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Abstract

A theoretical investigation is made of one-and two-electron charge ex-
change in collisions between an atom and an ion of the same element, the
latter with two missing electrons. It is shown that the probability of one-
electron exchange in the case when the initial term crosses the final ground-
state term is half the usual probability for reasons of symmetry: the atom
and ion are identical. The occurrence of term crossing in this system al-
ters the physical nature of resonant two-electron exchange. There is a new
channel for two-stage exchange of two electrons. The first electron is re-
leased on the first pseudocrossing of terms and the second on the second
pseudocrossing. In the case of crossing with terms of the excited state, this
exchange occurs if the excitation is transferred during the time between the
two pseudocrossings. The experimental cross section for the exchange of two
electrons in a collision of a negative hydrogen atom with a proton can be
ascribed completely to this new channel.

Introduction

Recently at studying slow collisional processes of elementary nuclear systems (H+,
H~, HY) evidences of an essential role of correlation interaction of electrons were
obtained [1]. As a rule ones connect the nature of such correlations with instant
Coulomb interaction of electrons by means of the complicated procedure of wave
functions symmetrization. However this symmetrization is a consequence of exis-
tence of the spin magnetic moments of electrons. An attempt to take into account
directly the contribution of spin-spin and retardation interactions of active elec-
trons into cross section of a two-electron charge exchange at slow collision between
the negative hydrogen ion and proton is made in the present work.

Besides that we shall consider mutual influence of the exchange of one and two
electrons on each other in slow collisions between an atom and an ion of the same
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element but with two missing electrons:

y AT+ AT, (1a)
A+ATT
A+ 4 A (1b)

It is found that the symmetry resulting from the fact that the particles A and AT+
represent the same element has an important influence on the physical nature of
these processes and their effective cross sections.

The exchange of one electron, process (la), is nonresonant and due to the
crossing of the energy terms of the initial and final states. The exchange of two
electrons is a resonant process and its probability in the absence of one-electron
term crossing has already been studied [2, 3]. However, the occurrence of such
crossing greatly alters this process.

The absolute magnitude of the term repulsion responsible for the two-electron
exchange [3, 4] is considerably less than the splitting in the one-electron exchange.
Therefore, when an atom approaches an ion, the one-electron exchange may occur
earlier. This would seem to block the two-electron exchange channel (Ib) to an
extent increasing with the probability of the one-electron exchange during the
collision time, i.e., the time interval between two passages of an atom through the
same pseudocrossing. In fact, the situation is different. When the probability of
the one-electron exchange is high, new ways of exchanging two electrons become
possible:

~ AT + AT 5 ATH 4+ 4, (2a)
A+ATT
At 4 (AT)* = (AT + AT - AT 1+ 4, (2b)

which will be investigated below; it should be noted that the chain of events (2)
occurs during the same collision.

Let us assume that, in the process (2b), the probability of a nonadiabatic
transition on pseudocrossing of one-electron terms is small. Then, after the first
passage of the atom through this pseudocrossing, an electron is very likely (proba-
bility ~ 1) to be captured by the ion. If there is no event up to the second passage
through the pseudocrossing, the probability of the electron returning to the atom
as a result of the second pseudocrossing is equally high and the probability of
one-electron charge exchange is low. If excitation is exchanged between the two
passages through the same quasicrossing, the first electron can no longer return to
the atom since it is now in the ground state. The probability of finding the second
electron at the same adiabatic term as the first electron is equally high, i.e., the
second electron is transferred to a new atom. This gives rise to the two-electron
exchange.

This simple discussion is sufficient to show that, at low collision rates, the
effective two-electron exchange cross section of the channel (2b) may be larger than
the one-electron charge-exchange cross section or the cross section of the channel
(1). This is explained by the relatively large splitting of the terms responsible for
the transfer of excitation. For example, when the dipole transition (A*)* — AT,
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is allowed for, the splitting decreases proportionally to R~3 (R is the internuclear
distance), whereas the splitting responsible for the two-electron exchange decreases
exponentially [3, 4].

Two-Electron Exchange: Channel (2a)

We shall first consider the case (2a) of the crossing of the terms of the system
A+ AT+ with the ground-state term of the A™ + AT system, when both AT ions
are in the ground state. We have to consider here the interaction between three
terms: two terms of the A + AT system — the terms even E4(R) and odd Ey(R)
relative to the inversion of the coordinates of the two electrons at the center of
the quasimolecule, i.e., at the point which halves the internuclear axis — and one
term Eo(R) of the At + AT system, which has a definite parity, either u or g (it
is assumed that the ground state of the A™ ion is not degenerate). We have to
consider only that state of AT + A1 whose spin is equal to the spin of the atom A
because the total electron spin is conserved in the nonrelativistic approximation.
For example, for particles A with two excess electrons (in addition to those in the
filled shells), the spin of two electrons is either zero or unity. Consequently, in
the At + At system, we have to consider either the singlet or triplet states, and
the singlet state is even relative to inversion at the center of the quasimolecile,
whereas the triplet term is odd. The odd state is described by all the formulas
given below if g is exchanged with u; all the conclusions still apply to this case.

In general, the triplet state of the AT + AT system, which is odd relative to
inversion, also interacts with the odd state of the A+ AT system. This interaction
is of the spin-orbit type; it is weak and we shall ignore it for large interatomic
distances.

The initial conditions correspond to an A + AT+ collision:

t t
—i [ Eg4dt’ —i [ Eudt

\IJ(Fl,FQ,t)——) (T'_'l,'f_"g)e i +\I’U(F1,F2)6 e s (3)

1
t——0o0 ﬁ \Ijg
The quasimolecular functions ¥, ,, reduce, in the limit R — oo, to combinations

of the atomic functions ¥, ; corresponding to the case when both electrons are
near the nucleus a or b:

U, = [Ua(F1,72) £ Tp(F1, )]/ V2. (4)

Let w be the probability of a nonadiabatic transition for a single passage
through a pseudocrossing. Subject to the initial condition (3), the wave func-
tion is then

t
w —i [ Egdt’

2
*) U, (71,72)e —* +

‘1’(F1,F2,t) e (
—t1<t<+ty \2

T—\Y2 Bt —i [ Bedt' 1 —i [ Buat
2 o (71, T2)e —n ‘

1 m + —=W,(71,72)e =
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Here, £t; are the moments of passage through a pseudocrossing.

Similarly, if we consider the system passing through a pseudocrossing at a time
+t; when the particles fly apart, we obtain the probability of the two-electron
exchange during the whole collision (A4 + A*T — A*T + A):

P, = sin® (u> + w? sin? % + w {sin (—Xl ‘;X2> sin <_—_X1 ;X2> _

2
(152

where the phases x1,2 are

+t1 +0o0
X1 = / (EO — Eg) dt'7 X2 = / (Eu _ Eg) dt'. (7>

—t —o0

The phase x2 determines the contribution of a simultaneous jump of two electrons.
If this phase is small, Eq. (6) reduces to

Py ~ (14 w?)sin® (%) ;X2 € X1 (8)
The interference phase X1, is large if it is governed by the Coulomb displacement
of the term Eg: Eg — E; ~ R~ i f the crossing occurs in the asymptotic range of

large interatomic distances. Therefore, averaging Eq. (8) over a small interval of
the impact parameters Ap, we find that

T, ~ %(1 +u?), ()

When the probability of a nonadiabatic transition is w — 0, the formulas (8) and
(9) reduce to

P, ~ sin® (—Xil-) , » (10)
— 1
Py~ 3. (11)

In the limit w — 0, the even component of the A+ AT system most probably
follows the adiabatic term E;, — Ey — E,.In this case, the dephasing of the
quasimolecular g and u states and the exchange of two electrons are governed only
by the phase difference Ey — Ey, which is reflected in Eq. (10).

The probability P; of the one-electron charge exchange throughout the whole
collision is

P = w(l —w)[l+cosxil (12)

Averaging this expression over the small interval Ap, we obtain

P =w(l—-w). (13)
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This quantity is half the usual value because, in the symmetric A+ A*" case, half
the colliding atoms are in the noninteracting state ¥,.

If w — 1, the system jumps a pseudocrossing without being affected by it and
then the probability of the twoelectron charge exchange (6) tends to the earlier
value [2, 3, 4]:

X2

Py — sin? (?) . (14)

It follows from Egs. (10) and (11) that, in the case of adiabatically low collision
rates so that w — 0, the effective cross section for the two-electron exchange
is 0o — mR%/2 (R; is the pseudocrossing radius) and it is greater than even
the maximum one-electron charge exchange cross section to the ground state,
irrespective of the term splitting AE; = E, — E,,, responsible for the two- electron
exchange.

We can thus see that the symmetry of the molecules formed as a result of a
collision has a considerable influence on the probabilities of exchange of one and
two electrons.

The above results are derived on the assumption that the laws governing the
changes in the phases of the adiabatic states, i.e., the functions E(t), change
precisely at the pseudocrossing moments +t;. This is justified if the size of the
region where the exact adiabatic terms differ greatly from the unperturbed terms
is small compared with R;. This condition is satisfied if the repulsion of terms in
a pseudocrossing is small compared with E, - Ey, for p < Ry, which is clearly
valid because Ey — E;, ~ R™! and the repulsion of the terms is exponentially
small for large values of R;.

Two-Electron Exchange: Channel (2b)

We shall now consider the case (2b) when the terms of the initial system cross the
terms of the AT + (AT)* excited states. In this case, the atomic particles are in
different states and, therefore, quasimolecular states are always degenerate relative
to inversion, i.e., there are always even and odd states with the same energy in
the limit R — oo (even if the atomic excited state (AT)* is not itself degenerate).

Let us assume that the atomic excited state (A™)* is not degenerate. Applying
the above procedure, we obtain the probability of the two-electron exchange:

+o0 -t 31
P = w?sin? % / AEdt' | + (1 — w)?sin? / AEdt' + % / AEydt' | |
—00 —00 —t1
(15)
where AE5 is the splitting of the terms responsible for the excitation transfer
AT 4(AT)* — (AT)*+A*, which occurs during the motion of the particles between
two pseudocrossing moments Ft;. It is assumed that the splittings E, — E,, are
much smaller than the matrix element of the one-electron exchange, so that the
repulsion of the terms and the probability of the one-electron transition w are the
same for the g and u states. Averaging the interference terms has already been
carried out in Eq. (15).
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We shall now consider the above expressions for the charge-exchange proba-
bilities. The first term in Eq. (15) is the probability of direct charge exchange
in accordance with Eq. (1la). It is w? times smaller than the usual probability
because of the presence of the one-electron charge-exchange channel. In the range
of adiabatically low rates w — 0, even the direct channel is closed. However, a
second channel then opens up: the second term in Eq. (15) becomes more impor-
tant. This second channel is also important for w ~ 1 — w because the splitting of
the terms resulting in excitation transfer is usually greater than the two-electron
exchange splitting |AEs| > |AEy|.

In the general case of crossing with N terms of the A+ A™™ system, the formula
(15) becomes

o0
1
Py = w2, w? sin? §/AE1dt’ +

+Zw1w2 wi_1(1 — wg)? sin® /AEldt + - /AE . (16)
k=1

_tk

Two-Electron Exchange between Proton and Nega-
tive Hydrogen Ion

We shall now consider the case of a collision of a negative hydrogen atom with a
proton, H~ + H™, for which the two-electron charge-exchange cross section was
determined experimentally [1] in the relative energy range 50-190 eV or at relative
velocities v ~ 1.5 — 2.5 x 107 cm/sec (=~ 0.07 — 0.12 a.u.). For this case, using the
generalized Breit operator [8, 7, 8, 9, 10] the term splitting of the direct channel is

2
AE, ~ 7.9 x 10" 7349047k (1 3‘;0; ) . (17)
This expression has a maximum at R ~ 7.4 and its value is then AFE;(7.4) = 2.7 x
10~% a.u. Such small splitting means that, even if the direct charge exchange does
occur, this will happen outside the asymptotic range of the interatomic distances.
We shall now estimate the probability product wiw?...w%, which occurs in
the first term of (16), and which represents the probability of the evolution of the
system in accordance with the channel (2b). The ionic term H~ + H™ crosses
three terms of the H(1s) + H * (n) system with n = 4,3 and 2. According to
the J-potential model of a negative ion, the charge exchange occurs only to one of
the n? degenerate states [13]. Sphttmg of the terms §E, (R) = 2AE,(R) in the
quasicrossing points R, = Z /(g0 — Ey) is
2

§En(R) = 47 No\/Qn(R No:,/;—'r, €0=—22‘7
[

n—1 l 7
-y wnm(mi?:<¢;0<R>>2+2(En+§) 2(R),  (18)

=0 m=-1
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where ¢q is the binding energy of external electron in unperturbed negative ion,
and E,, = —Z?/2n? are Coulomb energy levels of H-like ion with nuclear charge Z.
The function ¢no can be expressed through the confluent hypergeometric function:

Ono(T) = \/%Texp (—g) F(—n+1,2,7). (19)

Values of terms splitting 0 E,, (R) in the quasicrossing points R,, for considered
system H~ + H™T are given in Table 8. The crossing with n = 4 level can be
ignored as too distant: R, = 283.005 a.u. We shall estimate the probabilities ws
and ws using the Landau-Zener model:

. (20)

s R%Eﬁ}

Wy, = exXp {——2—

Using the parameters R, and 0E, represented in Table 8, we have
w3 =0.993, wy =0.074

for the case when the radial velocity is v,qq ~ v = 0.1 a.u.

Table 8: The radiuses of the Coulomb orbits 7, = 2n?/Z, positions of quasicross-
ings R, and splittings 6 E,(Ry) = 2AE,(R,) of terms for the system H~ + Ht.

Tn, a.l. | Ry, au. | §E,(Ry), a.u.
2.0 2.117 1.652 x 107!
8.0 10.279 | 1.876 x 102
18.0 35.921 | 2.318 x 1074
32.0 283.005 | 7.123 x 1027

w3

If the phase difference required for the direct chargeexchange process is accumu-
lated at p ~ 1 a.u. (or ~ ag, which is the Bohr radius), then, subject to allowance
for weakening by a factor w3w? = 5.5 x 1073, we can estimate the contribution
of the direct channel (1b) to the total two-electron charge-exchange cross section,
which gives the value o;(v = 0.1) <5 x 1071% cm?, two orders of magnitude less
than the experimental cross section: oezp(v = 0.1) & (44 2) x 10717 cm?. Conse-
quently, in this case, the whole cross section is governed by the second channel.

We shall now estimate the cross section for the two-electron exchange H~ +
H* — H* + H~, in accordance with the second channel (2b) for the case when
v = 0.1 and we shall do this using the second term of Eq. (15). The contribution of
the term H*(n = 3,ws ~ 0.993) can be ignored and allowance need only be made
for the crossing with the term H*(n = 2), which is characterized by (1 — w)? ~
We can then see that the probability of the two-electron exchange is simply equal
to the probability of the exchange of excitation in a time between —t; and +t1:

t1
P ~ sin? % f AEydt | . (21)

-1
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The application of Eq. (15) to the case under consideration requires further
discussion because the excited states H*(n) are degenerate. This application is
possible if there is no mixing of the degenerate states and this will be assumed here.
The probability (21) becomes ~ 1 for the impact parameters p < Ry = 10.279a¢
(the trajectory is assumed to be rectilinear), so that

2‘d12|2 UJSR2
17 diol2 [ de 2\d1o|?
1 [ AR g < 1912 / _ 2ldi
i / Bt S50 | G T e (23)

—t1 —o0

where |d12|? is the square of the matrix element of the dipole moment: |di2|? =
(T4 |r cos 8] Wap, )2 = 0.551 for the 2pg — 1s transition in the hydrogen atom.
Estimating the cross section from o ~ 7 p2/2, where py is the impact parameter for
which the phase (21) becomes equal to 7/2, we obtain o(v = 0.1) & 3 x 10716 ¢cm?
(po ~ 2.6). The degenerate states are most likely to be mixed in the p ~ pg case, so
that the probability of charge exchange decreases by a factor of n?. We then obtain
o ~ 7.5 % 10~17 cm?, which is close to the experimental value (4+2) x 10717 cm?.
These estimates indicate that the two-electron exchange H~ + HY — HT + H~
does indeed occur in accordance with the channel (2b). The exact theoretical value
of the cross section can be obtained by solving the many-level problem.
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