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During the reporting period our group performed investigations in the following directions:
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An asymptotic theory of one- and two-electron capture in slow ion-molecule collisions
A relativistic spherical model of the Stark effect in H-like ions i
The relativistic Coulomb problem in two spatial dimensions ’
Measurement and R-matrix calculation of electron-impact de-excitation of the (3s3p)°Py.12
states in Mg

P LB =

The following results were obtained.

Task T1

1. An Asymptotic Theory of One- and Two-Electron Capture in Slow Ion-molecule
Collisions

The method of the asymptotic approach for the study of inelastic processes (one- and two-electron
capture) in slow ion-molecule collisions has been elaborated. For the Green’s function of the two-
centre Coulomb problem, exact and asymptotically exact representations are obtained. An analytic
expression for the matrix element for the two-electron exchange in the interaction of a highly charged
ion with a molecule is obtained. The cross sections for one- and two-electron capture at slow ion-
molecule collisions with different final states are calculated using the method of strong-coupling
channels and the linear trajectories approximation for the colliding particles. Different ways of two-

electron transfer (one-step: A, +B?* 55 A% 1 B@-D+ and two-step:
Y 2 2 p

Ay +BP" 5 Ayt +B@PD* 5 A% 4 B@D*) and their relative contributions to the total cross-section of
the process are investigated.

In the theory of atomic collisions and particularly in the theory of inelastic processes in ion - molecule |
collisions it is necessary to know a Green'’s function for the two-centre Coulomb problem:

{—lA——Zl—Eg—E(R)JGE(F,T";R)=5(F—F’), (L1)
2 n n

In our work, the expansions of the Green's function for the two-centre Coulomb potential over
spheroidal functions are built. We represent the Green's function Gy (F,7"; R) in the form of an
expansion over a complete orthonormalised system of oblate angular spheroidal functions Sﬁ ( p,n)

[1]:

w _ _ im(p—¢’)
Ge(F.F':R)= Gg(E.n.0:&" 1 ¢R)= Emg,l Gy .8 E)Spy (P1)S 1y (p,n’)e—%——, (1.2)

and the radial part of the Green's function G, (5 N3 E) satisfies the following differential equation:
d d e , 4 ,
{E[(éz . l)aé‘_H_ 20)(p?)- pe2 - 1)+ 2pot —€2—1J}Gme €4:E)=-=6(E-¢). (13

where p=—1 -2E)2, a=(Z,+2Z,f-2E )2 and A) denote the eigenvalues of the angular |
2 IT <2 m g

wavefunction, corresponding to the oblate spheroidal functions S, ( p,n) [1]. The expression for the |
radial Green's function G, (§,£";E) (see Refs. [4, 6]) can be given by

90



. Lo R 8 S L] —

il

2
G (€. E)-—(%) A8 (e T2 (x,), Z=2,+2,. (1.4)

Here I1;; 7 (1£) (x.) and IT 72 ")( ) are the two linearly independent solutions of the homogeneous part of Eq.

(1.3), (after performing the variable substitution X = p(é i-l)) and can be given as the following
infinite sums:

A80)= SH e R (e), TE00)= SRR (e). 09

where the expansion coefficients H* and li(*) are to be determined.

In many physical problems whose examples are considered in [1], the asymptotic behaviour of the
Green's function Gg(F,7’; R) at small values of the internuclear distance needs to be known. Hence the

necessity to construct the asymptotic expansions of S,y (pn), IT ,(Tlf)(xi) and I1;, 72 )( x; ) functions

over a small parameter p at fixed quantum numbers ¢ and m arises. We use an asymptotic method,
proposed by Abramov and Slavyanov [3], to search for such expansions.

Let us to consider the oblate angular spheroidal function S,, ( p,n). The expansion for normalised

angular spheroidal functions can be written in a form:

_ _ = 0 if ¢£—-m= 2k,
n=Enf(m-¢) /2]

Here P;’"(n) are the associated Legendre polynomials, N, ( p)is the normalisation factor and Ent [p]
is the integer part of the real number p. We search for the separation constant /lfs") and the expansion

coefficients dj,s in the form of asymptotic series over the powers of a small parameter p’:
S 2 21 § 2

AP =120[/15 Ly P dfts = P Zo[dé’,‘f+5 Lp¥, ds=1 (17)
=l J:

On the basis of recurrence relations for the coefficients djy,5 , using the standard asymptotic technique (see refs.
(3]), we can obtain analytic representations for the expansion coefficients ldgn;‘;,ra L ; and [As ]2 ;- Some

coefficients are given below:

Asly=(+8Xe+8+1), [As]y=1-(BysEs + BsEys),

s, = EsE ,sBusBaows BBisEusEus
220+25 -1) 220+25 +3)

[dass o = Z§1€+f g‘f_ 3 [dars ), = " ;Zl :52? :53 2 [Biis Ezis + Bors Esvs — Bns Bs — Bs Evs |-

{4+ k+m+1 L+ k-m m
_, E =) . =O.
2+2k+3" T 20+2k-1 rt-245

~,

Bk:

Here, we represent only a few coefficients of the expansion (1.7), but in the numerical calculation for
Z,eZ, systems we keep up to ten coefficients in each expansion. The same approach was applied for
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the calculation of the coefficients hf) and Fg(*). We have checked the applicability of our approximate

results with numerical solutions obtained for Z,eZ, systems in [5, 8]. Some of the results are

represented in tables 1-6. For a more convenient presentation of the resulis, the values of the separation
constants are recalculated in the notation system chosen in Ref. [5]. The normalisation for the

coefficients dz",'f+5 , accepted in [5] is used here. In tables 1-4 we present the separation constant for

the systems ZjeZ, calculated using our asymptotic formulae (1.7) in comparison with the exact

numerical data from Refs. [5, 8]. In tables 5 and 6 we present the expansion coefficients for the oblate
angular spheroidal function, calculated using our asymptotic expansion for the Z,=Z,=1 system.

The obtained result is used for the asymptotic form of the one-electron three-centre wave function.
Using this function, exchange matrix elements are calculated which correspond to the following
processes of one- and two-electron capture at slow ion-molecule collisions:

Hy+C™ = 2p+Cim2t
T n=345. (18)
- Hj+Cm

In Fig.1, we present the matrix elements of the two-electron exchange interaction between a C* ion
and a H, molecule, reaction (1.8, n=4).

Hy + C*(1s2) = 2p +C 2* (2s3s,1S) H, + c*(1s2) = 2p + C 2* (2s3p, 3P)
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Figurel: The matrix elements of the two-electron exchange interaction for the reaction (1.8 b) as a function of the
distance between the colliding particles and the angle of orientation of a molecular axis with respect to the projectile
velocity vector.

The cross sections are found to be in good agreement with the experimental data. As in the case of ion-
atom collisions, the following types of two-electron capture processes are possible: one-step mode
Hy+C* — 2p+C?, and two-step mode Hy+C* — H} +C¥ — 2p+ C?* . The calculations

show that the two-step mode plays an important role and significantly influences the total cross section
of the reaction, as in the case of ion-atom collisions. Experimental investigations of the above-
mentioned reactions were performed by the group of prof. B. Kikiani (P6)
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Table 1. Separation constants /1(",72 = p2 of the angular equation for the oblate spheroidal

/l("mg) =A_, x10", for the £ = M= 0 and ¢ = 1,m= O states. Z;=Z,=1.

functi

Ref. [5]

Our calculation Ref. [5] Our Calculation
P | A n | Ay n Aoy n Aoy n
0.1 | -3.33482 | -3 -3.34 -3 1.99400 0 1.99400 0
0.5 | -8.42666 | -2 8.427 -2 1.84957 0 1.84957 0
1 -3.48605 | -1 -3.4860 -1 1.39321 0 1.39321 0
1.5 | -8.29869 | -1 -8.2987 -1 6.16041 -1 6.1604 -1
2 -1.59451 0 -1.59449 0 -5.05240 -1 -5.0524 -1
2.5 | -2.73297 0 -2.73476 0 -1.99986 0 -1.99990 0
3 -4.31034 0 -4.34329 0 -3.89916 0 -3.89940 0
3.5 | -6.19528 0 -6.47733 0 -6.23271 0 -6.23325 0

Table 2. Separation constants /l("mg) — p? of the angular equation for the oblate spheroidal function,
A = A_ x10", for the £ =m=1 and £ = 2,m=1 states. Z;=Z,=1.

Table 3. Separation constants for the ground

Our calculation Ref. [5] Our calculation Ref. [5]

p All n All n A12 n A12 n
0.1 1.99800 0 1.99800 0 5.99571 0 5.99571 0
0.5 1.94971 0 1.94971 0 5.89261 0 5.89261 0

1 1.79530 0 1.79531 0 5.56753 0 5.56753 0
1.5 1.52542 0 1.52542 0 5.01589 0 5.01589 0

2 1.11854 0 1.11855 0 4.22275 0 4.22275 0
2.5 5.38653 -1 5.3890 -1 3.16700 0 3.16699 0

3 -2.7174 -1 -2.6942 -1 1.82165 0 1.82154 0
3.5 | -1.40178 0 -1.38633 0 1.55051 -1 1.5432 -1

on,

Table 4. Separation constants for the state

state 1so , Z1=1, Z,=2. 2m' , Z1=1, Z,=2.

Our calc. | Ref. [8] Our calc. | Ref. [8]
R

g | v g |
0.2 | 0.290953 | 0.049553 | 0.049553 0.2 1 0.150799 | 2.01311 | 2.01311
0.4 | 0.554405 | 0.175242 | 0.175244 0.4 | 0.306268 | 2.05382 | 2.05382
0.6 | 0.794506 | 0.347491 | 0.347538 0.6 | 0.469837 | 2.12594 | 2.12594
0.8 | 1.01837 | 0.546972 | 0.547375 0.8 | 0.64160 |2.23417 | 2.23415
1 1.23153 | 0.760295 | 0.762415 1 0.818029 | 2.38169 | 2.38156
1.2 | 1.43806 | 0.976566 | 0.984442 1.2 1 0.994205 | 2.56837 | 2.56895

Table 5. Expansion coefficients for the oblate angular spheroidal function calculated
for the ground state (£ = m= 0), dr"{ =D, x 10 2,=Z,=1.

Our calc. Ref.[5] Our calc. Ref.[5] Our calc. Ref.[5]
p Do n~ | Do : n: | Dy n D, n | Dy n | Dy n
0.1 | 1.0006 0 | 1.0006 0 [1.1121 |-3 |1.1121 |-3 | 1.90667 | -7 | 1.9066 | -7
0.2 | 1.0022 0 | 1.0021 0 | 44599 |-3 |4.4595 |-3 |3.0593 -6 1 3.0590 | -6
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0.3 | 1.0050 0 |- - 1.0079 |-2 |- - ]1.5562 |-51- -
0.4 | 1.0090 0O |1.0090 |0 |1.8029 |-2 |1.8028 |-2 [4.9519 |-5|49517 |-5
0.5 | 1.0142 0 |1.0142 |0 |2.8394 |-2 |2.8393 |-2 12196 |-4]12194 |-4
0.6 | 1.0205 0 [1.0205 |0 |4.1281 |-2 |4.1283 |-2 {25558 |[-4[2.5555 |4
0.7 |1.0282 0 |- - 56837 |2 |- - 147954 | -4]- -
0.8 |1.0373 0 [1.0373 |0 |7.5231 |-2 |7.5232 [-2 83022 |-4]82977 |4
0.9 |1.0478 0 |- - 19.6662 | -2 |- - 13523 |-3]- -
1 1.0599 0 [1.0599 |0 |1.2138 |-1 |1.2138 |-1 [2.1004 |-32.0975 |-3
1.1 | 1.0736 0 |- - 114965 |-1 |- - [3.1404 | -3 - -
1.2 | 1.0892 0 [1.0892 |0 [1.8182 |-1 |1.8182 |-1 |4.5523 |-3[4.5385 |-3
1.3 | 1.1067 0 |- - 121825 | -1 |- - 164318 |-3]|- -
1.4 | 1.1264 0 [1.1264 |0 |2.5940 |-1 [25940 |-1 [8.8950 |-3|8.8418 |-3
1.5 | 1.1483 0 |1.1484 0 [3.0571 |-1 |3.0573 |-1 |1.2080 -2 11,1983 |2
Table 6. Expansion coefficients for the oblate angular spheroidal function, calculated
for the first excited state (¢ =1, m= 0), d™ = D, x10". Z,=Z,=1.
Our calc. Ref.[5] Our calc. Ref.[5] Our calc. Ref.[5]
p D, n | D; n | Ds n D; n | Ds n | Ds n
0.1 | 1.0006 0 | 1.0006 |0 |4.0020 |-4 |4.0020 |-4 |4.5373 |-8|4.5373 |-8
0.2 | 1.0024 0 [1.0024 |0 |1.6033 |-3 |1.6033 |-3 |7.2701 -7 17.2700 |-6
0.3 | 1.0054 0 |- - 136165 |-3 |- - 36892 |-6]- -
0.4 | 1.0097 0 /10097 |0 64528 |-3 |6.4526 |-3 |1.1700 |-5]1.1699 |-5
0.5 |1.0151 0 | 1.0151 0 ]11.0128 |-2 |1.0129 |-2 |2.8684 |-5]2.8684 |-5
0.6 | 1.0219 0 [1.0219 |0 | 14668 |-2 |1.4667 |-2 (59797 |-5]59792 |-5
0.7 | 1.0299 0 |- - [2.0096 |-2 |- - | 11147 |4 |- -
0.8 | 1.0393 0 110393 |0 |2.6451 |-2 |26451 |-2 |19154 |-4]19150 |-4
0.9 | 1.0501 0 |- - 133770 | -2 |- - 130934 |4]|- -
1 1.0623 0 [1.0623 |0 [42099 |[-2 [42097 |-2 47584 |-4|4.7557 |-4
1.1 |1.0759 0 |- - | 5.1486 | -2 |- - 7.0375 -4 |- -
1.2 | 1.0911 0 |1.0911 0 161996 |-2 |6.1998 |-2 | 1.0079 |-3|1.0068 |-3
1.3 ] 1.1079 0 |- - 173693 |-2 |- - 14052 |-3]|- -
1.4 | 1.1264 0 |1.1264 |0 |8.6652 |-2 86655 |-2|1.9151 3119114 |-3
1.5 | 1.1466 0 [1.1467 |0 |1.0095 |-1 |1.0096 |-1 [2.5596 |-3]2.5533 |3
Task T4

2. A Relativistic Spherical Model of the Stark Effect in H-like Ions

The properties of the energy spectrum of hydrogen and other atoms in external
electromagnetic fields have been thoroughly studied since the late 1920s. However,
relativistic aspects of the problem were not considered. In our papers, we attempt to
partially fill that gap for the example of Stark ionisation of atomic systems with a high
degree of ionisation (highly charged ions). As in such systems relativistic effects
cause non-negligible corrections and essentially define orders of the spectral
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characteristics, a consistent theory of the Stark effect should be based on relativistic
equations.

We solve the Dirac equation with a spherically symmetric potential V=-eAo(r) in the
WKB approximation framework. The solution of the Dirac equation can be
represented in the form [9]

F(r n
'1”(7‘)=l[ 1+£1’)Qﬂrn() ], 1=j+Y2, U=2j-1, n=T7/r.
r

)72 G(r)2 m(R)

where j and [ are the total electron and orbital angular moments, respectively, m is
the projection of j onto the internuclear axis Oz and the functions F(r) and G(r) satisfy
the equations (m,=h=c=1):

dFF X dG

— =——F+(1+e-V)G, -—=(1—E+V)F+-§G,
dr r dr r

X = F(j+1/2) for states with j=I+1/2.

In order to obtain the quasiclassical solutions of the system, it is convenient to write
equations (2.2) in the matrix form:
—-hR/r £+1—V(r)}

,_ 1 F
=—D , = s D:
sty v (G] [1—s+v(r) AR/T

Here we use again 7 in order to obtain the WKB approximation and the prime denotes
the derivative with respect to . For the solution of the matrix equation (2.4) we look
at the formal expansion in powers of 4:

voveival YRR B o) 500

(2.4)
where the upper (lower) component (p(F") ((pg‘)) of the vector (p(”) corresponds to the

radial wave function F (G). By substituting (2.5) into (2.4) and equating the
coefficient of each power of 7 to zero, we obtain a recursive set of equations

(D- 9-1)4’(0) =0,
D=y ™ =p™ + Sy, 0¥, n=0L.
k=0

Taking the first two equations of system (2.5) using
the left- and right-vectors technique, we find the terms

25)  Ulre)
' |

U, Y and (p(o). Solving the next equations of the
system (2.5) by a similar procedure, one can
sequentially find the terms U, Uss-.-» (p(2), cp(3),... in
the expansions (2.4). However, the expressions for
them are rather cumbersome and therefore, in
applications one usually restricts oneself to the first
terms only. Actually, the reason for this is the fact that

the expansions in powers of & (2.4) generally do not
converge but are asymptotic series with a finite

Fig. 2. The effective potential U(r.e)
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number of terms, which gives a good approximation for the wave function, if the
parameter of an expansion (the Dirac constant /) is rather small. So we ohtained
(apart from a normalisation constant)

w—J—;ng—;—enF(i q+ ‘2/(;& ]dr;[Hi_g;:(r)], g= [1+ R2/r? - (e - V(r)? F/z.

(2.6)
If we represent the quantity g as q:,@U— E) then E= (62 - l)/2 is the electron

binding energy and
U(r.e)=evV-V?/2+r?/2r?

is the effective potential. For the potential

vin=-2_pr,
r

U(r.e) is a potential with a barrier (see Fig. 2).

The wavefunction of quasistationary states differs in the different regions.

I. The region ry<r<r is classically allowed; there the wave function (2.6)
oscillates.

II. The below-barrier region r <r<r, is classically forbidden. Here, p=ig and the
quantities ¢, y.; i yo are real. As it is known [10], the wavefunction should
exponentially decrease in this region.

I In the region r>r,, a divergent wave corresponds to the quasistationary state
(emission of a positron). In order to obtain the solutions we use the usual method [10].
Close to r. i r,, the system (2.2) reduces to the Schrodinger equation with an

effective potential which depends linearly on r—r,, the solution of which is
expressed through the Airy function, as can be seen when using the more elegant
Zwaan method. As we consider the electric field F not to be strong, the normalisation
of the wavefunctions can be performed by connecting the quasiclassical solutions in
the below-barrier region r <r<r, Wwith the asymptotic expansions of the
unperturbed one-centre Coulomb wavefunction

F,
as(f)} —t A TEeglls B +.] rioteliog o
Gas(r)

_]/2

, Ao=+1-€2.

& = 1+( (Za)®

n,h/xz—(z(x)z)2

Although the formulae for the wavefunctions essentially differ from the formulae in
the non-relativistic quasiclassical case and are more complicated, their application for
concrete problems does not create difficulties, because all quantities in the functions
F(r) and G(r) appear quadratically.

Let us now consider the problem of quasistationary states. For the determination of
the quasistationary states, the solution of the Dirac equation is usually demanded to be
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a divergent wave that corresponds to a particle that is emitted from a decaying system. .
The required absence of a convergent solution selects complex energy eigenvalues:

€pjim = € = 13, (2.8)

where ¢ defines the position of the quasistationary level and I' defines its width. The
quantity T is positive and characterises the decay (ionisation) probability of
quasistationary state per unit time interval: W=Alh.

Neglecting the penetrability of a barrier in the region r <r< r, we obtain the
quantization condition:

T
f[ p+ M)dr: 7[(]‘1-}- —1), n:O, 1, 2,
opr 2
(29)

Equation (2.9) determines the real part € of the level energy. It is easy to show that
condition (2.13) reproduces the exact expression of the energy spectrum in the case of

a Coulomb potential V= ~Za/r (a=é* ~ Y1837is the fine structure constant).

Let us now consider the level width A=-21rn£nﬂm. From equations (2.2) and the

obtained formulae for F and G in the region r>r, , we obtain an expression for I’
T,
Aot e ~2f q——x—w dr|.
T qr
.

Let now us apply expressions (2.13), (2.14) to the Stark ionisation of an atom in a
weak external constant electric field F << 1.
Calculating the integral in (2.13) for the potential (2.7) we obtain an equation for &:
22
g=50+i X-¢, 3220( -R? |+ A,
2Zx Ag

(2.11)

(2.12)
Note that the perturbation calculations lead to expression (2.11), where A=0.
Calculating the integral in (2.10) we obtain

220
g 228
A=2/10]Au42(2&T0J b ex{—%@+22aarccoss:l,
(2.13)

®(e)=arccog —ev1-¢2 .

(2.14)
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Task T4
3. The Relativistic Coulomb Problem in Two Spatial Diménsions
3.1. Introduction

It is known [9, 11] that in three spatial dimensions the expression for the electronic
ground-state energy in the Coulomb field of a point-charge Zle| becomes purely
imaginary for Z>137 and that its interpretation as electron energy no longer has a
physical meaning. In order to determine the electron-energy spectrum in the Coulomb
field with such a charge we need to eliminate the singularity of the Coulomb potential
of a point-charge at r=0 by cutting off the Coulomb potential at small distances.
This is equivalent to taking into account the size of the nucleus. In three space
dimensions the electron-energy spectrum in the Coulomb field regulated at small
“distances was first considered in [12]. With increasing Z in the region Z>137, the
electron energy levels in such a field were found to decrease, become negative, and

may cross the boundary of the lower energy continuum, E= -mé. The value of
Zle|=Z..Je| at which the lowest electron-energy level crosses the boundary of the lower
energy continuum is called the critical charge for the electron ground state
[11, 13, 14]. If Z continues to grow and enters the transcritical region with Z>Z., the
Jowest electron energy level “sinks” into the lower energy continuum, which results in
a rearrangement of the vacuum of the QED. This rearrangement is constrained by
Pauli’s exclusion principle. If the electron ground state at Z<Z. is vacant, two
electron-positron pairs are created; if it is half-occupied, one pair is created and if it is
occupied, no pairs are created. The Coulomb potential is repulsive for the created
positrons, so they escape the system. Hence, at Z>Z, a quasistationary state appears
in the lower energy continuum and the new vacuum of QED, which corresponds to
the filling of all the electronic states with E<-mc?, has the total electric charge 2e
[11, 13, 14]. Indeed, all the electronic states with E<-mc* (the Dirac sea) were filled at
Z<Z.,, so electrons created by the strong Coulomb field with Z>Z,, cannot be
described by means of a convenient wavefunction, and the notion of a charged
vacuum was introduced to describe these states [13-17]. In terms of the new vacuum,
the density of electric charges p(r) is classical. It is a function which characterises the
spatial distribution of the real electric charge appearing in the new (charged) vacuum,
while in terms of the old (uncharged) vacuum, this function should be interpreted as
the probability of two electrons (with charge 2e) being present at a given point in
space.

We would like to see how the same system behaves in two dimensions. With this aim
we shall apply the WKB method to the Dirac equation in a strong Coulomb field.
Such an approach works rather well for states with energy both O<ée <1 and € <-1
(in mc” units). The obtained quasiclassical formulae for the energy of quasistationary
levels of solutions of the Dirac equation in the lower continuum in (2+1) dimensions
allow the treatment of a wide range of problems in the theory of supercritical atoms.

3.2. The Dirac Equation in an External Coulomb Field in 2+1 Dimensions
Since [18] the Dirac algebra in (2+1) dimensions may be represented in terms of the

Pauli matrices as y°=o3, ykzia". The Dirac equation for an electron minimally coupled
to an external electromagnetic field has the form (A=c=m=1)
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(i0/ot-Hp ¥ =0, 3.1)

Hp=ap+B-eAl=c'p,-02p +03-edl : (3.2)
is the Dirac Hamiltonian, P, = iau +ed, is the operator of the generalised
momentum of the electron, —e is the electric charge of the electron (e>0), A, the

vector potential of the external electromagnetic field and the conserved total angular
momentum has only a single component, namely, J,=L.+S,, where L,=-id/dp and

S,=0%/2.

Let us apply the Dirac equation (1), (2) to study two-dimensional hydrogen-like ions
with nuclear charge eZ>>1. We neglect the size of the nucleus and assume the
vector potential to be a Coulomb potential

Ao(r)=—Zdr, A =AY=0 (3.3)
for OSr<eo.

We seek the solutions of the Dirac equation (1) in the field (3) in polar coordinates in
the form

lf/(tﬁ=—le)qi—i6t+il(p)u1(r(p) y/(r(p)z_l F(r)
e . PTGt
(3.4)

where ¢ is the energy and / is an integer number. Note that the function (3.4) is an
eigenfunction of the the Dirac Hamiltonian Hj, and J, is the total angular momentum
with eigenvalues ¢ and [+1/2, respectively.

The functions F(r) and G(r) satisfy the equations

ar_ l+1/2F+(£+1—V(r))G=O, §+l—+£0—(€"1‘v(r))F=0’
dr r dr r

3.5)
where V(r) =-Za/rand a = € = /137 is the fine structure constant.

The exact solutions and the energy eigenvalues with e<l1 corresponding to stationary
states of the Dirac equation may be found in full analogy to the case of three spatial
dimensions [9]. Let us consider the functions F and G in the form

F=Vlre e/%7(Q+@,). G=VI-¢ %’ (Q-@,)

p=2Ar, A=V1-€2, y=\(+Y2P-(za).
3.7

The value of y is to be found by studying the behaviour of the wavefunction at small
values of r. The functions Q; and Q, which render the solutions of (3.6) to a finite
value at p=0 are given in terms of the confluent hypergeometric function F(a; b; z) as:

(3.6)

G\ = AF(y - eZa/A 2a+ 1p), Q, = BF(y —€Za/A +12y +1; p),
Y —€ZofA
Cl+ Y2+ ZafA
It is easy to show that the following values of the quantum number n, are allowed:
n=0,1,2,..., if 120, and n,=1,2,3,... if [<O. The electron-energy spectrum in the

Coulomb field (3.3) is
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-y2
2
e =14 (20) | , .
(n, +,/(z+1/2)2-(zm2)2
It can be seen that for /=n,=0 g, becomes zero at Zo = ]/2, whereas in three spatial

dimensions g equals zero at Za =1. Thus, in two space dimensions the expression
for the electron ground-state energy in the Coulomb field of a point-charge Zle| no
longer has a physical meaning at a much lower value than Zo=1/2 and the
corresponding solution of the Dirac equation oscillates near the point r— 0.

In order to determine the electron-energy spectrum in the Coulomb field with the
charge 2Z>137, we need to eliminate the singularity of the Coulomb potential of a
point charge at 7=0 by cutting off the Coulomb potential at small distances of ry. This
is equivalent to taking into account the size of the nucleus. We consider the Coulomb
potential in the form:

Zo
-==,r>r,

(3.8)
Here f(x) is the cut-off function and 0< x=r/ry <1. Very often the following models
are used: f(x)=1 and f¥)= (3— )(2)/2 In the given paper the first model f(x)=1
is considered.
In the region r < ry , the finite solution at r= 0 of this equation is

F(r)=x/?J|ll (kn),  G(r)= sngAl+lj—lcfr—- Ty (Ker).

2)e+Zafry +1
(3.9)

In the external region r> r,, the potential V(r) is a Coulomb potential but we take
into account both signs of the quantity y . Thus, the finite solutions at r — oo of the
Dirac system (3.6) are determined by (3.7) and the functions Q; and Q, are

@ =CV2-x,+v 2 +1p) j=12.

X1 =2ZoE[A+Y2, x,=2Zoe[A-V2, p=2ir, C,/C, = ZaJA-1-12,
(3.10)
where ¥(a; b; z) is the irregular solution of the confluent hypergeometric equation.

Matching the internal and external solutions at the point r=ry gives the equation
V1-¢ QI—Q2 _ sg’a+]/2\ k ‘J!H]l(kr)
Vite Q+Qy|r=ry e+ Zajry +1 Jy (k)

(3.11)
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which determines the Dirac equation spectrum. At
€ — -1 equation (3.11) is transcendental for Z. Ulre) . ~
[19].

In order to find a solution of the Dirac equation in the
energy range € <-—1 and for quasistationary states
we apply the WKB method. It can be seen that the E
system (3.8) can be obtained from (2.2) by 0 | |
substituting G— -G and X ——(l+1/2). So it is ro r- re r
worthwhile to use the results obtained in section 2. In

this case the effective potential has the form of a
potential with a barrier, too (see figure 3)

Fig. 3. The effective potential U(r.e) at
Calculating the integral in (2.9) for the potential (3.8) € s-1.
and taking into account that |¢] << Za/r , we obtain the transcendental equation for

[on

€|Zot + ke 2_gx?
gfa ln‘ | g—glnrNeu roarccosd =X 41 =n(n+é),

le|Zex - kg 2g° Zau
(3.12)
p® x (f 1
I= Za FU-= ] dx, e=2.718..
f(X) X f2(x)-p?
- (3.13)

The numerical solutions of equations (3.11)-(3.13) (for model I) for the three lowest
states are shown in figure 4. Let us now pass to consider the level width A=-2Ime ,

that coincides with the probability of the spontaneous creation of positrons.
Substituting the obtained quasiclassical formulae for G and F into (2.10) we have

obtained
A=Aje 2rZaL/l+ s —Jl—pzﬁ,
1 2 Za [ |e|Zoc+ kg
T=—=-—"|eg+—1In +—F— ||
Ao k2 2k |8|Za— kg

3.3. Conclusions

(3.14)

(3.15)
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In this paper, by an exact solution of the Dirac equation with a strong Coulomb field
in (2+1) dimensions, we constructed the discrete energy spectrum in the range
—1<¢e < 1. The WKB-solutions of the two-dimensional Dirac equation were

£ &
F——— positive energy continuum cIexTp
1
|
0 ‘ I -
0 20 40 60 : 80\ 100 120 200 Z
states |
: Is), 2Py
|
|
- —_ — l_ e N e e e N
{
;
hY
negative energy continuum t
——— occupied with electrons T
i :
2 “i 1‘\

Figure 4: The energy eigenvalues of the Dirac system (3.6) manifest the three thresholds for the nuclear
charge number Z: (I) at Z = 1372 solutions with /=0 dissappear for point nuclei (dashed curves), (II)

at Z = 83 the 1s binding energy balances the electron rest mass if one takes into account the finite size

of the nuclei (full curves), and (III) at the critical charge number Zcr = 107 the 1s state enters the
negative energy continuum.

obtained. Using the obtained quasiclassical formulae we find the spectrum of
quasistationary levels (its position and width) in the lower energy continuum & < -1
for a spherical superheavy nucleus with a charge Z>Z, (see figure 4). The
comparison of the values for a critical charge Z., which are obtained from exact
solutions of the Dirac equation with Z., obtained from the quasiclassical formulae
(3.12), (3.13), shows a good agreement (see figure 2). Note that in the ground state for
the model I at ry=0.03 Z_ =107 and 170 in (2+1)- and (3+1)-dimensional QED,

respectively. Thus, the Dirac vacuum in two spatial dimensions in the presence of a

strong Coulomb field is unstable against electron-positron production at significantly

smaller values of the critical charge than in the case of three spatial dimensions.
Another difference between these two cases results from the fact that electrons

confined to a plane behave like a spinless fermion. So if the electronic ground state at
Z< Z,, is vacant, one pair is created; if it is occupied, no pairs are created.
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Task T2

4. Measurement and R-matrix Calculation of Electron-Impact De-Exitation of
the (3s3p)°Py,1» States in Mg

In the performed investigation the energetic dependence of the cross section of the
superelastic electron in collisions with metastable Mg atoms was determined for the
first time [20]. In our experiments the superelastically scattered electrons were
detected and the energy dependence of their formation cross section (Q°) was
determined by measuring the ratio of the current (i°) of the scattered electron to the
electron beam current (i), i.e. Q° = i*/i. In [21] the dependence of the superelastic
electron scattering cross section on the electron energy is presented. The relative
uncertainty in determining Q° was ~ 8%, the energy scale calibration error 0.1 eV.

Magnesium atoms have two triplet metastable states 3s3p 3P0, 3s3p 3P2 with
excitation energies of 2.71 eV and 2.72 eV. Both of these metastable states were
present in the atomic beam with a the ratio of their concentration N"(3s3p Po) /N™ (,
3s3p °Py) = 1/5.

As a result of superelastic electron scattering, atoms may decay from the metastable
state into the ground state 352 1S, The corresponding reactions can be written in the
form:

e + Mg(3s3p *Py) — Mg(3s® 'So) + ¢,

(4.1)
e + Mg(3s3p *P,) - Mg(3s® 'Sp) +e”,

(4.2)

where e is the incident electron with the energy E; e’ and e” are superelastically
scattered electrons with energies of (E+2.71) eV and (E+2.72) eV. Taking into
account that the difference between the energies of the scattered electrons is 0.01 eV,
it must be said that the resulting cross section reflects an average cross section of
reactions (4.1) and (4.2).

In order to explain the phenomenon of superelastic electron scattering in collisions
with metastable atoms, the following model has been developed. According to it, the
superelastic process proceeds by the following scheme:

e (E)+A, > A" 5 (E+AE)+ A,

(4.3)
where A™" is the negative ion in the excited state.
For Mg atoms the reaction can be written in the following way:
e(E) + Mg(3°P2) — Mg — Mg(3 °P2) + e(E);
(4.4)

— Mg(3 'So) + e(E+AE));

— Mg(3 °Po) + e(E+AE,);
— Mg 'P)) + e(E+AEs);
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l— Mg@3 'Sy + hv.
We are limited only by the consideration of the metastable 3 >Py-state.  ~

In our experiments negative ions were detected and the energy dependence of their
formation cross section (Q;) was determined by measuring the ratio of the negative-
ion current (i°) to the electron beam current (i), i.e. Q; = i/ie.

We used a R-matrix method with pseudo-states [22] in a 35-state intermediate-
coupling approximation for the calculation of the electron-impact excitation cross
sections in neutral Mg. A configuration-interaction representation with frozen core
was used for the outer electrons of the target. The close-coupling expansion includes
the 21 physical target states and 14 pseudo-states in the LSJ -coupling scheme.

The pseudo-states are introduced in the close-coupling expansion to represent, in
some artifcal way, the remaining infinite number of bound states and continuum states
of the target, which could not be included directly. In cases when the convergence of
the close-coupling expansion is slow, these states can lead to considerable corrections.
There is no unique way to determine the pseudo-states and different authors use
different methods. In one of the more often used methods the states are obtained by
diagonalisation of the model Hamiltonian in the final basis of some functions, e.g., the
Laguerre functions, Slater functions and so on. In a more general way the higher- -lying
eigenvalues obtained from diagonalisation of the target Hamiltonian are used as
pseudo-states. In CI calculations we obtain many eigenstates, where the first of them
reproduce the low-lying physical states rather well. The rest of eigenvalues has
energies which do not agree with any specific state and can be considered as pseudo-
states, which represent, in some average manner, the residual states (both bound and
continuum) of the target. This procedure was applied for Mg, where we use orbitals of
Mg" for the construction of a basis set. The unsolved question is the accuracy of this
representation because the number of pseudo states and their position strongly
depends on the basis functions.
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The present calculations are a direct extension of our previous LS calculations [23] of
electron-impact excitation of the Mg atom to the case of intermediate coupling and
have been undertaken in support of recent measurements of super-elastic scattering on
the metastable 3s3p *Py, levels of Mg, as described above.

110 ,

21

100.- 3 Mg+e

(3s3p)’P, - (3s%)'S, (curve 2)

®
o
o

70 | 3 (3s3p)°P, - (3s%)'S, (curve 0)
60 |-

50 |-
40 |

30 -

Cross sections (10® cm?)

20 |-

10 |-
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0,0 0,5 1,0 1,5

Electron energies, from 33P° threshold (eV)

Figure 5: The de-excitation (3s3p)3P0,2 - (352)150 cross sections: —— - 3P2 - lSo transition; ------
3Po - lSo transition.

In the experiment the part of the integral cross section for super-elastic scattering in
the range of scattering angles from 0 to ~0.5 rad was measured. The energy
dependence of these cross sections for super-elastic scattering from metastable 3°Py,
states of the Mg atom was obtained in the near-threshold region.
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The results of our calculations for the (3s%)'Sy - (3s3p)°Po, (359)'So - (3s3p)°P1, (3s)!Ss -
(383p)*P; transitions and comparing the theoretical cross sections for the transition (3s3p)*P; -
(3sH)1Sy with the relative measurements were represented in previous INTAS report. The
(3s3p)’Po,12 - (35%)'So de-excitation integral cross sections is presented on Fig.5. As it is visible
from a Fig.5, the de-excitation cross sections for transitions (3s3p)*Po - (352)!So and (3s3p)°P; -
(3sH)!Sy iterate one another almost exactly. The small differences are watched during cross
sections are watched only in area near a threshold. Let's mark, that the cross section of
transition (3s3p)’P1 - (3s%)'So essentially also coincides cross section of transition (3s3p)>Po -
(3s%)!S0. As the course of a curves smoothly varying, without availability of any structure is
visible from a figure, in the field of 0.5 eV see. It is qualitatively a course of integral cross
section iterates a course of toted differential cross section for the transition (3s3p)°Px - (3s2)'So.
Apparently, for explanation of qualitative difference of the theory with experiment in the field
of energies smaller ~0.5 eV it is necessary to conduct padding examinations.

In a Fig. 6 the cross sections of an elastic scattering for states (3s3p)*P, (Fig. 6(a)) and (3s3p)*Po
(Fig. 6(b)) represented. The availability on a curves of transitions (3s3p)*Po -(3s3p)*Po and
(3s3p)*P2 - (3s3p)*P2 of a broad sag with a minimum in the field of 0.4 - 0.5 eV can obliquely
testify to formation of an negative ion of magnesium. The subsequent decay of this ion in
underlying states can result in to diminution of sections of elastic collisions.

So, it is possible to make some deductions:

1) The experimental measurements of cross sections of formation of negatively ionized Mg-
atoms, functions of excitation of spectral transition (3s*)'Sy -(3s3p)’P1 and differential cross
sections of an elastic scattering testify to availability of particular structure in the field of
energies ~0.5 above a threshold of excitation. The origin of this structure can be bound to
formation of a negative ion of magnesium, though, basically, the opportunity of the contribution
and other effects is not eliminated.

2) The theoretical calculations of differential sections conducted in LSJ coupling approach,
and integrated on angles, practically have coincided with experiment (to within 10 %) in the field
of energies from 2 up to 0.5 eV. However, to detect structures apparent on experiment, it was not
possible to us. Probably, it is bound to features and (/or) deficiencies of theoretical approach,
used by us. The area of conducted examinations is very close to a threshold, where manifestation
of different threshold effects, as is known, is possible. At the same time, the availability of sags
on curves of excitation cross sections of a elastic transitions (3s3p)>Po -(3s3p)*Po and (3s3p)*P -
(3s3p)*P2 in the area of 0.5 eV can obliquely testify to formation of negatively ionized atoms of
magnesium and, thus, confirm experiment.

In any case, as mentioned above, it is desirable to conduct padding examinations, both

experimental, and theoretical, with the purpose of clearing up of the mechanism of process of
excitation from metastable states by electron impact in threshold region.
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