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CLOSED EXTENSION TOPOLOGY

The paper contains the results which describe the properties of such general topological construc-
tion as closed extension topology. In particular, we prove that this topology is not transitive. We
find the base of the least cardinality for the topology and local one for the neighbourhood system
of every point. We calculate the interior, the closure, and the sets of isolated and limit points of
any set. We also prove that this space is path connected and not metrizable, and investigate its
major cardinality characteristics and separation axioms.

Ó ðîáîòi îòðèìàíî ðåçóëüòàòè, ÿêi îïèñóþòü âëàñòèâîñòi çàãàëüíî¨ òîïîëîãi÷íî¨ êîíñòðóêöi¨ �
òîïîëîãi¨ çàìêíåíîãî ðîçøèðåííÿ. Çîêðåìà, äîâåäåíî, ùî öÿ òîïîëîãiÿ íå òðàíçèòèâíà, çíà-
éäåíî áàçè íàéìåíøî¨ ïîòóæíîñòi äëÿ òîïîëîãi¨ òà ñèñòåìè îêîëiâ òî÷êè, îá÷èñëåíî âíó-
òðiøíiñòü, çàìèêàííÿ, ìíîæ�èíè ãðàíè÷íèõ òà içîëüîâàíèõ òî÷îê äîâiëüíî¨ ìíîæèíè. Òàêîæ
äîâåäåíî ëiíiéíó çâ'ÿçíiñòü i íåìåòðèçîâíiñòü öüîãî òîïîëîãi÷íîãî ïðîñòîðó, äîñëiäæåíî éîãî
îñíîâíi êàðäèíàëüíi iíâàðiàíòè é àêñiîìè âiäîêðåìëþâàíîñòi.

Closed extension topology is introduced in [1] for the case when its carrier differs
from the one of the starting topological space by one point. A particular case of
this construction is particular point topology which appears as a closed extension
of the discrete topology. The most famous example of particular point topology is
Sierpinski space. We generalize this construction to the case of an arbitrary superset
of the carrier of the original space.

Let (X, τ) be a topological space and let X∗ be a superset of X. Then the family
τ ∗ = {V ⊂ X∗ | V ⊂ X∗\X or V = (X∗\X)∪U, U ∈ τ} is a topology for X∗, which
is called the closed extension topology of X to X∗. Indeed, if all of the sets Uα ∈ τ ∗,
α ∈ T , lies in X∗\X, then their union is also contained in X∗\X. Otherwise, this
union has the form (X∗\X) ∪ U for some U ∈ τ . If the index set T is finite and
at least one of Uα lies in X∗\X, then the intersection ∩

α∈T
Uα is also contained in

X∗\X. Otherwise, this intersection has the form (X∗\X) ∪ U for some U ∈ τ .
Thus the open sets of X∗ are all subsets of X∗\X and all unions (X∗\X) ∪ U

where U is open in X. Respectively, closed sets in X∗ are all supersets of X and all
closed sets in X.

Example 1. Let X be a topological space and let A be a proper subset of X.
Then A-excluded topology for X is the closed extension topology of the indiscrete
space A to X.

Proposition 1. The closed extension topology τ ∗ of a topological space (X, τ)
to X∗ is supremum of topology σ = {∅} ∪ {(X∗\X) ∪ V, V ∈ τ} and X-excluded
topology for X∗.

Proof. Topology τ ∗ contains σ andX-excluded topology forX∗, and so contains
their union and supremum. Conversely, each set of τ ∗ is contained either in σ or in
X-excluded topology for X∗, and hence lies in any topology for X∗ containing the
union of σ and X-excluded topology for X∗.

A map f : X → Y of topological spaces (X, τ) and (Y, σ) is called inducing, if
the topology τ is induced by σ and f .
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Theorem 1. Let (X, τ) be a topological space, let X∗ be a superset of the set X
and let τ ∗ be the closed extension topology of X to X∗. Then the natural embedding

X ∋ x
i7→x ∈ X∗ is closed inducing map. In particular, (X, τ) is closed subspace of

(X∗, τ ∗).

Proof. Let τ ∗X be the topology for X induced by τ ∗. We will show that τ ∗X = τ .
Clearly τ ⊂ τ ∗X . Conversely, if U ∈ τ ∗X , then U = X ∩V for some V ∈ τ ∗. By
definition of the closed extension topology the intersection X ∩V either is empty
or belongs to τ . Hence X is the subspace of X∗, i. e. the natural embedding i is
inducing. Besides, i is closed, since the subspace X is closed in X∗.

Unlike extension topology [2] closed extension topology (like open extension

topology [3]) is not transitive. Hence the natural embedding X ∋ x
i7→x ∈ X∗

is not quotient, i. e. the closed extension topology is not quotient topology with
respect to τ and i.

Example 2. Consider nested sets X = {a}, X∗ = {a, b}, X∗∗ = {a, b, c}. Then
for the discrete topology τ for X we have (τ ∗)∗ = {∅, X∗∗, {c}, {b, c}} ̸= τ ∗∗ =
{∅, X∗∗, {b}, {c}, {b, c}}.

Let us describe a base of the least cardinality of the closed extension topology
and local one with respect to it.

Proposition 2. A base of the least cardinality of the closed extension topology
of a space X to X∗ has the form β∗ = {{x}, (X∗\X)∪U | x ∈ X∗\X,U ∈ β} where
β is a base of the least cardinality of the space X.

Proof. A point x ∈ X∗\X has the smallest neighbourhood {x} which should
belong to any base of X∗. So {x} ∈ β∗, x ∈ X∗\X. Since any open set in X∗ is the
union of some families of the sets from {(X∗\X)∪U | U ∈ β} and {{x}, x ∈ X∗\X},
the family β∗ of open in X∗ sets is the base of X∗. Besides, the cardinality of β can
not be reduced, and no set from {{x}, x ∈ X∗\X} can be removed.

Proposition 3. Let τ ∗ be the closed extension topology of a space X to X∗.
Then a local base of the least cardinality at any point x ∈ X∗ has the form {{x}}
for x ∈ X∗\X, and {(X∗\X) ∪ U | U ∈ βx} where βx is a local base of the least
cardinality at point x in X, for x ∈ X.

Proof. Let β∗
x be a local base of the least cardinality at point x ∈ X∗. If

x ∈ X∗\X, then the set {x} is the smallest neighbourhood of x, and so β∗
x = {{x}}.

If x ∈ X, then β∗
x = {(X∗\X) ∪ U | U ∈ βx}, since any neighbourhood of x in τ ∗ is

the union of the complement X∗\X and a neighbourhood of x in τ which contains
some basic neighbourhood U ∈ βx.

The following Proposition gives an explicit description of the interior, the closure,
the sets of isolated and limit points of an arbitrary set of a topological space with
the closed extension topology, and necessary and sufficient conditions for density
and nowhere density of a given set.

Proposition 4. Let τ ∗ be the closed extension topology of a space X to X∗ and
let A ⊂ X∗. Then:

1) the interior of A in X∗ is equal to IntX∗ A = (X∗\X) ∪ IntX(A∩X), where
IntX(A∩X) is the interior of the intersection A∩X in X, when A ⊃ X∗\X, and
IntX∗ A = A\X otherwise;
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2) the closure of A in X∗ has the form AX∗ = AX , where AX is the closure of A
in X, when A ⊂ X, and AX∗ = A∪X otherwise;

3) the set of isolated points of A in X∗ is calculated by formula IX∗(A) = IX(A),
where IX(A) is the set of isolated points of A in X, when A ⊂ X, and IX∗(A) = A\X
otherwise;

4) the set of limit points of A in X∗ is equal to A′
X , where A

′
X is the set of limit

points of A in X, when A ⊂ X, and A′
X∗ = X otherwise;

5) if X∗\X ̸= ∅, then A is dense in X∗ if and only if A ⊃ X∗\X; otherwise A
is dense in X∗ if and only if A is dense in X.

6) A is nowhere dense in X∗ if and only if A ⊂ X.

Proof. 1) If A ⊃ X∗\X, then the largest open set in X∗ contained in A
is obviously (X∗\X) ∪ IntX(A∩X). Otherwise, no open set in X∗ of the form
(X∗\X) ∪ U where U is open set in X lies in A, and so IntX∗ A = A\X.

2) If A ⊂ X, then the largest open set in X∗ that does not intersect A is
(X∗\X) ∪ IntX(X\A), and so AX∗ = AX . Otherwise, the largest open set in X∗

that does not intersect A is (X∗\X)\A, and therefore AX∗ = A∪X.
3) A point of A is isolated in A if some neighbourhood of this point does not

contain distinct from it points of A. Clearly every point x of A ⊂ X is isolated in
A in the space X∗ if and only if x is isolated in A in the space X. If A ̸⊂ X, then
any point of A\X is isolated in A, but every point x of A∩X is not, since each
neighbourhood of x has at least two point intersection with A.

4) If A ⊂ X, then A′
X∗ = AX∗\ IX∗(A) = AX\ IX(A) = A′

X . Otherwise, A′
X∗ =

(A∪X)\(A\X) = X.
5) According to 2) the set A is dense in X∗ if and only if X∗ = AX∗ = A∪X

which is equivalent to inclusion A ⊃ X∗\X.
6) The set A is nowhere dense in X∗ if and only if ∅ = IntX∗(AX∗) = AX∗\X

which is equivalent to inclusion A ⊂ X.

Now we proceed with the study of topological properties of the closed extension
topology.

Theorem 2. Let τ ∗ be the closed extension topology of a space X to X∗ and
X∗ ̸= X. Then X∗ is path connected and thus connected.

Proof. For every points x ∈ X and y ∈ X∗\X the map l : [0, 1] → X∗ defined
by l(0) = x and l((0, 1]) = y is a path in X∗ joining x to y.

Corollary 1. Every topological space can be embedded as closed subspace in a
path connected (and thus connected) topological space.

Proof. The desired topological space can be obtained as a space with the closed
extension topology for the case when its carrier differs from the one of the starting
topological space by one point.

The next fact follows directly from propositions 2 and 3.

Theorem 3. Let τ ∗ be the closed extension topology of a space X to X∗. The
topological space X∗ is first countable if and only if the space X is first countable.
The space X∗ is second countable if and only if the space X is second countable and
the complement X∗\X is at most countable.
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Theorem 4. Let τ ∗ be the closed extension topology of a space X to X∗. The
topological space X∗ is Lindelöf (compact) if and only if the space X is Lindelöf
(compact).

Proof. If X∗ is Lindelöf (compact), then X is Lindelöf (compact) as closed
subspace of X∗ by Theorem 1. Conversely, let {Vα, α ∈ T} be an open covering
of X∗ and let T ′ = {α ∈ T | Vα = (X∗\X) ∪ Uα for some open set Uα of the
space X}. Then the family {Uα, α ∈ T ′} is an open covering of X. Since X is
Lindelöf (compact), this covering has at most countable (finite) subcovering {Uα, α ∈
T ′′}. Thus {Vα, α ∈ T ′′} is at most countable (finite) subcovering of initial covering
{Vα, α ∈ T} of the space X∗.

Theorem 5. Let τ ∗ be the closed extension topology of a space X to X∗ and
X∗ ̸= X. The topological space X∗ is separable if and only if the complement X∗\X
is at most countable. The set X∗\X is at most countable dense set in X∗ of the
least cardinality.

Proof. The complement X∗\X is the smallest dense set in X∗ vacuously.

Theorem 6. Let τ ∗ be the closed extension topology of a space X to X∗ and
X∗ ̸= X. The topological space X∗ is T0 if and only if the space X is T0. The space
X∗ is T4 if and only if every two nonempty closed sets in X intersect (a stronger
condition than T4 separation axiom). The space X∗ is not Ti for i = 1, 2, 3. In
particular, X∗ is not regular, normal and metrizable.

Proof. Let X satisfy T0 separation axiom. Then for any two distinct points
x, y ∈ X there is a neighbourhood U of x in X that does not contain y. So
(X∗\X)∪U is a neighbourhood of x in X∗ that does not contain y. If x, y ∈ X∗

and x ∈ X∗\X, then the neighbourhood {x} of x in X∗ does not contain y. Thus
X∗ is T0. Conversely, if X

∗ satisfy T0 separation axiom, then X is T0 as a subspace
of X∗.

If every two nonempty closed sets in X intersect, then the same holds for X∗.
So X∗ is T4. Conversely, let X∗ satisfy T4 separation axiom and let A and B be
any two disjoint closed sets in X. Then they are closed sets in X∗ having disjoint
neighbourhoods in X∗. But every two open sets in X∗ with nonempty intersection
with X can not be disjoint. So at least one of the sets A or B is empty.

Finally, X∗ is not T1 since for any point x ∈ X∗\X one point set {x} is not
closed in X∗. Also X∗ is not T3 because any point x ∈ X∗\X and closed set X in
X∗ does not have disjoint neighbourhoods.
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