behavior to heavy-light mesons.

IV. QUASICLASSICAL DESCRIPTION OF THE
ENERGY SPECTRUM OF HEAVY-LIGHT

QUARK-ANTIQUARK SYSTEMS

To use the potential approach to describe properties of
heavy-light mesons, we must construct the quark-antiquark
interaction potential. As is known from QCD, because
of the asymptotic freedom property, the Coulomb-type
potential of the one-gluon exchange gives the leading
contribution at small distances (r < 0:25 Fm).
As the distance increases, the long-range confining in-

teraction (the confinement), whose actual form has not yet
been established in the QCD framework, prevails. The
confining potential may have a complicated Lorentz struc-
ture. For example, it was shown in [29,30] that the inter-
action of the quark-antiquark pair with a fluctuating gluon
vacuum field at a finite correlation length results in a
linearly increasing potential. The spin-dependent potential
obtained with that approach has a structure that is charac-
teristic of scalar confinement. On the other hand, the
infrared asymptotic behavior of the gluon propagator of
the form Dðk2Þ � 1=ðk2Þ2 was obtained in [31] by analyz-
ing the system of the Schwinger-Dyson equations. Such an
asymptotic behavior in the static limit results in a linearly
growing vector confining potential. It is therefore most
plausible that the confining potential comprises a mixture
of vector and scalar parts. Moreover, lattice calculations
[32] based on the first principles of QCD support a linear
confinement proportional to r=4��0ð0Þ (where �0ð0Þ is the
slope of the hadronic Regge trajectory). From the above
considerations, we assume that the Q �q interaction is a
combination of the following potentials:
(a) the one-gluon exchange potential VCoulðrÞ ¼ ��=r,

where � ¼ 4=3�s, �s is the strong-coupling con-
stant

�sðQÞ ¼ 12�=½ð33� 2NfÞ logðQ2=�2Þ�; (18)

Nf is the number of quark flavors, and � ¼
360 MeV is the QCD parameter,

(b) the long-range linear scalar confining potential
SconfðrÞ ¼ ð1� �ÞvðrÞ, where vðrÞ is determined
by expression (12), and
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(c) the long-range linear vector potential VconfðrÞ ¼
�vðrÞ.

The total effective quark-antiquark interaction is then
described by a combination of the perturbative one-gluon
exchange potential VCoulðrÞ and the scalar and vector long-
range confining potentials SconfðrÞ and VconfðrÞ. Therefore,
the potentials S and V are given by (12), where
� ¼ 0:18 GeV2 is the string tension, V0 is the constant
of the additive shift of the bond energy, and the coefficient
� of mixing between the vector and scalar confining po-
tentials is the adjustable parameter, 0 � � < 1=2. We can
consider that the value of �s is approximately the same for
each family of heavy-light mesons and doubly heavy bary-
ons and changes in accordance with (18) only when we
pass from one family to another.

In the nonrelativistic limit (E � m and S, jVj 
 m) EP
becomes

Ueff � SðrÞ þ VðrÞ þ ðlþ 1=2Þ2
2mr2

(19)

where the sum

Un:r: ¼ SðrÞ þ VðrÞ ¼ ��

r
þ �rþ V0 (20)

plays the role of an interaction potential
Therefore, the description ofQ �q interaction by means of

the representation (12) for potentials VðrÞ and SðrÞ is
nothing else than a generalization of the interquark inter-
action potential (20) to the relativistic case of a QCD-
motivated Cornell model [17].

As is known, the potential (20) possesses solely a dis-
crete spectrum at �> 0 and is the spherical model of the
Stark effect in the hydrogen atom at �< 0. In the non-
relativistic problem it is indifferent what terms (VðrÞ or
SðrÞ) in (20) ensures the confinement of quarks. However,
the analysis of the Dirac system (1) with potentials (12)
shows (see Sec. III) that the radial wave functions FðrÞ and
GðrÞ exponentially decreasing (at r ! 1) and normalized
properly can be gained only when SconfðrÞ> VconfðrÞ at
0< r <1.

We cannot solve Dirac system (1) with potentials (12)
exactly; we hence use the quasiclassical approximation
method, which provides a high accuracy even for low-lying
quantum numbers in the case of scalar and vector fields of
the Coulomb and oscillatory types [16].

Choosing the mixing coefficient in the range 0 � � <
1=2 corresponds to the scalar confinement prevailing. In
this case, the EP Uðr; EÞ of our model has the form of a
standard oscillator well with a single minimum (at the
point rmin � �2= ~E�) and no maximums (see Fig. 2). The
equation p2 ¼ 2mð �E�Uðr; EÞÞ ¼ 0 determining the turn-
ing points then results in the complete fourth-degree alge-
braic equation r4 þ fr3 þ gr2 þ hrþ l ¼ 0 with the
coefficients

f ¼ 2½ ~mð1� �Þ þ ~E��
ð1� 2�Þ� ; g ¼ � ~E2 � ~m2 � 2���

ð1� 2�Þ�2
;

h ¼ � 2 ~E�

ð1� 2�Þ�2
; l ¼ �2

ð1� 2�Þ�2
(21)

where ~E ¼ E� �V0, ~m ¼ mþ ð1� �ÞV0 are the charac-
teristic parameters with the respective meanings of the
‘‘shifted’’ energy and the shifted mass. This equation
has four real roots, d < c < b < a, determined by the
equalities

a ¼ � f

4
þ 1

2
ð�þ �þÞ; b ¼ � f

4
þ 1

2
ð�� �þÞ;

c ¼ � f

4
� 1

2
ð�� ��Þ; d ¼ � f

4
� 1

2
ð�þ ��Þ:

(22)

Here, we use the notation

� ¼
�
f2

4
� 2g

3
þ u

3

�
2

Z

�
1=3 þ 1

3

�
Z

2

�
1=3
�
1=2

;

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� D

4�

s
;

Z ¼ vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4u3 þ v2

p
;

F ¼ f2

2
� 4g

3
� u

3

�
2

Z

�
1=3 � 1

3

�
Z

2

�
1=3

;

D ¼ �f3 þ 4fg� 8h;

u ¼ g2 � 3fhþ 12l;

v ¼ 2g3 � 9fghþ 27h2 þ 27f2l� 72gl:

For the potentials under consideration, the quasiclassical
momentum is determined by equalities (4) and (12). Using
formulas (22), we represent it in the form convenient for
what follows (�> 0 and �< 0)

pðrÞ ¼ j�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p RðrÞ
r

¼ j�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� rÞðr� bÞðr� cÞðr� dÞp
r

:

(23)

We integrate in quantization condition (9) over the classi-
cally allowed domain between the two positive turning
points r0 ¼ b < r1 ¼ a, while the other two turning points
(d < c < 0) are in the nonphysical domain r < 0. Using
formula (23), we transform quantization integrals (9) into
the sum of the integrals
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J1 ¼
Z a

b
pðrÞdr

¼ �j�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p Z a

b

ðr3 þ fr2 þ grþ hþ lr�1Þ
R

dr;

J2 ¼
Z a

b

kw

pðrÞr dr

¼ �k

2j�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p
�Z a

b

dr

ðr� �þÞRþ
Z a

b

dr

ðr� ��ÞR
�
;

(24)

where we introduce the notation

�� ¼ � ~Eþ ~m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~Eþ ~mÞ2 � 4��ð1� 2�Þ

p
2�ð1� 2�Þ :

Writing condition (9) in terms of J1 and J2 is advanta-
geous compared with the initial representation because the
integrals contained in J1 and J2 can be expressed in terms
of complete elliptic integrals.

The particle energy spectrum is determined by quanti-
zation condition (9), which, after quantization integrals
(24) are evaluated (see the Appendix), becomes the tran-
scendental equation

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� cÞðb� dÞp

�j�jðb� cÞ2
< ½N1Fð�Þ þ N2Eð�Þ

þ N3�ð
; �Þ þ N4�

�
c

b

; �

��
þ k

2ð1� 2�Þj�j
� ½ðb� cÞðN5�ð
þ; �Þ þ N6�ð
�; �ÞÞ þ N7Fð�Þ�

�

¼
�
nr þ 1

2

�
�; (25)

where Fð�Þ, Eð�Þ, and �ð
; �Þ are the complete elliptic
integrals of the respective first, second, and third kind (see
formulas (A1)). The mathematical details of calculating
integrals of type (24) can be found in [33,34], and the
expressions for 
, �, 
�, <, and Ni (i ¼ 1; . . . ; 7) are
collected in the Appendix because they are rather
cumbersome.

Finding an ‘‘exact’’ solution of Eq. (25) in the general
case is, of course, impossible, but the situation is simplified
with the increase in the energy E or in the approximation of
‘‘weak’’ long-range field (as compared with the Coulomb
field). The first case corresponds to the fact that for not too
large (i.e., for ‘‘intermediate’’) values of the parameters
and (namely, for � & 0:2 GeV2 and 0:3< �< 0:8), the
condition ~E2 � �� is well satisfied for all possible values
Enrk of the heavy-light meson energy levels, and the second

case is realized when the condition � 
 � ~m2 is satisfied.
In the framework of our consideration (i.e., for the physics
of heavy-light mesons), only the first case is interesting,

while the second case is most often encountered in ap-
proximate calculations of those properties of low-lying
hadronic states that do not depend directly on the presence
or absence of confinement.
A simple and often effective method for deriving asymp-

totic expansions of integrals of form (24) is to expand a
quasimomentum pðrÞ in a small parameter, the interaction,
and integrate the obtained series term by term. We then
indicate two special features of this procedure for calculat-
ing the integrals J1 and J2 containing the small parameter.
First, it is obvious from analyzing expressions (22) that in
addition to the level E ¼ m, we must introduce one more
characteristic energy level ~E ¼ ~m, which divides the do-
mains of applicability of the asymptotic approximations
for the quantization integrals J1 and J2 obtained below.
Using the relations ~E> ~m and ~E< ~m, we can show that in
these two domains of the spectrum, the motion is quasi-
classical if the condition��= ~E2 
 1 is satisfied for ~E< ~m
and the condition ��= ~E2 
 1 is satisfied for ~E> ~m. This
gives the possibility of obtaining expressions for J1 and J2
in elementary functions using the formal expansion of the
quasimomentum in a power series in a small dimensionless
parameter (which is ��= ~E2 
 1 or �=� ~m2 
 1). Second,
the further analysis depends essentially on the mutual
positions of the turning points a, b, c, and d. Then, depend-
ing on the relative values of ~E and the level ~m, we consider
several typical situations.
Case A: Let �> 0 and the conditions � 
 � ~m2 and

~E< ~m be satisfied. This situation describes deep levels
whose energy is close to the bottom of the scalar-vector
well Uðr; EÞ. Estimating expressions (22) for the turning
points in the approximation �=� ~m2 
 1 and preserving
only the two first terms in the small parameter expansion,
we can easily obtain

a � ~E�þ �

�2

�
1� ~E�þ �

�4

�
�1 þ ~m��2

�

�
�

�
;

b � ~E�� �

�2

�
1� ~E�� �

�4

�
�1 � ~m��2

�

�
�

�
;

c � � ~m� ~E

�
� �

~m� ~E
;

d � � ~mþ ~E

�ð1� 2�Þ þ
�

~mþ ~E
:

(26)

Hereafter, we use the notation

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~EkÞ2 � ð ~m�Þ2

q
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 � ~E2

p
;

�1 ¼ ð1� �Þ ~mþ � ~E; �2 ¼ � ~mþ ð1� �Þ ~E:
(27)

It follows from asymptotic expressions (26) that the
positive turning points a and b depend weakly on � and
are determined only by the Coulomb field. The other two
(negative) turning points c and d depend mainly on the
linear part vðrÞ of interaction (12), but their values are
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‘‘corrected’’ by the quantities��=ð ~m� ~EÞ, which are due
to the Coulomb long-range interaction. It is also obvious
from (26) that for small positive values of �, the turning
points c and d are sufficiently far from the two points a and
b and tend to �1 in the limit as � ! 0.

The properties of deeply lying levels for massive quarks
( ~m2� � �) are mainly determined by the Coulomb poten-
tial. Treating the long-range potential vðrÞ as a small
perturbation, we can expand the quasiclassical momentum
pðrÞ in the domain of the potential well b < r < a in a
series in increasing powers of r=jcj 
 1 and r=jdj 
 1.
Calculating the table integrals in (9), whose sum gives the
value of the quantization integrals J1 and J2 up to terms of
the orderOðð�=� ~m2Þ2Þ, we then obtain the equation, which
can be easily solved for the level energies,

Enrk ¼ ~E0 þ �V0 þ �

2� ~m2

��
�2 ~m2

�2
0

� k2
�
�10

þ
�
2�2 ~m ~E0

�2
0

� k

�
�20

�
þO

��
�

� ~m2

�
2
�
; (28)

where ~E0 ¼ ~m½1þ �2=ðn0r þ �Þ2��1=2 is the Dirac
level of the energy of the fermion (with the effective
mass ~m ¼ mþ ð1� �ÞV0) in the Coulomb field,
n0r ¼ nr þ ð1þ sgnkÞ=2, and the quantities �0, �10, and
�20 are obtained from �, �1, and �2 by substituting ~E for
~E0. The previously accepted condition �> 0 is unneces-
sary here because this result remains applicable also in the
case of negative values of the parameter �.

Formula (28) can also be found using the standard
perturbation theory, but this involves rather cumbersome
calculations. Using quasiclassical formulas (9) and (24)
dramatically simplifies calculations. As is shown by com-
paring with the result obtained by numerically integrating
Eq. (1), formula (28) ensures a good accuracy for calculat-
ing the spectra of bound systems of heavy quarks (for
example, Q �Q mesons; see [35]).

Calculations, which we omit here, demonstrate that in
the case � < 1=2 and for (sufficiently small) negative
values of �, the EP Uðr; EÞ has the shape of a double
well. If we neglect the barrier penetrability in the region
c < r < b between the two wells, then the quasiclassical
quantization conditions in this well can be written merely
as the conditions on the phase integrals over the domain of
the quasiclassical motion in each of the wells. Quantizing
in the left well by formula (9) then results in formula (28)
above.

Case B: In the domain ~E> ~m and �> 0, which is of
actual importance for the physics of heavy-light mesons, a
small dimensionless parameter��= ~E2 appears in the spec-
tral problem. Imposing the condition ��= ~E2 
 1, we can
easily obtain the approximate expressions for the turning
points from exact formulas (22):

a � ~E� ~m

�
þ �

~E� ~m
; b � � ~E�þ �

~E2 � ~m2
;

c � � ~E�� �
~E2 � ~m2

; d � � ~Eþ ~m

�ð1� 2�Þ þ
�

~Eþ ~m
:

(29)

As can be seen from these formulas, the turning points a
and b are rather distant from each other, and the above
expansion for the quasimomentum pðrÞ is not applicable in
the whole integration domain. Nevertheless, using the
condition ��= ~E2 
 1, we can use the approximation
method to evaluate the quantization integrals based on
the idea of splitting the whole integration domain ½b; a�
into the intervals ½b; ~r� and ½~r; a� in each of which only the
dominating interaction type is taken into account exactly
while the other integration types are treated as
perturbations.
We now find a point ~r that divides the integration domain

b � r � a into the domain b � r � ~r where the Coulomb
potential prevails and the domain ~r � r � a where the
long-range potential vðrÞ prevails. The method for choos-
ing such a point is not unique. The most natural seems to
find a point ~r where the long-range potential vðrÞ is equal
to the Coulomb potential. From this requirement, we have

~r � ð ~E�=�1�Þ1=2.
We can calculate the quantization integrals (for

��= ~E2 
 1) as follows. We calculate integrals (24) by
expanding the quasimomentum pðrÞ in a power series in
the parameters r=a 
 1 and r=jdj 
 1 in the domain
b � r � ~r and in the small parameters b=r 
 1 and
jcj=r 
 1 in the domain ~r � r � a. Splitting the integra-

tion interval at the point ~r � ð ~E�=�1�Þ1=2 therefore gives
the representation for J1,

J1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p ðj1 þ j2Þ; (30)

where the integrals j1 and j2 can be written as follows up to
terms of the first order in the corresponding small parame-
ters r=a, r=jdj and b=r, jcj=r in the expansions for the
quasimomentum pðrÞ:

j1 ¼
ffiffiffiffiffiffiffiffiffiffi�ad

p Z ~r

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� bÞðr� cÞp
r

�
1� aþ d

2ad
rþ . . .

�
dr;

j2 ¼
Z a

~r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� rÞðr� dÞ

p �
1� bþ c

2r
þ . . .

�
dr: (31)

Calculating the table integrals in (31) and collecting terms
with like dependence on �, we obtain
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J1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�adð1� 2�Þ

p �
bþ c

2
log

�ða� dÞðc� bÞ
16ad

�

� ffiffiffiffiffiffiffiffiffiffi�bc
p

arccos

�
bþ c

b� c

�
þ aþ d

4
þ 1

4
ffiffiffiffiffiffiffiffiffiffi�ad

p

�
�ða� dÞ2

2
� ðaþ dÞðbþ cÞ

�
arccos

�
dþ a

d� a

��

þO

�
��
~E2

�
: (32)

We note that when the asymptotic expressions for j1 and j2
are added, the result does not contain the parameter ~r.

To expand the integral J2 in the small parameter ��= ~E2,
we represent it as a sum of two terms,

J2 ¼ � k

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p ð~j1 þ ~j2Þ; (33)

where the integrals ~j1 and ~j2 can be written in the forms

~j1 ’ 1ffiffiffiffiffiffiffiffiffiffi�ad
p

Z ~r

b

dr

ðrþ ~pÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� bÞðr� cÞp ;

~j2 ’
Z a

~r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� rÞðr� dÞp
�
1

r2
þ 1

rðrþ ~qÞ
�
dr;

(34)

where ~p ¼ �=ð ~Eþ ~mÞ, ~q ¼ ð ~Eþ ~mÞ=�ð1� 2�Þ. An ele-
mentary calculation of the integrals in (34) results in

J2 ¼ � k

2j�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p
arccos

�
bþcþ 2�

~Eþ ~m

b�c

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
adðbþ �

~Eþ ~m
Þðcþ �

~Eþ ~m
Þ

q

þO

�
��
~E2

�
: (35)

Adding expansions (32) and (35) and combining terms of
like orders in �, we obtain the transcendental equation
determining the energy spectrum from (9),

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2 � ~m2

p

2�ð2�� 1Þ � �

�
�2
2

2�ð2�� 1Þ þ ��

�

� ~E�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2 � ~m2

p log

�
��2�

4eð ~E2 � ~m2Þ2
�

� � arccos

�� ~E�

�

�
� sgnk

2
arccos

�� ~m�

�

�
¼
�
nr þ 1

2

�
�:

(36)

where

� ¼ ð1� 2�Þ�1=2 arccosð�1=�2Þ: (37)

Although Eq. (36) is much simpler than exact quasi-
classical Eq. (25) for the energy levels, solving it still
requires numerical calculations. Below, we consider sev-
eral limiting cases where Eq. (36) is simplified and can be
investigated analytically.
For the parameter values � & 0:2 GeV2 and

0:3< �< 0:8, the condition ~E � ~m is well satisfied for
all possible values of the level energies Enrk of heavy-light

mesons. If we expand the left-hand side of (36) in
~m= ~E 
 1 up to third-degree terms, we obtain the tran-
scendental equation for Enrk:

½ð1� �ÞA� �� ~E2 þ 2 ~m ~Eð1� �Þð�A� 1Þ

� 2�ð1� 2�Þ
�
�N þ � log

�jkjð1� �Þ
4 ~E2

�
� � ~m2

þ �½� ~m2 � 2��ð1� �Þ�A ¼ 0; (38)

where

TABLE I. The results of calculating the level energies EWKB
nrk

(based on transcendental Eq. (25)) and EWKBðasÞ
nrk

(based on
quasiclassical expression (40)) and also the exact values of Enrk calculated at the parameter values �s ¼ 0:3, � ¼ 0:3, V0 ¼
�0:45 GeV and mu;d ¼ 0:33 GeV, ms ¼ 0:5 GeV (the energies are measured in GeV).

b �u; b �d b �s
Lj ðnr; kÞ Enrk EWKB

nrk
EWKBðasÞ
nrk

Enrk EWKB
nrk

EWKBðasÞ
nrk

S1=2 (0;�1) 0.4327 0.4408 0.4729 0.5248 0.5322 0.5623

(1;�1) 0.8796 0.8838 0.8943 0.9750 0.9791 0.9912

(2;�1) 1.1978 1.2009 1.2066 1.2946 1.2976 1.3049

P3=2 (0;�2) 0.7355 0.7373 0.7504 0.8376 0.8392 0.8460

(1;�2) 1.0880 1.0892 1.0947 1.579 1.590 1.1927

(2;�2) 1.3658 1.3667 1.3699 1.4650 1.4659 1.4685

P1=2 (0, 1) 0.7249 0.7293 0.7030 0.8235 0.8278 0.7985

(1, 1) 1.0701 1.0733 1.0594 1.1696 1.1728 1.1572

(2, 1) 1.3470 1.3496 1.3405 1.4466 1.4492 1.4390

D3=2 (0, 2) 0.9661 0.9671 0.9343 1.0655 1.0665 1.0315

(1, 2) 1.2588 1.2596 1.2385 1.3583 1.3591 1.3369

(2, 2) 1.5058 1.5066 1.4914 1.6052 1.6059 1.5901
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A ¼ arccosð �
1��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�
p ;

N ¼ nr þ 1

2
þ sgnk

4
þ 1

�

�
� arccos

�
� �

jkj
�
� �

�
:

(39)

Solving this equation by the method of consecutive iter-
ations, we obtain the desired expression for the eigenvalues
Enrk in the first approximation (up to terms of the order

Oð��= ~E2Þ):

EWKBðasÞ
nrk

¼ �1

�
Bþ

�
B2 þ 

�
2�ð1� 2�Þ

�
�
� log

�jkjð1� �Þ
4 ~Eð0Þ2 þ 3�þ ��Aþ �N

�

þ � ~m2ð1� �AÞ
��

1=2
�
þ �V0; (40)

where

 ¼ ð1� �Þ2A� �� 2��ð1� 2�Þ
~Eð0Þ2 ;

B ¼ ð1� �Þð1� �AÞ ~m� 4��ð1� 2�Þ
~Eð0Þ ;

and ~Eð0Þ ¼ Eð0Þ � �V0. Here, E
ð0Þ is the zeroth approxima-

tion for the energy on which the quantity Enrk depends

rather weakly, and we can set Eð0Þ � Enrkð�Þj�¼0 in most

cases.
We have obtained formula (40) for the energy levels

Enrk, which depend nonanalytically on the string tension �

and which therefore cannot be obtained in the perturbation
theory framework. We mention that for a purely scalar
confinement (� ¼ 0), formula (40) is simplified to

EWKBðasÞ
nrk

¼ 2

�

2
64mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ��

�
� log

�jkj
ð2Eð0ÞÞ2 þ �N

�s 3
75:
(41)

The results of calculating the energy levels EWKB
nrk

and

EWKBðasÞ
nrk

based on transcendental Eq. (25) and asymptotic

formula (40) together with the exact values of Enrk ob-

tained by solving the Dirac equation numerically are pre-
sented in Table I for nr ¼ 0, 1, 2 and k ¼ �1,�2. In these
calculations, we set the values of �s, �, V0,mu;d, andms to

those used in QCD to describe the states of B (b �u or b �d)
and Bsðb�sÞ mesons. As can be seen in Table I, the quasi-

classical values EWKB
nrk

and EWKBðasÞ
nrk

ensure the respective

1% and 2% accuracies (except the energy of states with the
radial quantum number nr ¼ 0, for which the accuracy of
both formulas is about 8%). The accuracy of determining
Enrk from quasiclassical formula (40) is therefore such that

the first-order approximation usually suffices for practical
purposes.
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FIG. 3. (a–c) The dependence of the level energies
"nrk ¼ Enrk=

ffiffiffiffi
�

p
on �=jkj. Solid lines correspond to the lowest

levels (nr ¼ 0) with the given value of k, and dashed lines
correspond to the excited states (nr ¼ 1). The parameter values
are (a) m ¼ 0 and � ¼ 0, (b) m ¼ 0:33 GeV and � ¼ 0,
(c) m ¼ 0:33 GeV, � ¼ 0:18 Gev2, and � ¼ 0:3. Here,
m ¼ m=

ffiffiffiffi
�

p
. (d) The dependence of the level energy "0;�1 on

�=jkj for different values of the parameter � at m ¼ 0:33 GeV.
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In order to find the dependence of the energy eigen-
values Enrk on the Coulomb coupling constant �, we

solved transcendental Eq. (25) numerically with the fol-
lowing choice of parameters determining the form of
initial interaction potentials (12): �s ¼ 0:3, � ¼ 0:3,
V0 ¼ �0:45 GeV, and mu;d ¼ 0:33 GeV. The graphs of

dependences of energy levels on the ratio �=jkj are shown
in Fig. 3, where solid lines indicate the dependence of
several lowest levels (nr ¼ 0) with the given value of k
and dashed lines correspond to the excited states (nr ¼ 1).
As could be expected, as the Coulomb parameter � in-
creases, level energy decreases monotonically and devel-
ops a square-root singularity as � ! jkj. This is a
manifestation of the ‘‘falling to center’’ phenomenon for
the Dirac equation in composite field (12) with the vector
potential VðrÞ, which has the Coulomb singularity at zero,
VðrÞ � VCoulðrÞ ¼ ��=r as r ! 0. As is known (see
Sec. III), every cut off of the potential VðrÞ at small
distances removes the square-root singularity in the ener-
gies Enrk, and the curve of the level of Enrkð�Þ can then be

smoothly continued into the domain E< 0.
It can be seen from Fig. 3 that for the states with the

same nr, the energy levels with k > 0 lie much higher than
levels with k < 0. This is the influence of the centrifugal
barrier (for instance, this barrier is absent for states with
k ¼ �1, while it suppresses the probability of the presence
of the quark at large distances for states with k ¼ þ1).
These conclusions are completely confirmed by numeri-
cally solving the Dirac system (1) with potentials (12); the
results of this were presented in [26].

We also note that the energies of the lowest levels
(nr ¼ 0) with k < 0 reach the zero level (E ¼ 0) at the
maximum possible value of the Coulomb coupling con-
stant � ¼ �k [see Figs. 3(a)–3(c)]. All other states also
have the singularity of the square-root type at � ¼ jkj, but
their energies remain positive.

The above study of the spectrum of a Dirac equation in
composite field (12) using the WKB approximation is of
practical interest because calculating integrals in quantiza-
tion condition (9) is much easier in many cases than finding
exact values of energy levels by numerically solving the
system of radial Dirac equations (1).

V. THE MASS SPECTRUM OF HEAVY-LIGHT
QUARK SYSTEMS

The qualitative picture of forming bound states in a Q �q
system is determined by the presence of the scale parame-
ter �QCD of the confinement of the light antiquark �q:
�QCD 
 mQ, where mQ is the mass of the heavy quark

Q. Under this condition, the heavy quarkQ affects the light
quark �q as a local static source of the color (gluon) QCD
field. The presence of a small parameter �QCD=mQ 
 1
allowed for developing powerful means of studying QCD
in interactions between heavy and light quarks. For ex-
ample, a consistent scheme of the effective theory of heavy

quarks for hadronic systems with one heavy quark
ðQ �q;QqqÞ was developed (see, e.g., [6] and the references
therein). In the leading term of this theory (i.e., in the static
limit as mQ ! 1), first, the spin of the heavy quark Q
splits from the interaction with weakly virtual gluons,
second, the effective Hamiltonian exactly corresponds to
the Dirac Hamiltonian of one-particle problem (1), and the
energy of the spin-orbital interaction of the light antiquark
�q becomes the leading term of spin interactions. This is
manifested in the approximate Isgur-Wise spin symmetry
[36] for the heavy quark.
In the leading order in 1=mQ, the mass spectrum of

meson states with one heavy quark is given by the expres-
sion [6,37–39]

Mtheor
nrk

ðQ �qÞ ¼ Enrk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
nrk

�m2
q þm2

Q

q
; (42)

wheremQ andmq are the masses of the heavy quarkQ and

the light quark �q constituting the Q �q meson. Calculating
the mass spectrum of Q �q mesons therefore reduces to
consistently calculating the energy eigenvalues of Dirac
Eq. (1) in composite field (12) whose source here is the
heavy quark Q.
The symmetry properties of Dirac Eq. (1) drastically

simplify the problem of classifying states of heavy-light
mesons. Because the Hamiltonian of Eq. (1) does not
contain terms describing the interaction of the spin of the

Q quark with the orbital and spin moments ~l and ~sq of the

light antiquark, both the spin moment ~SQ of the heavy

quark Q and the total moment ~j ¼ ~sq þ ~l of the light

antiquark �q are two separate integrals of motion. This
allows classifying the states by the quantum numbers
j ¼ 1

2 ;
3
2 ; . . . of the operator of the total moment of the light

antiquark �q, while the states of the total moment of the

composite Q �q system ~J ¼ ~jþ ~SQ are degenerate with

respect to the orientation of the spin ~SQ of the heavy quark

Q. Two almost degenerate states of the composite Q �q
system with J ¼ j� 1=2 in the spin symmetry approxi-
mation [36] therefore correspond to each state of the Dirac
equation with the given j and with the spatial parity
P ¼ ð�1Þlþ1. Masses of the jP states of the Q �q meson
are also degenerate with respect to J, and these states
therefore have identical wave functions.
The values l ¼ 0 (S states in the quark-antiquark model)

and j ¼ 1=2� correspond to the ground state of the Q �q
meson. This doublet consists of two states JP ¼ ð0�; 1�Þ.
In the case l ¼ 1 (the P state in the quark model), we have
two states with j ¼ 1=2þ and j ¼ 3=2þ and two corre-
sponding doublets JP ¼ ð0þ; 1þÞ and JP ¼ ð1þ; 2þÞ.
As usual, we introduce a concise notation for the fam-

ilies of D and Ds mesons: (D
0, D

0
1) are the components of

the charmed doublet JP ¼ ð0þ; 1þÞ with j ¼ 1=2þ for
nonstrange states (the c �u system), (D

s0, D
0
s1) are the com-

ponents of the same doublet for strange states (the c�s
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system), and (D1, D

2) and (Ds1, D


s2) are the components

of the doublet JP ¼ ð1þ; 2þÞ with j ¼ 3=2þ for the re-
spective nonstrange and strange states. We also use the
analogous notation system for B and Bs families.

Above, we did not take the level hyperfine structure
(HFS) into account, and the proposed potential model
can predict only the position of the center of masses of
the HFS multiplet comprising sublevels with different mo-

ments ~J ¼ ~jþ ~SQ. In actual Q �q systems, the degeneracy

of doublet states corresponding to different moments
J ¼ j� 1=2 at the given j is broken primarily because

of the ~sq ~SQ interaction. Therefore, to be able to compare

our theoretical predictions with experimental data, we
present the observation values for the centers of masses
of the HFS multiplets in Tables II, III, IV, and V; these
centers of masses are calculated by the known formula

Mexp ¼
P

Jðð2J þ 1ÞMJÞP
Jð2J þ 1Þ ; (43)

where MJ is the experimental value of the mass of state
with the given J.

Based on these observations, we have tried to describe
the spectra of masses of low-lying states of the heavy-light
Bðb �uorb �dÞ, Bsðb�sÞ, Dðc �u or c �dÞ, and Dsðc�sÞ mesons
considering � and � to be universal quantities and setting
the values of the parameters �s and V0 constant in every
family of heavy-light mesons allowing them to vary
slightly only when passing from one family to another.
All the parameters �, �, �s, and V0 of potential model (12)
were determined by fitting the known data for the mass
spectra of pseudoscalarD and Bmesons. The found values
of the parameters are consequently used below in other
applications in the framework of our approach, for ex-
ample, when describing the spectra of the strange Ds and
Bs mesons.

We use only one a priori restriction: the value of the
coefficient � of mixing between the vector and scalar long-
range potentials VconfðrÞ and SconfðrÞmust lie in the interval
0 � � < 1=2 for the EPUðr; EÞ of interactionmodel (12) to
be a confining-type potential. The value of the parameter �
was obtained by fitting experimental data [40,41] on the fine
structure of P-wave levels in D and B mesons. It was

established that the fine structure of the P-wave states in
the heavy-light (D, Ds, B, and Bs) mesons is primarily
sensitive to the choice of the mixing coefficient � and to
the value of the strong-coupling constant�s. Comparing the
results of calculations based on formulas (25) and (42) with
the experimental data [40,41], we find that the best agree-
ment is reached at � ¼ 0:3 and for the parameter choices

� ¼ 0:18 GeV2;

�sðc �u or c �dÞ ¼ 0:386;

�sðb �u orb �dÞ ¼ 0:3;

V0ðc �u or c �dÞ ¼ �375 MeV;

V0ðb �u orb �dÞ ¼ �450 MeV:

For the masses of u, d, s, c, and b quarks, we used their
constituent masses mu;d ¼ 330 MeV, ms ¼ 500 MeV,
mc ¼ 1550 MeV, andmb ¼ 4880 MeV. When calculating
the mass spectrum, we neglected electromagnetic interac-
tion and the difference of the masses of u and d quarks,
therefore considering the particlesDþ,D�,D0, and �D0, for
example, to be the same state of the Q �q system, JP ¼ 0�.
Correspondingly, we do not distinguish between the inter-
action parameters �, �, �s, and V0 for these particles. The
mass spectra of D and Ds mesons calculated in this ap-
proximation and bymeans of numerical solutions of system
(1) are presented in Tables II and III.
The agreement between the numerical result (the result of

WKB approximation) and the experiment is less than 1%
(1.5%), except for the masses of states P3=2 and P1=2 of the

c�s system for which the mismatch depends on the interpre-
tation of the Ds1ð2536Þ� meson and is 3.1% (3.5%) if we
consider it to be the vector state JP ¼ 1þ belonging to the
doublet j ¼ 3=2þ, or 0.4% (0.3%) if we consider it to be the
state JP ¼ 1þ of the doublet j ¼ 1=2þ. There is a
rather broad spectrum of opinions concerning the identi-
fication of the states P3=2 and P1=2 of the meson with the

quark content c �s (see, e.g., [42–52]). For example, the state
JP ¼ 2þ of a relatively narrow doublet j ¼ 3=2þ is related
to Ds2ð2573Þ, while the vector state JP ¼ 1þ belonging to
the doublet j ¼ 3=2þ is generally related to the isotopic
singletDs1ð2536Þ� mesonwith themass 2535:35� 0:34�
0:5 MeV (values (I) for Mexp in Table III) [42–50]. On the

TABLE II. The mass spectrum and the mean radii of D mesons obtained in the WKB
approximation and numerically for potentials (12) (masses are expressed in MeV and the
mean radii are expressed in Fm).

Lj ðnr; kÞ Mnum MWKB Mexp hrinum hri (45)
S1=2 (0, �1) 1989.1 2001.5 1971.1 0.472 0.402

(1, �1) 2624.5 2632.3 <2637 0.684 0.664

P3=2 (0, �2) 2440.1 2443.2 2447.3 0.678 0.632

(1, �2) 2979.7 2981.9 � � � 0.856 0.833

P1=2 (0, 1) 2395.2 2403.7 2407.8 0.513 0.568

(1, 1) 2926.8 2933.4 � � � 0.770 0.788
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other hand, the state Ds1ð2536Þ� was associated with the
state JP ¼ 1þ of the wide doublet j ¼ 1=2þ in [51,52]
(values (II) in Table III). Therefore, a reliable experimental
identification of this state is still lacking. We note that our
calculations agree better with the second possibility.

For b �u and b�s systems, we obtained a good agreement of
our results with the experimental data for the ground state
with j ¼ 1=2� and for the P state with j ¼ 3=2þ (see
Tables IV and V). For states in the doublet j ¼ 1=2þ, we
have only theoretical predictions of other authors. For the
b �u system, our results agree with the data obtained in [53],
and a remarkable agreement with the results in [42,43,54]
was obtained for the b�s system.

In the leading approximation (in 1=mQ), the wave func-

tions and excitation energies of the strange quark in the
field of a heavy c or b quark reproduce the corresponding
characteristics of heavy-light mesons with light u and d
quarks with high accuracy. Therefore, up to an additive
upward shift of masses on the value of the current mass of
the strange quark

ms � M½Ds� �M½D� � M½Bs� �M½B� � 0:1 GeV

the level systems for Ds and Bs mesons coincides with the
respective level systems for D and B mesons if we do not
take the level splitting depending on the spin of the heavy
quark into account. Further, the spin-orbital splitting of
lower states of Ds and Bs mesons for the levels P3=2 and

P1=2 is 35% larger than that of the D and B mesons.

Not only can the spectrum of bound systems be calcu-
lated in the framework of the quasiclassical approach under
consideration, but all other observable characteristics of
heavy-light mesons can be also. For example, an important
meson characteristic is the mean radius hri, which deter-
mines the radius of the light quark orbit in a definite state
jnrki in the case of hydrogenlike quark systems. We first
obtain general formulas expressing the means of type hrmi
(i.e., the moments of the probability distribution density) in
terms of quasiclassical asymptotic expressions for solu-
tions of the Dirac equation. Using the standard procedure,
we obtain the known quasiclassical formula

hrmi ¼
Z 1

0
�þrm�dr ¼

Z 1

0
ðjFðrÞj2 þ jGðrÞj2Þrmdr

� 2

T

Z r1

r0

E� VðrÞ
pðrÞ rmdr; (44)

where the period T of radial oscillations of the classical
relativistic particle is given by the formula T ¼ 2

R
r1
r0
ðE�

VðrÞÞ=pðrÞdr [16].
All the integrals in (44) can be expressed in terms of

complete elliptic integrals (A1). In particular, the mean
radius of the bound state is

hri ¼ 4½n1Fð�Þ þ n2Eð�Þ þ n3�ð
; �Þ�
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� cÞðb� dÞð1� 2�Þp j�j
; (45)

TABLE III. The mass spectrum and the mean radii of Ds mesons obtained in the WKB
approximation and numerically for potentials (12) (masses are expressed in MeV and the mean
radii are expressed in Fm).

Lj ðnr; kÞ Mnum MWKB Mexp hrinum hri (45)
S1=2 (0, �1) 2057.2 2069.0 2072 0.416 0.359

(1, �1) 2729.4 2737.4 � � � 0.646 0.628

P3=2 (0, �2) 2550.1 2552.1 2559.2 (I) 2530.7 (II) 0.625 0.588

(1, �2) 3105.2 3107.2 � � � � � � 0.814 0.795

P1=2 (0, 1) 2499.7 2508.5 2423.8 (I) 2480.9 (II) 0.504 0.536

(1, 1) 3051.7 3058.5 � � � � � � 0.739 0.756

TABLE IV. The mass spectrum and the mean radii of B mesons obtained in the WKB
approximation and numerically for potentials (12) (masses are expressed in MeV and the
mean radii are expressed in Fm).

Lj ðnr; kÞ Mnum MWKB Mexp hrinum hri (45)
S1=2 (0, �1) 5320.7 5329.5 5313.5 0.516 0.448

(1, �1) 5827.3 5832.2 � � � 0.728 0.708

P3=2 (0, �2) 5659.6 5661.6 <5698 0.711 0.666

(1, �2) 6076.9 6078.4 � � � - 0.888 0.865

P1=2 (0, 1) 5647.4 5652.4 5736[42] 0.577 0.612

5624 [53]

(1, 1) 6055.1 6059.0 � � � 0.812 0.829
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T ¼ 4½n4Fð�Þ þ n5Eð�Þ þ n6�ð
; �Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� cÞðb� dÞð1� 2�Þp j�j
; (46)

where the quantities ni (i ¼ 1; . . . ; 6) are defined in the
Appendix. The calculation results for hri, according to
formulas (45) and (46) for different states of D, Ds, B,
and Bs mesons are presented in the last columns in
Tables II, III, IV, and V. We see that the quasiclassical
approximation well describes the numerical simulation
results hrinum and ensures an accuracy up to 3% (except
for in the ground state). These calculations demonstrate
that the mean radius of theQ �q system increases monotoni-
cally as the energy increases.

In addition to the exact quasiclassical formulas (45) and
(46), it is desirable to find approximate analytic expres-
sions for the quantities hri and T. We already addressed an
analogous problem in the preceding section when con-
structing asymptotic approximations for the quantization
integrals.

If the condition �=� ~m2 
 1 is satisfied in the spectral
domain ~E< ~m, then the only essential contribution to the
integral determining the mean radius hri comes from the
domain of the integration variable r where the long-range
potential vðrÞ can be considered a small perturbation.
Neglecting this potential, we obtain the expressions for
the mean radius and the period in the zeroth approxi-
mation:

hri � � ~E0

T�3
0

�
3�2 ~m2

�2
0

� k2
�
; T � 2�� ~m2

�3
0

: (47)

A more accurate expression (than (47)) for the mean radius
can be obtained if we use the exact solutions of Dirac
system (1) in the Coulomb field in the integralR1
0 ðjFðrÞj2 þ jGðrÞj2Þrdr � hri [20]. The resulting expres-

sion for the mean radius of the hydrogenlike system be-
comes

hriCoul ¼
~E0

2� ~m2

�
3�2 ~m2

�2
0

� k2 � k ~m
~E0

�
(48)

and it coincides with (47) at large values of the radial
quantum number nr.
This simple approximation ensures amazingly good

accuracy for deeply lying levels (but, of course, not at
E ¼ 0). For example, for the first three terms 1S1=2,
1P1=2, and 2S1=2 of the b quark (mb ¼ 4:88 GeV), we
obtain the respective values hri ¼ 0:153 Fm, 0.501 Fm,
and 0.609 Fm from (48), while the exact calculation
(the numerical solution of the Dirac equation with poten-
tials (12) at � ¼ 0:4, � ¼ 0:3, V0 ¼ �0:45 GeV,
and � ¼ 0:18 GeV2) yields the respective values
hri ¼ 0:153 Fm, 0.493 Fm, and 0.600 Fm. Our approxima-
tion therefore ensures a high accuracy in the case of heavy
quarks.
Unfortunately, the domain of applicability of such an

approximation is restricted by the condition �=� ~m2 
 1.
Because the problem of size in a bound state of the Q �q
system is important, we consider it from the quantitative
standpoint. We use the fact that the condition ��= ~E2 
 1
is satisfied for all typical values of the parameters � and �
of heavy-light quarks in the spectrum domain ~E> ~m under
investigation. In this case, the light quark motion is mainly
determined by the linear potential, and the Coulomb inter-
action can be considered a perturbation. In some cases, the
zeroth approximation suffices for calculating hri and T,

hri � 2

T�2ð1� 2�Þ
��

3��1

2ð1� 2�Þ þ
~E

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2 � ~m2

p

� arccos�1

�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p
�
~E�1 þ �

2

�
3�2

1

1� 2�
þ ~E2 � ~m2

���
;

(49)

T � 2

�ð1� 2�Þ
�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2 � ~m2

p
þ ð1� �Þ��2

�
; (50)

where the quantities �1 and �2 are determined in (27), and
the quantity � is determined in (37). For example, for
the first three terms 1S1=2, 1P1=2, and 2S1=2 of the B meson

(mb ¼ 4:88 GeV and mu ¼ 0:33 GeV), we obtain the

TABLE V. The mass spectrum and the mean radii of Bs mesons obtained in the WKB
approximation and numerically for potentials (12) (masses are expressed in MeV and the
mean radii are expressed in Fm).

Lj ðnr; kÞ Mnum MWKB Mexp hrinum hri (45)
S1=2 (0, �1) 5407.4 5415.6 5404.8 0.457 0.404

(1, �1) 5926.3 5931.2 � � � 0.688 0.671

P3=2 (0, �2) 5763.7 5765.6 <5853 0.656 0.619

(1, �2) 6185.5 6186.8 � � � 0.845 0.826

P1=2 5751.8 [42]

5753.3 [43]

(0, 1) 5747.2 5752.2 5700.5 [53] 0.547 0.575

5755.0 [54]

5790.3 [55]

(1, 1) 6162.8 6166.8 � � � 0.779 0.795
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respective quantities hri ¼ 0:381 Fm, 0.576 Fm, and
0.681 Fm in approximation (49) and (50), and the calcu-
lation using exact formulas (45) and (46) (at �s ¼ 0:3,
� ¼ 0:3, V0 ¼ �0:45 GeV, � ¼ 0:18 Gev2) yields the
respective values 0.448 Fm, 0.612 Fm, and 0.708 Fm.
This approximation therefore ensures an acceptable accu-
racy for calculating the mean radii of the Q �q mesons.

In contrast to the masses of bound states of the heavy-
light mesons, the wave functions of the mixed mesons at
the zero, which determine the leptonic constants and nor-
malizations of cross sections of formationD and Bmesons,
are more sensitive to global properties of initial potentials
SðrÞ and VðrÞ. We now turn to deriving these wave
functions.

VI. ASYMPTOTIC COEFFICIENTS OF A
WAVE FUNCTION

Asymptotic coefficients CF;G at the zero and AF;G at the

infinity are the characteristic parameters of a wave func-
tion. We shall give simple analytical approximations for
these coefficients which describe the results of numerical
calculations quite well.

First of all, we consider the construction rules of asymp-
totic expansions of solutions of the Dirac equation at zero
(r ! 0) along with more standard expansions of solutions,
when r ! 1. For the considered potentials (12) we have

F;G ¼ CF;Gr
� þ . . . ; r ! 0; CF=CG ¼ ðk� �Þ=�;

(51)

and for wave functions of the discrete spectrum (0 � � <
1=2) the normalization condition

R1
0 ðF2 þG2Þdr ¼ 1 is

satisfied. Values of F2ð0Þ, G2ð0Þ (or, more precisely, of
C2
F;G) define the probability to discover particles at small

distances from one another and are of considerable physi-
cal interest especially in the case of systems, in which
interactions of two various types (for example, the
Coulomb interaction and long-range one vðrÞ) exist.

In the classically forbidden range 0 � r < r0 the wave
function of oscillating-type is changed by the solution
decreasing exponentially with increasing r (see Fig. 1).
Matching theWKB-solutions of the Dirac equation on both
sides of the turning point r0, we obtain the quasiclassical
expressions for the radial wave functions FðrÞ and GðrÞ in
the classically forbidden region 0 � r < r0:

FðrÞ ¼ ð�1Þnr C
�
1

2

�
E� V þmþ S

qðrÞ
�
1=2

� exp

�
�
Z r0

r

�
q� kw

qr

�
dr

�
; (52)

GðrÞ ¼ sgnkð�1Þnr C
�
1

2

�
E� V �m� S

qðrÞ
�
1=2

� exp

�
�
Z r0

r

�
q� k ~w

qr

�
dr

�
: (53)

All integrals in (52) and (53) are expressed through the
quite complicated combination of the elliptic integrals. But
in the cases ~Er < ~m and ~Er > ~m they can be calculated
through elementary functions, using the relations
�=� ~m2 
 1 and ��= ~E2

r 
 1 to expand the integrands
into power series.
Let us first investigate the asymptotic behavior of the

quasiclassical solutions (52) and (53) at r ! 0 for the
lower levels ( ~E< ~m) which are basically defined by
the Coulomb potential (�=� ~m2 
 1). Note that the larger
the Coulomb parameter �, the smaller is the essential
potential vðrÞ at small distances. Before the evaluation of
the asymptotic coefficients CF;G by means of formulas (53)

and (53) it is necessary to expand the quasiclassical mo-
mentum pðrÞ in potential vðrÞ. Then, using the technique
of evaluation of the phase integrals from Sec. IV and
proceeding in (52) and (53) to the limit r ! 0, we obtain
in zeroth approximation the expressions for the asymptotic
coefficients at zero:

jCFj¼
ffiffiffiffiffiffiffi
�

T�

s �
e�0
2�2

�
�
�

�0ðjkj��Þ
�ð� ~mþjkj ~E0Þ

�
sgnk=2

�
�
� ~E0þ��0

�0

�
� ~E0=�0

;

CF

CG

¼k��

�
:

(54)

Here �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~E0kÞ2 � ð ~m�Þ2

q
, and the period of radial os-

cillations T is given by the previous formula (47). When
we derive the expression (54) we use the quasiclassical
requirement of the normalization (5). Solving the Dirac
Eq. (1) at small distances (in range 0< r < c) one can
neglect the term with the linear potential (� ¼ 0). Having
used the asymptotic behavior of the normalized radial
functions FðrÞ and GðrÞ of the relativistic Coulomb prob-
lem [20] at r ! 0 and the relations (51), we find the more
exact (than (54)) expression for CF:

CC
F ¼ ð2�0Þ�þ1=2

�ð2�þ 1Þ
�ð ~mþ ~E0Þ�ð2�þ n0r þ 1Þ

4� ~m2

�0
ð� ~m
�0

� kÞn0r!
�
1=2

�
�
� ~m

�0

� k� n0r
�
: (55)

Here n0r ¼ nr þ ð1þ sgnkÞ=2. The formulas (54) and (55)
differ one from another within an error between the Stirling
formula

n! ¼ ffiffiffiffiffiffiffi
2�

p
expfðnþ 1=2Þ logn� ng½1þOðn�1Þ�;

n ! 1
and the �-function.
For states with ~Er > ~m, when the requirement

��= ~E2
r 
 1 is satisfied, the Coulomb potential is essential

only in the range of small distances and can be considered
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as a small perturbation in the basic range of particle
localization (i.e. in classically allowed range c < r < b).
This gives the possibility to exclude (� ¼ 0) the linear part
of the potential vðrÞ from the quasiclassical momentum
pðrÞ when evaluating the integrals in exponents (52) and
(53). Then the asymptotic behavior (at r ! 0) of radial
wave functions FðrÞ and GðrÞ obtained in this way allows
to determine the asymptotic coefficients:

jCFj ¼
ffiffiffiffiffiffiffi
�

T�

s �
e�

2�2

�
�
�

�ðjkj � �Þ
�ð� ~mþ jkj ~ErÞ

�
sgnk=2

� exp

�
� ~Erffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2
r � ~m2

q arccos
� ~Er

�

�
; (56)

where quantity � is defined in (26), and energy ~Er is given
by the formula (42). Characteristic feature of the consid-
ered case is the fact that in the integral (5), which defines a
period of radial oscillations T, only the range of values of
the integration variable r, where the Coulomb potential can
be considered a perturbation, is essential. By neglecting
the Coulomb interaction, we arrive at the previous
expression (50).

The asymptotic coefficients AF, AG of radial wave func-
tions at infinity are important physical parameters of bound
states as well. Along with the coefficients CF, CG at zero
(51), the asymptotic coefficients AF;G are continually en-

countered in quantum mechanics [22], atomic and nuclear
physics [56,57], and in the converse problem of quantum
scattering theory [58,59], etc. For the potentials (12) the
quantities AF;G are related to asymptotic behaviors of the

normalized radial wave functions by the relations

F;G¼AF;Gr
~�exp

0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2�

p
�

2
r2� �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�2�
p r

1
A; (57)

where �r ! 1, �> 0, AF ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p
AG, ~� ¼

�2
2

2ð1�2�Þ3=2� � ��ffiffiffiffiffiffiffiffiffi
1�2�

p , and the parameter � has values in the

range 0 � � < 1=2.
In the below-barrier range r > r1 ¼ b far from the turn-

ing point r1 ¼ b under the requirements �=� ~m2 
 1 and
~E< ~m, after the evaluation of integrals the quasiclassical
solutions (6) are of the form of decreasing exponents

F

G

 !
� 1ffiffiffiffiffiffiffiffiffi

Tq0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~mþ ~E0 þ ð1� 2�Þ�r

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m� ~E0 þ �r

q
0
B@

1
CA
0
@ 4�4

0�
�1
0 r

�2
0 þ�0q0 þ �10�r

1
A� ~E0=�0�

� ~m� k�0

� ~mþ k�0

�
1=4
�
� ~E0 � ��0

� ~E0 þ ��0

�
�=2

�
0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�
p

q0 þ ð1� 2�Þ�rþ �1 þ � ~Eð1� 2�Þ�=�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p ½�þ �ð��2 þ 2�1
~EÞ=�3� þ �1 þ � ~Eð1� 2�Þ�=�2

1
A~�

� exp

�
� q0r

2
þ �1ð�� q0Þ

2ð1� 2�Þ�þ � ~Eð�þ q0Þ
2�2

�
; (58)

where q0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 2�Þðr� cÞðr� dÞp

. The estimates
show that by the satisfaction of the requirements
�=� ~m2 
 1 and ~E< ~m there is quite a long range of
distances r which are much larger than size of
the Coulomb hydrogenlike system (r � hri (see (47) or
(48)) and much smaller than the distance ~r � ð ~E�=�1�Þ1=2
at which the Coulomb interaction becomes quantitatively
comparable with the long-range interaction. In this range at
the wave functions of zeroth approximation it is natural to
take the unperturbed radial functions F and G of the
relativistic Coulomb problem, and the potential vðrÞ can
be considered as a small perturbation. Neglecting it, we
arrive at the following quasiclassical expressions for F
and G:

F
G

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~mþ ~E0

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m� ~E0

q
0
B@

1
CAAWKBðasÞ

C r�
~E0=�0e��0r

¼ 1ffiffiffiffiffiffiffiffiffiffi
T�0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~mþ ~E0

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m� ~E0

q
0
B@

1
CA�� ~m� k�0

� ~mþ k�0

�
1=4

�
�
� ~E0 � ��0

� ~E0 þ ��0

�
�=2
�
2�2

0r

�0

�
� ~E0=�0

e��0r: (59)

Equating (59) to the asymptotic (at r ! 1) representation
of solutions of the Dirac equation in the Coulomb field [20]
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F
G

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~mþ ~E0

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m� ~E0

q
0
B@

1
CAACr

� ~E0=�0e��0r (60)

we obtain the explicit expression for the period of radial
oscillations of the classical relativistic particle:

T ¼ 1

2�0jACj2
�
� ~m� k�0

� ~mþ k�0

�
1=2
�
2e�2

0

�0

�
2� ~E0=�0

�
�
� ~E0 � ��0

� ~E0 þ ��0

�
�
: (61)

Here AC is the asymptotic coefficient of the Dirac radial
wave functions in the Coulomb potential:

jACj ¼
� ð� ~m� k�0Þ�0

2� ~m2�ð2�þ n0r þ 1Þn0r!
�
1=2ð2�0Þ� ~E0=�0 : (62)

Comparison of (59) and (60) shows that their exponential
and power factors are the same, however, the asymptotic
coefficients AWKBðasÞ

C and AC differ within an error between
the Stirling formula and �-function.

The formula (59) is obtained by neglecting the linear
part of the potential vðrÞ. This approximation was argued
above by means of the circumstance that under the quasi-
classical requirements (�=� ~m2 
 1) there is a range of
distances hri 
 r 
 ~r, in which the distortion of a wave
function, caused by action of the linear part of the potential
vðrÞ, can still be neglected and there is the law of decreas-
ing radial wave functions (59) that is characteristic for the
relativistic Coulomb problem. Change of the law by de-
creasing (59) of functions FðrÞ and GðrÞ to (57) at r � ~r
appears because in EP Uðr; EÞ we have taken into account
the quadratic (in �r) terms which increase with increasing
r more rapidly than others and so play a role of the
perturbation which destroys the asymptotic regime (59).
As a result of such an account, using the quasiclassical
approximation (58) for the normalized radial wave func-
tions F andG at large r, we obtain the following expression
for the asymptotic coefficient at infinity:

AF¼2�0ACð1�2�Þ~�þ1=4

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�2�
p

�0þ�10

2

1
A�ð� ~E0=�0Þ�~�

��~�

�
�2

0

�

�
� ~E0=�0

exp

�
�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�2�
p

���1Þ2
4ð1�2�Þ3=2�

�
: (63)

We now proceed to the other limiting case ��= ~E2 
 1
when the centrifugal potential �2=2mr2 does not play an
essential role at large distances and can be omitted in the
quasiclassical momentum pðrÞ ¼ iqðrÞ. Having expanded
the quantity qðrÞ ¼ jpðrÞj in powers of the Coulomb po-
tential and calculated the integrals in exponents in (6),
under the requirement ��= ~E2 
 1, in the asymptotic do-
main r ! 1 we arrive at formulas of the type in (57) for F
and G, in which

AF¼ð1�2�Þ1=4ffiffiffiffi
T

p
�
2ð1�2�Þ�

�2

�
~�
exp

�
� 2�2

1��2
2

4ð1�2�Þ3=2�
þ � ~m�2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2�

p ð ~E2� ~m2Þþ
� ~Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~E2� ~m2
p arccos

�
��1

�2

��
;

(64)

and the period T is determined by the previous
expression (50).

VII. ENERGY SPECTRUM OF THE MASSLESS
FERMION IN THE EXTERNAL SCALAR

FIELD OF THE FUNNEL TYPE

In this section, we shall study energy spectrum of the
Dirac Eq. (1) for massless fermion (m ¼ 0) in the external
scalar field of the form

SðrÞ ¼ ��0

r
þ �r; � > 0; VðrÞ ¼ 0: (65)

Physical details of the considered model (65) can be found
in [16].
For the potential (65) and particle with zero mass the

quasiclassical quantization condition (9) becomes the tran-
scendental equation

E2þ2�ð�0 ��Þ
4�

� k

�ðbþaÞ�
�
2b

�
�ð
þ;�Þ
b2�P2þ

þ�ð
�;�Þ
b2�P2�

�
�
�

1

bþPþ
þ 1

bþP�

�
Kð�Þ

�
¼nrþ1

2
:

(66)

Here Kð�Þ and �ð
; �Þ are the complete elliptic inte-
grals of the first and third kind, and the following notations
are used:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 2�ð�0 � �Þ
E2 þ 2�ð�0 þ �Þ

s
;


� ¼ � P� þ r0
P� � r0

;

P� ¼ 1

2�

�
�E�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 4�0�

q �
;

where the turning points r0 ¼ b and r1 ¼ a are determined
by the equations

b; a ¼ 1

21=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 2�0��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 þ 2�0�Þ2 � 4�2�2

qr
;

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �02p

. In the case � ! 0 the Eq. (66) can be
solved in an explicit form. At small values of parameter
� (namely at � & 0:2 GeV2) the condition E2

nrk
� �� for

all possible values of level energy Enrk is satisfied very

well. In this case the formula given above become appre-
ciably simpler and the Eq. (66) for a quasiclassical spec-
trum ultimately assumes the rather simple form
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E2
nrk

2�
¼ N0 þ �k

E2
nrk

�
1

�

�
log

4E2
nrk

��
� 1

�
� R

�

þO

��
��

E2
nrk

�
2
�
; (67)

where �> 0 and

N0 ¼ 2nr þ 1þ �� �0 þ 2Bsgnk;

B ¼ 1

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �0

�� �0

s
; R ¼ 2�0

k2

�
�0

�
þ 2�2B

jkj
�
:

In that case, when the Coulomb-like term in the potential
(65) is absent (�0 ¼ 0), Eq. (67) coincides exactly with the
quasiclassical quantization rule for energy levels in the
scalar well Uðr; EÞ generated by linear confining interac-
tion [15] SðrÞ ¼ �r, VðrÞ ¼ 0.

The Eq. (67) for Enrk is easy for solving numerically.

Comparison of results of such calculations Enrk with exact

values [26] (see Table VI), obtained by numerical integra-
tion of the Dirac system (1), shows that the quasiclassical
Eq. (67) provides acceptable accuracy of calculation of the
energy spectrum: even for the lower states with nr � 1 the
error (67) in determination of Enrk does not exceed 5% and

rapidly decreases with increasing nr. Along with the direct
numerical solution of transcendental Eqs. (66) and (67) it is
worthwhile to construct (by means of some simplifications
or approximations) the approximate analytical expressions
for level energy that would allow without difficulty to trace

dependence of Enrk on quantum numbers nr, k and pa-

rameters of interaction model (65). Solving (67) by the
method of iterations we arrive at the analytical expression
for energy:

"nrk ¼
Enr;kffiffiffiffi
�

p ¼ �
�
N0 � �0 þ

�
ðN0 � �0Þ2

þ 2k

�
1

�

�
log

8ðN0 � �0Þ
�

� 1

�
� R

��
1=2
�
: (68)

The positive sign of the root corresponds to energy of a
particle, and the negative one corresponds to the antipar-
ticle energy taken with a minus sign.

VIII. SUMMARY

The most important results of the investigations per-
formed can be summarized as follows:
(i) The relativistic potential quark model of Q �q mesons

in which the light quark motion is described by the
Dirac equation with a scalar-vector interaction and
the heavy quark is considered a local source of the
gluon field is constructed. The effective interquark
interaction is described by a combination of the
perturbative one-gluon exchange potential
VCoulðrÞ ¼ ��=r and the long-range Lorentz-scalar
and Lorentz-vector linear potentials Sl:r:ðrÞ ¼
ð1� �Þð�rþ V0Þ and Vl:r:ðrÞ ¼ �ð�rþ V0Þ. It is
established that the quark confinement always arises
when the Lorentz-scalar part Sl:r: of the long-range

TABLE VI. The eigenvalues Enrk of the massless Dirac equation with the scalar potential (65)
for � ¼ 0:4, � ¼ 0:18 GeV2.

States Enum
nrk

, GeV EWKB
nrk

, GeV Eas
nrk

, GeV Eas
nrk

, GeV

nr k (1) (66) (67) (68)

0 �1 0.5568 0.5581 0.6530 0.6568

1 �1 1.0293 1.0298 1.0489 1.0489

2 �1 1.3379 1.3382 1.3471 1.3470

3 �1 1.5862 1.5863 1.5917 1.5917

4 �1 1.7999 1.8000 1.8037 1.8037

0 �2 0.8217 0.8220 0.8561 0.8554

1 �2 1.1898 1.1899 1.2003 1.2001

2 �2 1.4649 1.4650 1.4704 1.4703

3 �2 1.6949 1.6949 1.6983 1.6983

4 �2 1.8966 1.8966 1.8990 1.8990

0 1 0.9340 0.9335 0.9054 0.9055

1 1 1.2568 1.2566 1.2457 1.2457

2 1 1.5143 1.5141 1.5079 1.5097

3 1 1.7346 1.7345 1.7304 1.7304

4 1 1.9302 1.9302 1.9272 1.9272

0 2 1.0996 1.0994 1.0857 1.0853

1 2 1.3846 1.3845 1.3781 1.3780

2 2 1.6217 1.6216 1.6177 1.6177

3 2 1.8289 1.8288 1.8261 1.8261

4 2 2.0152 2.0152 2.0132 2.0132
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interquark interaction prevails over the Lorentz-
vector one Vl:r:.

(ii) The new asymptotic method of calculation of quan-
tization integrals that is based on splitting an
integration interval into two segments in each of
which only the dominating interaction type is taken
into account exactly while the other interaction
types are treated as perturbations is elaborated.
Approximative analytical expressions for the energy
spectrum of heavy-light mesons obtained within
quasiclassical approach at ��= ~E2 
 1 are asymp-
totically exact in the limit nr ! 1 and ensure a high
accuracy of calculations even for states with the
radial quantum number nr � 1.

(iii) In the framework of the considered model we have
obtained the satisfactory description of the mass
spectrum ofD,Ds, B, and Bs mesons. We show that
the fine structure of P-wave states in heavy-light
mesons is primarily sensitive to the choice of two
parameters: the strong-coupling constant �s and
the coefficient � of mixing of the long-range scalar
and vector potentials Sl:r:ðrÞ and Vl:r:ðrÞ. The best
agreement between the theoretical predictions and
experimental data exists when the mixing coeffi-
cient is � ¼ 0:3.

(iv) Using WKB method, the convenient analytical for-
mulas for asymptotic coefficients of wave function
at zero and infinity and mean radii of the Q �q
mesons.

APPENDIX

We consider the quantization integral J1. We rewrite the
expression for J1 in (24) as the sum of integrals

J1 ¼ �j�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p ðl=�1 þ h=0 þ g=1 þ f=2 þ=3Þ;
=n ¼

Z a

b

rn

R
dr;

n ¼ �1; 0; 1; 2; 3; . . . ;

where the quantities f, g, h, and l are determined in (22)
and the quantity RðrÞ is determined in (23). After the
standard change of the integration variable [33]

r ¼ bða� cÞ � cða� bÞsin2’
a� c� ða� bÞsin2’

the integrals =n are expressed in terms of the complete
elliptic integrals of the first, second, and third kind, which
are written in the conventional notation [34] as

Fð�Þ¼
Z �=2

0

d’

4 ; Eð�Þ¼
Z �=2

0
4d’;

�ð
;�Þ¼
Z �=2

0

d’

ð1�
sin2’Þ4 ; 4¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2sin2’

q
;


¼a�b

a�c
; �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


ðc�dÞ
ðb�dÞ

s
: (A1)

We thus obtain the representations for =�1; . . . ;=3:

=�1 ¼
Z a

b

dr

rR
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� cÞðb� dÞp

bc

�
�
bFð�Þ � ðb� cÞ�

�
c

b

; �

��
; (A2)

=0 ¼
Z a

b

dr

R
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� cÞðb� dÞp Fð�Þ; (A3)

=1¼
Z a

b

rdr

R
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða�cÞðb�dÞp ½cFð�Þþðb�cÞ�ð
;�Þ�;

(A4)

=2¼
Z a

b

r2dr

R
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða�cÞðb�dÞp

�
c2Fð�Þþcðb�cÞ�ð
;�Þ

þðb�cÞ2T2

�
�

2
;
;�

��
; (A5)

=3 ¼
Z a

b

r3dr

R

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� cÞðb� dÞp
�
c3Fð�Þ þ 3c2ðb� cÞ�ð
; �Þ

þ 3cðb� cÞ2T2

�
�

2
; 
; �

�
þ ðb� cÞ3T3

�
�

2
; 
; �

��
:

(A6)

The integrals of the form

Tnð’; 
; �Þ ¼
Z ’

0

d’

ð1� 
sin2’Þn4
are calculated using the recurrence relation

Tn�3 ¼ 1

ð2n� 5Þ�2

��
2 sin’ cos’4
ð1� 
sin2’Þn�1

þ 2ðn� 2Þ½3�2 � 
ð1þ �2Þ�Tn�2

� ð2n� 3Þ½�2ð3� 2
Þ þ 
ð
� 2Þ�Tn�1

þ 2ðn� 1Þð�2 � 
Þð1� 
ÞTn

�
:

We analogously find the integrals in the expression for
J2 in (24):
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Z a

b

dr

ðr� ��ÞR ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� cÞðb� dÞp ðb� ��Þð�� � cÞ
�
ð�� � bÞFð�Þ � ðb� cÞ�

�ð�� � cÞ
ð�� � bÞ
; �

��
: (A7)

After expressions (A2)–(A7) are substituted in integrals (24), quantization condition (9) becomes transcendental
Eq. (25), where


� ¼ �� � c

�� � b

; < ¼ ð1� 
Þð�2 � 
Þ; N1 ¼ �2ðb� cÞ

4
� 3@ðb� cÞ

8ð1� 
Þ � ð�2 � 
Þ
2

ðfþ 3cÞ

þ <
ðb� cÞ2 ðc

3 þ c2fþ cgþ hþ l=cÞ; @ ¼ �2ð3� 2
Þ þ 
ð
� 2Þ;

N2 ¼ �


2

�
fþ 3cþ 3

4

ðb� cÞ@
<

�
; N3 ¼ 1

2

�
3

4

ðb� cÞ@2

< þ 2<
ðb� cÞ ð3c

2 þ 2cfþ gÞ
þ ðb� cÞðð1þ �2Þ
� 3�2Þ þ @ðfþ 3cÞ�;

N4 ¼ � <
ðb� cÞ

l

bc
; N5 ¼ ½ðb� �þÞð�þ � cÞ��1;

N6 ¼ ½ðb� ��Þð�� � cÞ��1; N7 ¼ 2

ð�þ � cÞð�� � cÞ
�
cþ ~Eþ ~m

2ð1� 2�Þ�
�
:

We analogously find the integrals appearing when calculating the mean radii by formula (44). We present the quantities
ni (i ¼ 1; . . . ; 6) in formulas (45) and (46):

n1 ¼ ~E

�
c2 � ðb� cÞ2

2ð1� 
Þ
�
� ��

�
c3 � 3cðb� cÞ2

2ð1� 
Þ þ ðb� cÞ3
4<

�
�2 � 3@

2ð1� 
Þ
��

þ �c;

n2 ¼ �
ðb� cÞ2
2<

�
~E� 3��

�
cþ ðb� cÞ@

4<
��

;

n3 ¼ ðb� cÞ
�
~E

�
2cþ ðb� cÞ@

2<
�
� ��

�
3c2 þ ðb� cÞ@

2<
�
3c� ðb� cÞð3�2 � 
ð1þ �2ÞÞ

@ þ 3ðb� cÞ@
4<

��
þ �

�
;

n4 ¼ c ~E� ��

�
c2 � ðb� cÞ2

2ð1� 
Þ
�
þ �;

n5 ¼ ��
ðb� cÞ2
2< ;

n6 ¼ ðb� cÞ
�
~E� ��

�
2cþ ðb� cÞ@

2<
��

:
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