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Abstract. A recurrent scheme for finding the quasiclassical solution of the one-

dimensional equation obtained after the separation of variables in the Schrödinger equa-

tion in parabolic coordinates is derived. The method of quasiclassical localized states is

developed for the Dirac equation with an arbitrary axially symmetric potential of barrier

type which does not allow complete separation of the variables. By means of the proposed

quasiclassical methods the non-relativistic and relativistic wavefunctions for hydrogen-

like (H-like) atoms in an external uniform electrostatic field of intensity F are constructed

in the classically forbidden and allowed regions. The general analytical expressions of the

leading term of the asymptotic behaviour (at small F) of the ionization rate of an H-like

atom in the uniform electrostatic field are obtained for the non-relativistic and relativistic

cases.

1 Introduction

The problem of the hydrogen atom in an electric field plays a fundamental role in quantum mechanics

and atomic physics and has many applications (see, e.g., [1–3] and the references therein). Since the

twenties (see, e.g., the review [4]), the properties of the energy spectrum of the hydrogen atom and

other atoms in external fields were rather intensively studied in the framework of the Schrödinger

equation.

At the same time the logic of development of the studies of highly ionized atomic systems demands

the formulations of new problems, similar to those already solved only for neutral (or weakly ionized)

atomic systems. The relativistic character the of electron motion in fields created by multiply charged

ions (the characteristic velocity of the electron in H-like ions with nuclear charge Z is ∼ αZc; α is

the fine structure constant, c is the velocity of light) distinguishes them drastically from the neutral

atoms. Thus, the consistent theory of the tunneling ionization of such systems should be essentially

relativistic since the relativistic effects are not small in this case, and moreover they determine the

order of magnitude of the spectral characteristics.

In order to construct such a theory one should employ the solution of the relativistic problem of

the electronic motion in the field created by the nucleus and a constant uniform electric field. Since the
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Dirac equation with such superpositional potential does not permit complete separation of variables

in any orthogonal system of coordinates, the given problem has not exact analytical solution, and

numerical methods are needed which demand significant computational efforts.

Relativistic calculations of the linear Stark effect were carried out by means of perturbation theory

[5, 6], and the quadratic Stark effect was treated by means of the RCGF (Relativistic Coulomb Green

Function) method in the form of the expansion in powers of Zα [7]. However, the publications in

this field are basically devoted to the calculation of the position of a quasistationary level, and there

are only rare cases of calculation of level widths Γ = �w (w is the tunneling ionization rate) in the

relativistic case. In our previous paper [8] a hybrid version of a spherically symmetrical model of

the Stark effect with account the Lorentz structure of the interaction potential has been studied in

the quasiclassical approximation. The ionization rate of the s-level, the binding energy of which can

be of the order of the rest energy in electric and magnetic fields has been calculated by means of a

generalization of the imaginary time method (ITM) [9] and the so-called ADK-theory [10]. However,

in the general case, the widths of the quasistationary states have not been found until now.

Due to such situation in the theory and the intensive experimental researches during the last years,

asymptotic methods for the calculation of ionization rates, which are based on clear physical ideas de-

scribing the under-the-barrier electronic transition, become especially important. From this point of

view it is worthwhile to use the quasiclassical approximation which enables one to find the approxima-

tive analytical solutions of the relativistic problem and to express the required ionization probability

in terms of the quantum penetrability of the potential barrier which separates the domains of discrete

and continuous spectra. As it is known, this method has a rather high accuracy even for small quantum

numbers.

In the present paper we apply the quasiclassial approximation to both the non-relativistic and

relativistic problems of tunneling ionization of H-like ions in a constant uniform electric field. The

first problem is much simpler than the second one due to the separability of the Schrödinger equation

in parabolic coordinates. In this problem we can use the expansion in powers of the Planck constant

�. For the relativistic problem we apply the method of quasiclassical localized states for the Dirac

equation with axially symmetrical potential the basics of which were described in [11].

2 Quasiclassical solutions of the non-relativistic problem of the atom in a
constant uniform electric field

The potential of an H-like atom with charge Z in a constant uniform electric field (the intensity vector
�F of which is opposite to the axis z) can be represented in the form (� = e = me = 1)

V = −Z/r − Fz. (1)

As it is known [1], the Schrödinger equation with the potential (1) permits complete separation of

variables in parabolic coordinates ξ = r + z, η = r − z, φ = arctg(y/x). For this purpose we seek the

solution in the form

Ψ = (ξη)−1/2ϕ(ξ)χ(η)e±imφ, (2)

where m = 0, 1, 2, . . . is the absolute value of the magnetic quantum number. Substituting (2) into the

Schrödinger equation, we obtain the following equations for the unknown functions ϕ(ξ) and χ(η):

d2ϕ

dξ2
+

(
E
2
+
β1

ξ
+

1 − m2

4ξ2
+

F
4
ξ

)
ϕ = 0, (3)

d2χ

dη2
+

(
E
2
+
β2

η
+

1 − m2

4η2
− F

4
η

)
χ = 0, β1 + β2 = Z. (4)
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For the energy E of a quasistationary level we shall use the known expansion [12]

E = − Z2

2n2
− 3n(n1 − n2)F

2Z
+ O(F2), (5)

where n = n1 + n2 + m + 1 is the principal quantum number.

Within the perturbation theory Damburg and Kolosov [13] have found the asymptotic (at small

F) solutions of the equations (3), (4). Substituting them into (2), normalizing the wavefunction Ψ to

unity and taking into account only the leading terms in F � 1 and ξ−1 � 1 we obtain

ϕ0 = C0(γξ)n1+m/2e−γξ/2, χ0 = (γη)m/2e−γη/2Lm
n2

(γη), (6)

C0 = (−1)n1

√
n2!γ3

πnn1!(n1 + m)!(n2 + m)!
,

γ =
√−2E, Lm

k (x) is the Laguerre polynomial.

The solutions of the equation (3) at large ξ are oscillating and the formula (6) is unapplicable here.

The limitation of the applicability of the solution (6) is the standard requirement of smallness of the

perturbation Fξ/4 as compared to the “Coulomb field” β1/ξ. This gives the condition 0 � ξ � ξm
where ξm =

√
4β1/F is the point in which contributions of the “Coulomb field” and external electric

one in the “potential energy” U1(ξ) are equal to each other.

In [13–15], the construction of solutions beyond the range 0 � ξ � ξm uses the etalon equation

method. This method is quite cumbersome in applications, especially when higher corrections are to

be found. We use here the simpler WKB method to derive the asymptotic expression for the ionization

rate w under a region of applicability which is larger than that of the etalon equation method. Note

that Smirnov and Chibisov [16] used the quasiclassical approximation but their result for γ is incorrect

because the multiplication factor exp [3(n2 − n1)] is missing.

We seek the solution of (3) in the form,

ϕ = eS/�
∞∑

n=0

�
nϕ(n). (7)

Having substituted (7) into (3), temporarily restoring the Planck constant � and equating to zero

the coefficients of each power of �, we arrive at an hierarchically ordered set of equations for the

unknown functions S (ξ) and ϕ(n)(ξ), which are analytically solvable:

S (ξ) = −
∫ ξ

ξ1

q(ξ′)dξ′, ϕ(0) =
C(0)

√
q
, (8)

ϕ(n) =
1√
q

[∫
1

2
√

q

(
ϕ(n−1)′′ − m2 − 1

4ξ2
ϕ(n−1)

)
dξ +C(n)

]
, (9)

where n = 1, 2, . . ., C(n) are arbitrary constants, q =
√

2(U − E/4), the function U(ξ) = −β1/2ξ−Fξ/8
plays a role of an effective potential energy.

According to the general conditions of applicability of the quasiclassical approximation [1], the

potential barrier should be quite wide (ξ1 � ξ2, where ξ1,2 are roots of equation q(ξ) = 0). This gives

the requirement 16β1F/γ4 � 1, and the range ξ1 � ξ � ξm exists (ξm is the maximum point of the

potential barrier) where one can match the WKB solution (7) with the asymptotic behaviour (6):

ϕ �
ξ1�ξ�ξm

ϕ0. (10)
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Using (10) we obtain the normalized wavefunction in the under-the-barrier region. Using the

Zwaan rule [1], this wavefunction can be continued in the classically allowed region ξ > ξ2 where the

divergent wave corresponds to the quasistationary state (hereinafter � = 1 again)

ϕ(ξ) =
C(0) exp

[
− ∫ ξ2
ξ1

q(ξ)dξ
]

√
p(ξ)

exp

{
i
∫ ξ

ξ2

p(ξ′)dξ′ +
iπ
4

}
, (11)

C(0) =
(−1)n1C0

n1!
√

2

(
β1

γ

)n1+(m+1)/2

e−β1/γ, p = iq =
1

2

√
Fξ − γ2 +

4β1

ξ
. (12)

The probability of the system decay in the unit of time (or ionization rate) w is determined as the

total probability flux through a surface separating the H-like atom from outer part of the space [1].

Substituting (2), (6), (11), (12) into the expression of the ionization rate [1], we get

w =
Z2

n3n1!(n1 + m)!

(
β1

γe

)2n1+m+1

e−2J , J =

∫ ξ2

ξ1

q(ξ)dξ. (13)

The barrier integral J can be calculated in terms of the complete elliptic integrals of 1-st and 2-nd

kind, K(k) and E(k) correspondingly [8, 17]:

J =
√

Fξ2
[
(ξ1 + ξ2)E(k) − 2ξ1K(k)

]
/3, k =

√
1 − ξ1/ξ2. (14)

If in the formula (13) the expression (14) of J is expanded in powers of F then one gets

w =
Z2

n3n1!(n1 + m)!

(
4Z3

n3F

)2n1+m+1

exp

[
− 2Z3

3n3F
− 3(n1 − n2)

]
, (15)

which recovers the Slavyanov’s result [14] at Z = 1. If the next term in the expansions (6), (7) is taken

into account allows to find the formula (44) obtained in [13] got within the etalon equation method is

recovered.

The comparison of the figures obtained for the ionization rate of the ground state of the hydrogen

atom from (13), (15), and the formula (44) of [4], respectively, with the numerical result of [13] shows

that the increase of the field strength F from 0.020 to 0.075 a.u. leads to an increase of the relative

error from 0.7 to 14% for (13), from 11 to 74% for (15), and from 1.3 to 17% for (44) [4], i.e. formula

(13) is more accurate than (15) and even (44) [4] which contains the correction of the order of F.

For excited states, the differences between the relative errors of (13) and each of (15) and (44) [4]

are even more significant than for the ground state, except for the state n1 = n2 = 0, m = 1, for which

the last formula gives accidentally very good result. Obviously, such high accuracy of the formula

(13) is connected with use of the exact expression of the barrier integral which takes partially into

account higher-order corrections in F, which are neglected in (15) and (44) [4].

To finding the tunneling ionization rates of singly charged negative ions (like H−, J− etc.), in (15)

it is necessary to put Z = 0. If the particle is in a weakly bound state in a central field with small

radius of action r0, then beyond this radius the asymptotic behaviour of the unperturbed (F = 0)

radial wavefunction is of the form [1]

R(as)
lm = br−1e−γr, (16)
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where b is determined by imposing the normalization condition. When r0 � 1 the behaviour of the

wavefunction within the potential well 0 � r � r0 is not essential because the particle stands basically

beyond the well. This gives b ≈ √
2γ and the ionization rate

w =
b2(2l + 1)

m!γm

(l + m)!

(l − m)!

(
F

4γ2

)m+1

e−2γ3/3F . (17)

For s-states the formula (17) coincides with the known result of Demkov and Drukarev [1, 18].

3 Quasiclassical solutions of the relativistic problem of the atom in a
constant uniform electric field

The difficulty in deriving a solution to the relativistic problem of the atom in a the constant uniform

electric field related to the fact that the Dirac equation with the potential (1) does not permit complete

separation of variables in any orthogonal system of coordinates. To solve this problem the combi-

nation of the quasiclassical approximation with boundary layer method [11] is used. Hereinafter we

shall call such an approach the “method of quasiclassical localized states” (MQLS).

The main idea of this method is as follows. We construct the solution of the Dirac equation in

the under-the-barrier range, where, in contradistinction to the case of the classically allowed range,

the wavefunction is often localized in the vicinity of the most probable tunneling direction. This

substantially simplifies the whole problem since the coordinate ρ perpendicular to the z-axis plays

the role of the small parameter with respect to which power series expansions can be used for all the

quantities entering the equations obtained after the expansion of the solution in powers of �. The

coefficients of these series satisfy equations that can be solved exactly except for the Riccati equation

which is solved approximately [11].

The effective potential

Ueff(z, ε) = εV0 − V2
0/2c2, V0(z) = −Z/z − Fz, ε = Erel/c2 (18)

corresponding to this problem has a form which is similar to that of the potential with barrier in the

non-relativistic case (Sec. 2). Here Erel is the relativistic energy of the electron, c is the velocity of

light.

If F � λ4/4Z (λ = c
√

1 − ε2) then the range z1 � z � zm (z1 is the left tuning point, and zm is

the maximum point of barrier) exists where one can match the WKB solution with the asymptotic (at

large z and small ρ) behaviour of the relativistic wavefunction Ψn, j,l,m j (l = j± 1/2) of the H-like atom

with perturbed energy [6]

Erel = E0 + sgn κ
3

4

√
N2 − κ2

(nr + γrel)mjF
j( j + 1)Z

. (19)

Here E0 = c2/
√

1 + [Zα/(nr + γrel)]2 is the energy of the non-perturbed relativistic H-like atom,

N =
√

n2 − 2nr(|κ| − γrel), κ = (−1) j−l+1/2( j + 1/2), nr = n − j − 1/2, γrel =
√
κ2 − (Z/c)2.

Having the normalized wavefunction in the under-the-barrier region and using the Zwaan rule

[1] one can continue it into the classically allowed region z > z2 (z2 is the right tuning point for the

effective potential (18)). Calculating the total probability flux through the plane which is perpendicular

to the z-axis and located in the domain z > z2, we obtain:

w =
2λ0A2

(1 + ε0)(|mj| − 1/2)!

( j + |mj|)!
( j − |mj|)!

⎛⎜⎜⎜⎜⎝ Z
2λ2

0
e

⎞⎟⎟⎟⎟⎠
2ε0Z
λ0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝4λ2
0

z2∫
z1

dz
q0(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−|mj |−1/2

e
−2

z2∫
z1

q0(z)dz−2Zα arccos ε0

, (20)

where q0 =
√

2 (Ueff − Eeff), Eeff = −λ2/2 is the effective energy, ε0 = E0/c2, λ0 = c
√

1 − ε2
0
,
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A =
√

1 + ε0λ0 (2λ0)ε0Z/λ0

(
Z/λ0 − k

2Z nr!Γ (2γrel + nr + 1)

)1/2

, (21)

where k = κ for the ground state and state with l = j − 1/2; k = 0 for all other states.

The integrals in (20) can be approximately calculated similar to the non-relativistic case. Omitting

details of these calculations, we write the final result for the ionization rate:

w =
2λ0A2

(1 + ε0)(|mj| − 1/2)!

( j + |mj|)!
( j − |mj|)!

e2Zα arccos ε0

(2c arccos ε0)|mj |+1/2

⎛⎜⎜⎜⎜⎝2λ2
0

F

⎞⎟⎟⎟⎟⎠
2ε0Z
λ0

−|mj |−1/2

exp

{
−c3Φ(ε)

F

}
, (22)

where Φ(ε) = arccos ε − ε√1 − ε2. The formula (22) differs from the result of [9] by the asymptotic

coefficient A which was obtained in [9] using the asymptotic behaviour of the Coulomb wavefunction

within the Klein-Gordon equation. For the ground state the expression (22) coincides with the result

of [10] obtained by means of the relativistic version of the ADK theory.

4 Conclusion
A recurrent scheme for finding the quasiclassical solutions of the one-dimensional equation obtained

after separation of variables of the Schrödinger equation in parabolic coordinates was described. The

method of quasiclassical localized states was developed for the Dirac equation with arbitrary axially

symmetric potential which does not allow complete separation of variables. These approaches are

based on physically clear ideas. They allowed the derivation of wavefunctions and of general analyt-

ical expressions for the leading term of the asymptotic behaviour of the ionization rate of the H-like

atom in a uniform electrostatic field in the non-relativistic and relativistic cases when the intensity of

the electric field F is much smaller than the intensity of the intra-atomic field.
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