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Abstract

The resonance transfer of quantum information from one two-level atom
to another that is at an arbitrary distance from the former one is inves-
tigated. The symmetric ¥s and antisymmetric ¥, states of the two-atom
system are considered taking into account dipole-dipole interaction between
atoms of this system. The closed-form analytical expressions for shifts and
widths of the considered collective states W) of two identical two-level
atoms located at an arbitrary distance from each other. In the quite general
considerations the system of nonstationary equations describing separately
evolution of states amplitudes of the compound-system “A(1) atom+A(2)
atom-+field” in symmetric and antisymmetric channels at absorption of a
photon by one of the compound-system atoms. Three cases of the obtained
solutions for amplitudes of possible states of the compound-system at reso-
nance and nonresonance absorption of a photon are considered. It has been
shown that when atoms are at an infinite distance from one another, so that
there is no dipole-dipole interaction of atoms, quantum information can be
transferred from one atom to another with a characteristic time considerably
shorter than the time it takes for a photon to cover the interatomic distance.
This effect is referred to as the effect of quantum teleportation in a system
of resonance atoms.

Introduction

Among basic physical problems related to realization of idea of quantum comput-
ers and quantum calculations it is necessary to mark the search of the concrete
processes performed logic operations [1]. As it is shown in [1] at physical realiza-
tion of the logical NOT operation it is need to influence on the carrier of quantum
information (a qubit) by external pulse inverting qubit from ground state into ex-
cited one and vice versa, from excited state into ground one. At the present time
many experimental groups (see for instance [2] and references therein) occupying
ions in traps are able to prepare easy a single ion in the own state and then in the
specified superposition of states with the coherence time larger than 1 sec. Two-
qubit logic CNOT operation (Controlled NOT) is performed by means of influence
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of exciting pulse on two qubits interacting with each other: herewith through in-
teraction (switched on during realization of operation or existing constantly) one
qubit controls a quantum evolution of second one.

In papers [3, 4, 5] the principle of operating the quantum computer on the basis
of electric dipole transition in spectrum of two-level atom-qubits interacting selec-
tively with short intensive optical pulses was proposed. Herewith the logic CNOT
operation is performed by means of quantum information transfer, depending on
time, at “far” (of order of 10* nm) distances from one two-level atom (qubit) to
another because of retarded interaction of qubits in the field of optical radiation.

The present paper is devoted to study the proposed previously model [3] for de-
scription of resonance transfer of quantum information at an arbitrary (including
arbitrary large) interatomic distances including the quantum teleportation effect.
Realization of quantum teleportation of states in the considered system of two
resonance atoms opens new opportunities in solving the problem of transfer of
breakable superpositional states at large distances without losses of their coher-
ence. This problem is a stumbling block for creation of quantum computers.

The elegant proof of principle possibility of transfer of the quantum information
at far distances from one two-level atom (qubit) to another by means of quantum
correlations (including quantum teleportation) has been given by O.N. Gadomsky
and K.K. Altunin in the paper mentioned above [3]. In this paper the damping
of states is considered to do not affect the process of excitation exchange between
atoms. Such consideration is justified if the characteristic time of excitation trans-
fer is much smaller than the atom lifetime I';;! in excited state. The given paper
is a step to generalization of traditional statement of the problem of quantum tele-
portation and information resonance transfer from one two-level atom to another
in two directions: a) only one of levels is considered to be stationary, and another
possess the specified damping, b) the broadening of energy levels induced by the
retarded interatomic interaction is taken into account in addition to radiative one.

The energy of resonance interaction of atoms
located at arbitrary distances
Let us write the operator of electric dipole-dipole interaction of two electrons

located at an arbitrarily large distance from each other, near different nuclei [23,
24]:

dip + RZ

& dydy — 3(igd:) (7ird>) e | diph — 3(irdy) (rp2) _
N R3 2me

Prda — 3(7irph)(irds) €2 p1ps — 3(fippy)(Rrpa) i
- 72 R~ 7 exp | —woR ), (1)

where iip = R/R, wo = Wno = (B, — Ep)/h is the resonance frequency in the spec-
trum of the atoms, d1 = e, and dg = e are the operators of the electric dipole
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moments of single-electron atoms, p; and p> are the operators of the momenta of
the first and the second atomic electron, respectively.

For the system of two interacting atoms having one electron, the Hamiltonian
H can be represented in the form of sum of Hamiltonians of isolated atoms, Hy =
H, (™) + H2(T‘2) and operator of electric dipole-dipole interaction between them,
15E

dip

H = Hy+ V) = Hi(7) + Ba(3) + V2 (71,75 R). (2)

Let Epnyn, = En, + Ep, and |nino) are the eigenvalue and eigenfunction of “un-
perturbed” operator of energy Ho = H + H, without interatomic interaction,
respectively. The unperturbed wave function of the initial state of two atoms has
the form

00) = ¢o(1)p0(2) exp(—iEot1/h) exp(—iEota/h) = Go(1)@o(2). (3)

Here Ej is the energy of the initial states of the first and second atoms, the indices
1 and 2 correspond to the coordinates and times for the first and the second atom,
respectively. For atoms having no constant dipole moment in the first order of
perturbation theory, the energy correction is zero, i.e., (00|V;ip(*)|00) = 0. The
interaction between the atoms distorts the wave functions of the atomic states,
and the disturbed wave function for a system of two atoms in the ground state
has the form [8, 1]):

+29% (1)@n, 2[5 1B0(1)0(2))

lI/0(1)\110(2) 2E0 _ E 5
na

Py (1)Pny (2),
(4)

where the indices n; and ny correspond to intermediate states of the atoms. We
consider the state Wo(1)W(2) as initial state of atoms interacting with field of real
photons.

Let the final state [n0) of two resonant atoms corresponds to the excited state
[n) of atom A(1) with wave function @, (1) = ¢, (1) exp(—iE,t;/h) and energy E,,
and ground state |0) of atom A(2) with wave function @o(2) = ¢o(2) exp(—iEgts/h)
and energy Fj.

In the first approximation, to the stationary state of the system corresponds
to two wave functions:

®5(1,2 f[son( )%0(2) + o(1)@n(2)], (5)

ninz

Qa(lv 2) = E [Sﬁn(l)@O(Q) - @O(l)‘ﬁn(2)] ' (6)

In order to obtain corrections to the energy of symmetrical (42) and antisym-
metrical (43) states of system of two resonant atoms in the first order of pertur-
bation theory one has calculate the mean value of the perturbation operator Vd(;;)
(38) in these states, i.e.,

+ o (&
AB, = (B|V;5)19.),  AE, = (24|VS3)|0,). (7)

dip
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Substituting the expressions (38), (42) and (43) into the matrix elements (7) we
obtain that

AE(R) = —~AE4(R) = wie"™/°|(n|d|0)|*x

1 i ®'(1,2)] _
X [(W — W) @(1,2) — CZQJOR = AEAA(R) (8)

Here

®(1,2) = cos 07 cos 03 + cos 0Y cos 0y — 2 cos 07 cos 3,

®’(1,2) = cos 67 cos 65 + cos Y cos 6
are the geometric factors, 67, 67, 07 (i = 1,2) are the angles between one of
corresponding axes and the direction of dipole transition in i-th atom A(%).

Note that the quantity AEs (AE,) is complex shift of energy Es (E,) of
symmetrical (antisymmetrical) state ®, (®,) of atoms:

AE, = 6B, — %ms, AE, = 0E, — %fm. 9)

First-order corrections to the energy F,, + Ej of states (42) and (43) gives only
real parts 0Fs and 0E, of complex shifts:

0F, q(R) = £ReAE44(R) = £€*|(n|F|0)|*F(1,2; R). (10)
Here
o [e@,2)  wiel(1,2) woRY & wo®(1,2) . [woR
F(1,2;R) = T 2R cos | — + S| , (11)

fno are observable strengths of oscillators of corresponding transitions.

The expressions for 6E; and §E, can be simplified at woR/c — 0, i.e., when
size of two-atomic quantum system is much smaller than characteristic wave length
Ao = 2me/wp in spectrum of interacting atoms (R < Ag). In this case one can
neglect retardation of dipole-dipole interaction of atoms, that makes it possible to
substitute cos(woR/c) = 1, sin (woR/c) & woR/c in the expression (11) for F' and
to omit terms containing velocity of light ¢. Then for §E; and § E, we obtain

62

0B, o = 55 (nll0)[2(1,2). (12)
As one would expect, this expression coincides with the known formula [8] for
the energy of resonant exchange of excitations between two neutral atoms located
closely one from other.

Therefore, we see that at account of dipole-dipole interatomic interaction (38)
symmetrical and antisymmetrical states of atoms are characterized by the energies

2R
Es:En+EO+6Es:En+EO+e anF(1a2;R)a (13)

2muwyg

eQanO
Ea:En+EO+5Ea:En+EO_ D) F(132;R)3 (14)

mwo
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and wave functions
U, = &, exp(—idEst1/h), Vo=@, exp(—idEqt1/h), (15)

where #; is the local time for the atomic pair associated with the position of the
atom A(1).

It is apparent that states (15) are entangled states of a pair of interacting atoms
because in these states separate atom-qubit has not certain energy.

In the first order of perturbation theory the contribution of dipole interaction
in complete width T’y (I';) is determined by imaginary part s (7a) of doubled
complex shift AEs (AE,):

3 -
7s(R) = —7a(R) = —2ImAEA4(R) = —57003F(1, 2 R), (16)
where
. ®(1,2) @'(1,2)] . [(woR) @(1,2) woR
(1,2 R) [ng?’ 2R |7\ e cwd R? S\ ) (17)

70 is the radiation width of an excited state E,, of the isolated atom.

The general expression (16) for v, and 7, can be essentially simplified in the
limit cases of “large” (R > o) and “small” (a < R < )o) interatomic distances.
For example, when woR/c < 1 and orientations of dipole transition in the both
atoms are along the system axis R formula (16) becomes

w3R?
) = PR = (1- B ). (19)
where the leading term of expansion 75”)(0) = —751”)(0) = v coincides with he

radiation width 7o of exited state of the isolated atom. Similar expressions for
width ,(,) one can find when the orientations of dipole transitions in both atoms

are perpendicular to the axis R:

ﬁ%m=—ﬁ%m=%@—%m). (19)

Therefore the complete widths of symmetrical and antisymmetrical states are
of the form:

Yo wAR?

an) = 79 +’Y§H) ~ 270, 1"((1”) =% _}_%S”) ~ E_——CQ R (20)
w3 R?
) = yo 498 & 290, TG =0+ ~ 225 (1)

We can see that under the condition R < Ao the retarded interaction of atoms
in the symmetrical state Wy (15) leads to doubling of natural width of atomic
levels. For antisymmetrical state the widths 7, and 7o compensate each other
almost completely, and the complete width Iy is small when compare with ¥o.
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Tt means that when R < )\ retarded interaction of atoms completely suppresses
radiation decay of excited states of atoms. This property of mutual influence of
closely located atoms was interpreted in [10] as near-field effect.

In paper [11] the near-field effect was proposed as a basis of writing the quantum
information on separate two-level atoms of two-qubit quantum computer by means
of intensive quasiresonant radiation at a modification of an angle of incidence
of external wave. Reading of the quantum information (after calculations) can
be performed by means of weakly intensive probe radiation using solutions of
equations system for dipole oscillators obtained in [10].

Quantum teleportation and resonant transfer of
quantum information between two atom-qubits

Let us assume that at the initial point in time ¢; = 0 the system of two atoms
under consideration is in the state W'y = Uo(1)®o(2) (see (41)). Let us consider

the quantum transition \117(2) — \1155” = W, (4), where the wave functions Wy, are
given by formulas (15). We define the transition energy for this case as

E® _EO = Ey — E, FAE; = —h(w + A), (22)

where the upper sign corresponds to the symmetric state ¥, of the atomic pair,
while the lower sign refers to its antisymmetric state ¥,, w is the frequency of
a real photon, A is the resonance off-tuning. Let us assume that the quantum
transition \1152) — Wy(q) corresponds to the event of annihilation of the photon.
With that, we shall consider the transitions \117(2) — ¥, and \117(72) — U, separately
from one another. For the symmetric channel \Ilgg) — Wy we have the following
system of equations which determine the probability amplitudes a,, and a, with
the proviso that I'st; — 0:

dam, . . .
ih%— = Fpp expli(Wmn + w)t1]an = Fmn expli(e4 + iyn)t1]an,
. da}l . . (23)
zhgil— = Fpm exp|—i(e4 + ivn)tilam,

where ey = (6Es — hRA)/h; v = I'n/2, Ty = T, the matrix element of the
transition is given by

Frm = __2, /%"WOA'OJ%’C(R) exp(ikR), (24)

Ay is the amplitude of the vector potential, k is the wave vector of the real photon
which is absorbed at the location of the second atom with the radius vector R.
The matrix element d-h/ (R) in (24) takes into account all terms of the function
(41) of the initial state. The system of equations (23) corresponds to the two-level
approximation for a system of atoms, such that the most significant contribution
is from those terms of the Schrédinger wave equation in which the dependence on
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time is determined by a low frequency (wp — w). A similar system of equations
will also take place for the antisymmetric channel if in (23) we replace ;. with
e_, defined as e_ = —(0E; + hA)/h. After making the substitution a,(t;) =
an(t1)e~ 7 the system (23) becomes as following:

. da . N , -
ih—= dtm = Finn expli(Wmn + w)t1)dn = Fn exp(icyty)an, -
25
da
zh% = — iV hln + Frm exp(—icyti)am
1

It is well known that the exchange by excitations between atoms through their
resonance interaction is determined by the characteristic exchange time i/0E’ [8].
If, at a certain point in time, a system consisting of two identical dipole atoms
is in a state where one atom is excited, this excitation, as shown in [8], will be
transferred to the other atom in a time 7/ = A/d E through resonance interaction.
With that, the time 7/ required to transfer the excitation is considerably shorter
than the lifetime Fs_(i) of atoms in the symmetrical and (antisymmetrical) states,
therefore, the energy 6E", (12) is independent of time. In this paper, we consider
a situation where the time ¢; for which a system of two interacting atoms exists
is also short compared to I‘S_(}z). However, in contrast to [8], we take into account,
besides the interaction of the atoms with one another, their interaction with the
field of real photons.

Solving system of equations (23) at a,,(0) = 1, a,(0) = 0 and following [1],
we obtain a wave function which corresponds to a symmetric channel for the
interaction of a pair of atoms with the field of real photons:

T, (t) = —\}—5 exp (—%S-tl + i%tl) [cos((Q24 + 184 )t1)—

ey +iT,/2)
2(Q4 +1iB4)

 F, I . ,
Yinm exp (——tl - z%th) sin((Qy + B4 )t1) x

sin((Qy + iﬁ+)t1)} Bo(1)Po(2)|nw)—

SR +1i8y) 4
<5 [Bn(D70(D) + Go(Dpn(2)] expl—i0Bt Wl — 1), (20
where :
Q+ + ’L,6+ _ \/Ianl 5+ ‘tll")/n) ' (27)

For an antisymmetmc interaction channel we replace ey, B4 I's, Q4 with e_,
B—, 'y, Q_ in (26). Here we have

anl + (5:}: -+ irs(a)/2)2
1 .

Therefore, the wave function of the final state of the compound-system “A(1)+
) + F” being a superposition of ¥, (t;) and W, (1) is of the form

A2
U(ty) = A130(1)@0(2)Inw) + A2¢n(1)P0(2) 1w — 1) + A3Bo(1)@n (2)|nw — 1), (29)

et = (£0E, — KA/, Q4 +ifs = \/ | (28)
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where the probability amplitudes for possible states of the system are given by
1 r € .
Ay =3 {exp (—ftl + 2—2+—t1) [cos((Q+ +if4)t1)—

_ ey +il/2) sin((Q4 + 184 )t1)] + exp (—%tl—i—

2(Q24 +14B4)
+ish) [cos((Q_ LiBl)) - %—% sin((2_ + w_)tl)] } . (30)
A2 —_ Z};r;im I:Q+ _i];ZIB+ exp <—%t1 — Z%tl) X

X exp(—idEstq/h) sin((Q4 + 164 )t1)+

t o T 41_1./3_ exp (“%h - i%h) sin((Q- +1iB_)t1) exp(iéEStl/h)} , (31)

_Z'an 1 T LEt
Az = o [ Q++z',3+eXp< 4t1 z2t1>><
x sin((Q4 + 184)t1) exp (—id Esty /h)+

+ Q—_——ll-z—ﬁ» exp (—%tl - i%h) sin((Q= +iB_)t1) exp(iéEstl/h):l . (32)

The probability amplitudes (30)-(32) are normalized by the condition |A;|? +
|As|? +|A43]% = 1. As follows from (30)-(32), at t; = 0 a system of two atoms is in

a state where both atoms have an energy Eo, i.e., Ay =1, Ay = A3 = 0. Let us
consider the behavior of the function W(¢;) at subsequent points in time.

A. True resonance
Al. Large interatomic distances

Consider the case of the true resonance when A = 0, i.e. the frequency of real
photon w coincides with the transfer frequency (E,(,?) - ET(LO)) /h. At R > \g the
contribution of vy(,) caused by the retarded dipole-dipole interaction of atoms in
I's(a) can be neglected (I's = I'y = 7o), and the quantities ex, Q, B+ take the
form ey = —e_ = §E;/h,

1 |Fuml? | (OEs)? — 1293 /4]°  12(8E,)?
e =0=% \/[ R 4w et
Fppn|? §E, 2__712,)/2 4 1/2
gy =g L] [l | (GE)? = B93/4]  BOE)
+ B) h2 4h2 1672

— |an|2 _ (5E$)2 - h’27§/4 1/2 (34)
2 4h? '
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In true resonance (A = 0) when R >> )\ the amplitudes are equal to

Ay = exp (—%tl) {COS((Q +148)t1) cos <5E5t1> +

on
(SES sin((Q +Zﬂ)t1) . 5E tl Yo Sil’l((Q +i,8)t1) (SE'stl
2H(Q + B) Sm( o >+ O+ iP) COS( oh >} (85)
= e (Fp0) e (457 0
_ Famsin((Q+1iB)th) Yo §Est
A=——"Farip P (‘Ztl) (3 o > ' (37)

From (37) one can see the probability amplitude Az (As3) reaches a maximum
(minimum) at a time given by

# = 2nh/36E,. (38)

After absorption of real photon by A(2) atom the probability of remaining
the excitation near this atom is equal to |A3|?, and the probability of excitation
transfer to A(1) atom is equal |As|?. If it does not matter in which of the atoms
the excitation remains then the probability of photon trapping by the system of
two resonance atoms is determined as follows

| Frim |

2 2 7o I )
Ao + 145 = exp (=11 gy 72

(ch 2Bty — cos2Qty) .

A2. Small interatomic distances

For the case of true resonance (A = 0) and small distances woR/c < 1 the
antisymmetric state is found to be stable as to radiation damping, and the system
decay goes by symmetric channel with 'y = 27y. When ¢; < I';! one can put
Fs(a) =pr =04 = —€_ = 5Es/h, Qp =Q = \/ﬂanl2+(5Es)2]/h for a
time which is short compared to I‘S"(}I) and obtain the following formulas for the
probability amplitudes:

6Est1 5ES Sin(Qotl) . 5Est1
A =
1 = cos(Qot1) cos ( 5% ) + h sin { —— | (39)
ian Sil’l(Qotl) (5Est1 an Sin(Qotl) . 6Est1
Ay = — = - . (4
2 T G T R o0, o\ om ) @O

The amplitude A, reaches a maximum at a time given by t} = 2ni/30Es. With
that, the amplitude As is a minimum.

B. Nonresonance absorption of a photon
B1. Large interatomic distances

Let us consider the case where A # 0, i.e., the frequency of the real photon does

not coincide with the frequency of the transition ( - ET(LO)) /h. Moreover, we
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assume that the conditions A > §E,/h and R > A\ are fulfilled. Then
_ ~1/2
_o_ 1L | Em |2 —3/4\" [Fm|? | A% —0/4
QL =0=—
2 h? 4 16 h2 4
1 EF,.l2 A2—-~2/4 2A2  |Fom|? A2 —ny/4
B:I::,Bz‘_ I 2| + AYO/ +fYO _I 2' _ 70/ ,
V2 h 4 16 i 4
and the probability amplitudes (30)-(32) are equal to
_ Yo, é . iA+v/2 )
A1 =exp < 7 t) —1 5 tl) [cos((Q +iB)t1) + IR sin((Q +48)t1) |, (41)
i By A
Ay = T;ﬁﬁ) sin((2 4+ iB8)t1) exp [———Ztl +i— 5 J Az = 0. (42)

It is seen that at nonresonance photon absorption only two of the three states of
compound-system are realized. The state with amplitude Aj is realized as a result
of the absorption of a photon at the position of A(2) atom (polarizer atom) and
electric dipole transition of A(1) atom (observer atom) into the excited one. The
amplitude Ay of this state reaches a maximum at a time given by ¢} = w/2Q.

B2. Small interatomic distances

In the case when A > §F,/h and R < Ao one can neglect the damping of states
Ty = Toq = By = 0) and put Q. = Qo = /(A2/4) + |F,,]2/h. Then the
amplitudes (30)-(32) become

A iA
A; = exp <—i5t1> [cos(Qotl) + 200 sm(Qotl)} , (43)
Fym A
Ay = — 70y sin(Qot1) exp <25t1> , A3 =0. (44)

Similarly to the case of large interatomic distances, here two of the three possible
states are realized. The state with the amplitude A, is realized as a result of the
absorption of a photon at the position of the second atom (polarizer atom) and the
transition of the first atom (observer atom) into the excited state. The amplitude
A, of this state reaches a maximum at a time given by ¢t/ = 7/2Q.

C. Resonance absorption of a photon. Large interatomic
distances

Let us consider A = 0, 0E; = 0, and 75 = 7, = 0. Then I's = 'y = 7y,
B+ = p— =0, and the amplitudes (30)-(32) become
e (L0 %
Ay = exp ( 7 tl) [cos(Qtl) 10 sm(Qtl)} , (45)
_ Fom . o _
Ay = w0 sin(Qt1) exp( 1 tl) , Az =0. (46)
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At the initial point in time ¢; = 0, as follows from (45), (46), both atoms are
in the ground state. However, even at an infinitely close subsequent point in
time, the state ®,(1)®o(2) from the superposition (29) starts being realized. At
the time ¢/’ = m/2Q the probabilities become |A,|> = 1 and |A1]2 = 0, ie.,
one quantum bit of information is transferred from one atom to another at an
infinitely large interatomic distance in the time t{". We refer to this effect as
quantum teleportation in a system of two resonance atoms. This effect is quantum
in nature, being related to the superposition principle of quantum mechanics, and
corresponds to the quantum means of information transfer whose characteristic
time is defined as t{/ = 7/2Q, in contrast to the classical means of information
transfer with the characteristic time ¢, being the time of flight of a photon through
a distance R.

If to neglect the states damping (o = 0) one can use the following simpler
expression for time of information transfer t{" = 7h/ 2|Fym|. In accordance with
the sense of this approximation, the condition ¢}’ < I‘s_(i) should be fulfilled.
This condition is fulfilled the more precisely, the greater the amplitude of the
vector potential in (24). Using the notion of the Rabi frequency [12], we obtain
t]" = h/ |(d)no|€0, where &g is the amplitude of the electric field of the light wave
acting on the A(2) atom.

Thus, say we have been able to create entangled states Ws(q) (42), (43) for
two widely spaced atoms. Bouweester et al. [13] could do this using one photon
source which distributes in a random manner photons randomly polarized in two
different directions. Krein and Zeilinger [14] used for this purpose an electron
source. In our case, one possible way of creating entangled states may be the use
of two beams of double-level atoms irradiated in a random manner with a light
field.

In accordance with the sense of the obtained solution (45), (46) for a system of
two resonance atoms in the field of actual photons, we represent the operation of
the information system as follows: let us assume that the system operation begins
at a time t» = R/c at the location of the A(2) polarizer atom when this atom is
irradiated with the field of a light wave with a frequency w = wo. At a local point
in time, t; = 0, both atoms are in the ground state with an energy Ey, and at a
point in time ¢/ the A(1) observer atom goes into an excited state with an energy
E, = Eo-+hw. As this takes place, the A(2) atom remains in the former state with
the energy Fp, and the average energy of the system, calculated with the help of
the wave function (29) with the amplitudes (45), (46), will be determined by the
formula

(E) = |A1*(2Eo + hwo) + [Aa|*(Eo + Ep + hw(nw — 1)). (47)

For an interatomic distance R = 30 km, the time it takes for a photon to cover
this distance with the classical means of information transfer will be t, = 107* sec.
The time of information transfer due to the effect of quantum teleportation is
given by 7" = h/(|(dno|€0). For dno = 4.8 x 102! units of the cgs electrostatic
system and € = 1072 units of the cgs electrostatic system, we obtain t}" =
2,1 x 107° sec. Thus, the velocity of the information transfer due to the effect of
quantum teleportation, vor = R/t{" = 1,4 x 10% km/sec, is substantially higher
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than the velocity of light. Nevertheless, this does not imply any contradiction with

the relativity principle, since vgr = R/t{’ is a phase velocity.
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