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GENERIC REPRESENTATIONS OF FREE BOXES

In this paper we investigate some open sets in the variety of representations of a free box in a fixed
dimension. We introduce on the category of representations of the free normal box A the functor
Ext1A in the possible elementary way without a transition to some another category which is useful
in the box method applications. Using the standard homological methods and the bilinear forms
methods, we prove that the isomorphism classes of some open sets in the variety of representations
are parameterized by some open set in an affine space, and obtain the number of sub generic
representations.

Â ñòàòòi äîñëiäæóþòüñÿ äåÿêi âiäêðèòi ìíîæèíè áàãàòîâèäó çîáðàæåíü âiëüíîãî áîêñà â ôiêñî-
âàíié ðîçìiðíîñòi. Íà êàòåãîði¨ çîáðàæåíü âiëüíîãî íîðìàëüíîãî áîêñà A ââîäèòüñÿ ôóíêòîð
Ext1A åëåìåíòàðíèì ÷èíîì áåç ïåðåõîäó äî ÿêî¨ñü iíøî¨ êàòåãîði¨, òàê, ùîá öå áóëî çðó÷íî
âèêîðèñòîâóâàòè ó çàñòîñóâàííÿõ. Âèêîðèñòîâóþ÷è ñòàíäàðòíi ãîìîëîãi÷íi ìåòîäè òà ìåòîäè
áiëiíiéíèõ ôîðì, ìè äîâîäèìî, ùî êëàñè içîìîðôiçìó äåÿêèõ âiäêðèòèõ ìíîæèí áàãàòîâè-
äó çîáðàæåíü áîêñà ïàðàìåòðèçóþòüñÿ äåÿêîþ âiäêðèòîþ ìíîæèíîþ â àôiííîìó ïðîñòîði, i
îòðèìó¹ìî ÷èñëî çàãàëüíèõ çîáðàæåíü.

Introduction. In this paper we investigate some open sets in the variety of
representations of a free box in a fixed dimension. We generalize well known result
concerning a decomposition of the considered representations in terms of the non
symmetrical bilinear form [12] from the case of the finite dimensional algebras [5], [6]
on the case of the free boxes [14]. We prove that the isomorphism classes of some
open sets in the variety of representations are parameterized by some open set in
an affine space and prove a corollary on the number of sub generic representations,
analogous to [4] (by generic representation X we mean the following one: in the
variety of representations of corresponding dimension the set of all representations
isomorphic to X is a Zarisky open set). Remark, that in the free box situation work
both the standard homological methods and box reduction technique together with
inspired of it bilinear forms methods as well.

The part 1 contains the general definitions of a free box A, the representations
category of it R(A) e.t.c. To work with the family of the boxes, depending on the
points of some variety we introduce in the part 2 the notion of a scalar representation
over some commutative algebra Λ and investigate in this case a change of a basic
algebra.

In the part 3 we introduce on the category of representations R(A) of the free
normal k− box A (where k is a field) the functor Ext1A. We do it in the possible
elementary way in the category R(A) without a transition to some another category.
It seems, that this way to define Ext1A is the usual in the box method applications.
After the introducing of notion of extension in R(A) we show that Ext1A classifies
the congruence classes of these. We bring also some statements in order to show
that so defined Ext1A has reasonable properties. Thereafter we are able to prove the
result on the decomposition of representations from an open set of the variety of the
representations of the fixed dimension (Proposition 3) and this proof is similar, in
fact, with given in [13] for finite dimensional associative algebras.
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110 S. A. OVSIENKO

1. General definitions
1.1. If S is some finite set, then by |S| we denote the number of elements in

S. We fix an algebraically closed field k. If V is a k-vector space, then by |V|k =
dimk V or by |V| we will denote the dimension of it.

1.2. Let Λ be a commutative finite generated algebra over k and A be a Λ−
category. If α, β ∈ ObA, then the set of morphisms from α to β we will denote
by HomA(α, β), A(α, β), or by (α, β)A, in case of the category of modules (k −
mod, Λ − mod etc.) we will write (X,Y )k instead Homk(X,Y ) etc. We recall,
that ”A is Λ− category” means, that for every α, β ∈ ObA, HomA(α, β) is a
Λ− bimodule, where the left and right multiplications on λ ∈ Λ coincide and the
morphisms superposition in A is Λ-bilinear. A box over A is a quadruple A = (A,
V, µ, ε), often described as a pair A = (A, V ), where V is an A-bimodule, endowed
with the structure of an A-cocategory. This structure is defined by two A−bimodule
morphisms µ : V → V ⊗AV , ε : V → A, where the comultiplication µ is coassociative
and ε satisfies the A-counit axioms up to µ. If we want underline, that the category
A is a Λ− category, we say, that A is a Λ− box. We assume usually, that the
category A is reduced. This means, that all idempotents in A are trivial and A
doesn’t contain isomorphic objects. If these assumptions will be wrong, it will be
especially noted. For example, we will consider the category add(A), that is the
fully additive closure of A.

1.3. A representations of A is a Λ-linear functor X : A → Λ − mod. The
representations of A form a category RΛ(A), where the Λ-module of morphisms
from the representation X to the representation Y is equal to the Λ -module of
A-bimodule morphisms HomA−A(V,HomΛ(X,Y )). A morphism f from X to Y we
will as usually denote by f : X → Y. We use also some another presentation of the
category R(A), hence sometimes the corresponding to f A-bimodule morphism we
denote by b(f) : V → HomΛ(X, Y ) (so b(f)(v) = f(v), v ∈ V ). The multiplication
of the morphisms f1 : X → Y and f2 : Y → Z in RΛ(A) f2f1 : X → Z is defined in
such a way, that b(f2f1) coincides with a superposition

V
µ−→ V ⊗A V

b(f2)⊗b(f1)−→ (Y, Z)Λ ⊗A (X,Y )Λ
m−→ (X,Z)Λ

where m is the morphisms superposition in Λ−mod. The space of the morphisms
from X to Y in R(A) we will denote by HomA(X, Y ) or (X,Y )A.

1.4. We need another but equivalent definition of the notions of the morphism
and the superposition in the category R(A), [1]. By using the conjugated associa-
tivity we get an isomorphism

c : HomR(A)(X, Y )(≃ HomA−A(V, (X,Y )Λ)) ≃ HomA(V ⊗A X, Y ),

so to f : X → Y corresponds to an A-module morphism c(f) : V ⊗A X → Y and
in this terms for f1 : X → Y and f2 : Y → Z in RΛ(A) c(f2f1) is defined as the
superposition c(f2)(1V ⊗ c(f1))(µ⊗ 1X) : V ⊗A X → Z.

If A = (A, V ), A′ = (A′, V ′) are two boxes over Λ, then a morphism of boxes
F : A → A′ is a pair (F0, F1), where F0 : A → A′ is a Λ-functor, F1 : V → V ′

is an A-bimodule morphism with the A-structure on V ′ induced by F0 and the
following holds : πA

A′(F1 ⊗A F1)µA = µA′F1, F0εA = εA′F1, where µA, µA′ (εA,
εA′) are the comultiplications (counits) in A and A′, πA

A′ : V ′ ⊗A V
′→V ′ ⊗A′ V ′ is
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GENERIC REPRESENTATIONS OF FREE BOXES 111

the canonical projection. The morphism F : A → A′ induces a natural functor
F ∗ : RΛ(A

′) → RΛ(A).
An important partial case is following. If A = (A, V ) is a box and F : A → A′

is a Λ-functor, then we can construct a box AF = (A′, V F ), V F = A′ ⊗A V ⊗A A
′

with a box morphism, that is denoted also by F F : A → AF , F = (F0, F1), where
F0 = F : A → A′ and F1 : V → V F for v ∈ V (α, β), α, β ∈ ObA is defined as
F1(v) = 1F (β) ⊗ v ⊗ 1F (α).

Proposition 1 ( [3]). The functor F ∗ : RΛ(A
F ) → RΛ(A), induced by F is full

and faithful and its image consists all representations of A M : A→ Λ−mod, which
can be factorized through F.

1.5. A box A = (A, V ) is called free, provided A is a free category and the
kernel of ε : V → A V̄ (called the kernel of box A, [14]) is a free A-bimodule. We
will consider a free normal box, that is described usually in terms of the bigraph
and differential. A bigraph S = (S0, S1) contains the set of vertexes (or points)
S0 and the set of arrows S1 separated in two parts S0

1 , S
1
1 . The arrows from S0

1

(S1
1) are called and displayed as the solid (dotted) arrows. On S1 is defined a

function of degree deg : S1 → {0, 1}, deg (S0
1) = {0}, deg(S1

1) = {1} and two
functions q, s : S1 → S0 of the source and the stink of an arrow. The denotation
a : α → β, a ∈ S1, α, β ∈ S0 is equivalent to q(a) = α, s(a) = β. By S1(α, β)
(S0

1(α, β), S
1
1(α, β)) we denote the set of all arrows (solid, dotted arrows), leading

from α to β. So called completed bigraph Ŝ of S we get from S by adding to S1 the
set of the loops Σ = {eα}, α ∈ S0, deg(eα) = 1. We will suppose, that the set Ŝ1 is
finite.

By Q = Q(S) we denote the graph, formed by all solid arrows from S,Q =
(Q0, Q1), Q0 = S0, Q1 = S0

1 . By ΛS0 we denote the semi simple category over Λ with
the set of object S0, and by AΛ (or A, if Λ is fixed) we denote the free category

over Λ Λ[Q] , generated by Q. By U (Û) we denote the free graded category over
Λ, generated by S (Ŝ) provided the degree on S1 (Ŝ1) coincides with introduced
above and deg(ΛS0) = {0}. In this situation we can consider the decomposition in

the graded components U = ⊕∞
i=0Ui, (Û = ⊕∞

i=oÛi).
The kernel of the constructed normal free box A = (A, V ) V̄ and free A-

bimodules P−1,P0,PΣ we define as the graded free bimodules over A, generated
by sets of generators, every from each can be identified with a subset in Ŝ. They are
endowed with the degrees 1, 0, 1, 1 and coincides with S1

1 , S
0
1 , Ŝ

1
1 , Σ in the cases V̄ and

the free A-bimodules P−1, P0, PΣ correspondingly. In the cases P−1,P0,PΣ the gen-
erator, corresponding x ∈ S1 we will denote by [x]. If f ∈ Û1(f ∈ V̄ ) and f = f1φf2,
f1, f2 ∈ A, φ ∈ Ŝ1

1 (φ ∈ S1
1), then we define [f ] = f1[φ]f2. Being prolonged by

Λ-linearity [ ] defines an isomorphism [ ] : Û1 → P0 of A-bimodules. The isomor-
phism [ ] induces the canonical inclusion σ : V̄ ↪→ P0, σ : φ 7→ [φ], φ ∈ S1

1 .
In this situation the following equivalent data are used for a description of the

free normal box A = (A, V ), [8], [14]:

a) a differential d : Û → Û, deg d = 1, d2 = 0, such that Leibniz formula holds,
d(eα) = e2α, α ∈ S0 and δ(x) = d(x)− eαx+(−1)degxxeβ ∈ U for any x ∈ S1, x : β →
α, α, β ∈ S0;

b) a differential δ : U → U, such that deg δ = 1, δ2 = 0 and Leibniz formula
holds;
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112 S. A. OVSIENKO

c) the restriction of the differential δ on A and V̄ , δ̄ : A → V̄ , δ̄ : V̄ → V̄ ⊗A V̄ ,
defining on U the differential δ, satisfying b).

We construct an A-bimodule homomorphism ∂ : P−1 → P0 . It is enough to
define ∂ on the generators of P−1, so we set ∂([x]) = [d(x)], x ∈ S0

1 . Consider the
following commutative diagram with exact columns and rows

0 0 0
↓ ↓ ↓

0 → 0 −→ V̄
1V̄−→ V̄ → 0

↓ ↓⊂ σ ↓⊂ i

0 → P−1
∂−→ P0

π−→ V → 0
∥ ↓⊂ πΣ ↓⊂ ε

0 → P−1
∂A−→ PΣ

πA−→ A → 0
↓ ↓ ↓
0 0 0

The lower row is a free A-bimodule resolution of A, ∂A([x]) = [eα]x − x[eβ], x : β →
α, x ∈ S0

1 , πA([eα]) = 1α, α ∈ S0, π is the canonical projection, πΣ([x]) = 0, x ∈ S1
1 ,

πΣ([eα]) = [eα], α ∈ ObS0, ε is induced by πΣ and i by σ. So we can define the free
box A = (A, V ) with the counit ε : V → A and the comultiplication µ : V → V ⊗AV
defined from the following diagram

P0
π−→ V

⊂ µP0 ↓ ⊂ µ ↓
P0 ⊗A P0

π⊗2

−→ V ⊗A V

where µP0([φ]) = ([ ]⊗ [ ])d(φ), φ ∈ Ŝ1
1 . From the Leibniz formula for d and the

equality d2 = 0 follows, that µ is an A-bilinear coassociative comultiplication. In
this case for two representations X, Y ∈ R(A) we can consider a morphism f : X
→ Y as an A− bimodule morphism f : P0 → (X, Y )k, such that f([d(x)]) = 0 for
all x ∈ S0

1 . If f : X → Y, g : Y → Z, then for every φ ∈ S1
1 , φ : α → β holds

b(gf)(φ) = b(g)(eβ)b(f)(φ) + b(g)(φ)b(f)(eα) + m(b(g) ⊗ b(f))(δ(φ)), where m is
the superposition in the category of the vector spaces.

1.6. We will suppose, that the box A = (A, V ) is triangular ( [14], [2]). This

means, that exists a filtration S1 = S
(N)
1 ⊃ S

(N−1)
1 ⊃ . . . ⊃ S

(1)
1 ⊃ S

(0)
1 = ∅, that is

called the triangular filtration, and the following holds: if Ui ⊂ U is the free graded
category, generated by S

(i)
1 , then δ(Ui) ⊂ Ui−1, i = 1, ..., N , in particulary δ(U1) = 0.

Such a system of free generators of the free category U we will call triangular. A
function of the triangular hight h : S1 → Z is defined by following: if x ∈ S

(i)
1 \S(i−1)

1 ,
then h(x) = i. The triangular box we consider together with a triangular filtration
and the number N we will call the triangular hight of the box A. The category of
all representations of a triangular box over the field k is fully additive [8], [14].

1.7. A box A = (A, V ) is called elementary, if the category A is semi simple.
An elementary box is automatically free. If Λ = k, then following evident lemma
holds.

Lemma 1. Let A be a semi simple category over k and A = (A, V ) be an ele-
mentary (not necessary triangular) box. Then A is normal and the set of generators
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GENERIC REPRESENTATIONS OF FREE BOXES 113

of it admits the triangular filtration if and only if the family of k-dual vector spaces
{DV (α, β)}α,β∈S0 forms a finite dimensional local (with the local endomorphism
rings) category DV , where the multiplication in DV m : DV (β, γ)⊗A DV (α, β) →
DV (α, γ)α,β,γ∈S0 is dual to the comultiplication µ : V (α, γ) → V (β, γ)⊗A V (α, β).

1.8. The space of the dimensions of the box A (and the bigraph S) is a R -
vectorspace L = LA with the basis {vα}α∈S0 . In case Λ = k the dimension of a
representation V ∈ Rk(A) is defined as a vector dimV ∈ LA with the coordinates
(dimV )α = dimk V (α), α ∈ S0. Corresponding to the boxA non symmetrical bilinear
form <,> (=<,>A=<,>S) : L × L → R is defined as < vα, vβ >= | Ŝ1

1(α, β) |
− | Ŝ0

1(α, β) |, α, β ∈ S0, [11]. In this situation we denote by (, )(= (, )A = (, )S) the
symmetrical bilinear form, corresponding <,> and f (= fA = fS) the corresponding
quadratic form. A vector x ∈ L is called sincere in γ ∈ S0, if xγ ̸= 0; by suppx we
denote the set of γ ∈ S0, such that xγ ̸= 0; x is called sincere, if suppx = S0.

2. Box, depending on parameters
2.1. The usually assumption in the box method applications is Λ = k. In order

to consider a family of free box structures depending on some parameters, but with
the same bigraph, we introduce the notion of a scalar representation in case when
Λ is a commutative finite generated algebra over the field k.

2.2. If χ : Λ → k is a k-homomorphism, then by Uχ we denote the 1− di-
mensional k-space with the Λ-module structure, induced by χ. By χ − mod we
denote the fully additive subcategory in Λ −mod, generated by Uχ. A representa-
tion F : A → Λ − mod we call χ-scalar, (or scalar, if χ isn’t important) when the
following equivalent statements hold:

1) there exists Fχ : A → χ −mod, such that F = iχFχ, where iχ : χ −mod ↪→
Λ−mod is the canonical inclusion;

2) if Aχ = A⊗Λ k, where Λ acts on k with χ and πχ : A → Aχ is the canonical
functor, then F factorizes through πχ;

3) for every λ ∈ Λ and a ∈ A F (λa) = χ(λ)F (a) = F (aλ).
By R(A) we denote the category of the scalar representations for all χ : Λ → k

(if Λ = k, then R(A) = RΛ(A)). The full subcategory, formed by all χ-scalar
representations we denote by Rχ(A). If X ∈ Rχ(A), X ′ ∈ Rχ′(A), χ ̸= χ′, then
HomR(A)(X,X

′) = 0.
2.3. If A = (A, V ) and A′ = (A′, V ′) are Λ− box and Λ′− box correspondingly

and φ : Λ → Λ′ is a k-homomorphism, that endows A′ and V ′ with the Λ-bimodule
structure, then a morphism of boxes, associated with φ is a triple (φ, F0, F1) : (A, V )
→ (A′, V ′) of φ, a Λ-functor F0 : A→ A′ and an A-bimodule morphism F1 : V → V ′,
commuting with the counits and the comultuplications. In the case φ = 1Λ we omit
it and consider the morphism as a pair (F0, F1).

2.4. The necessary example of a box morphism associated with φ is the following.
Let φ : Λ → Λ′ be a k−homomorhism andA = (A, V ) is a box, F = iφ : A→ A⊗ΛΛ

′

be induced by φ canonical functor A′ = A⊗ΛΛ
′.We can construct as in Proposition1

a Λ− box AF,φ = (A′, V F,φ, µAF,φ , εAF,φ), where V F,φ = A′ ⊗A V ⊗A A
′ together

with the canonical morphism of Λ−boxes Fφ : A → AF,φ. The Λ− bimodule V F,φ

has the obvious structure of Λ′−bimodule, but the box AF,φ isn’t a Λ′−box, since
in general for v ∈ V F,φ, λ′ ∈ Λ′ the equation λ′v = vλ′ isn’t true. We consider
in V F,φ an A′−subbimodule I, generated by (λ′ ⊗ v ⊗ 1− 1⊗ v ⊗ λ′) for all λ′ ∈
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114 S. A. OVSIENKO

Λ′, v ∈ V and set Aφ = A′, V φ = V F,φ/I. Since the comultiplication µAF,φ is Λ′−
bilinear, µAF,φ(I) ⊂ I ⊗A V

F,φ + V F,φ ⊗A I and εAF,φ(I) = 0, we get an induced
comultiplication µφ : V φ → V φ ⊗A′ V φ and a counit εφ : V φ → Aφ. They endow
Aφ = (Aφ, V φ) with the structure of Λ′−box together with an associated with φ
box morphism Fφ : A → Aφ, where F0 = F , F1 (= Fφ

1 : V → V F,φ → V φ) is the
superposition

F1 : v 7→ 1β ⊗ v ⊗ 1α 7→ 1β ⊗ v ⊗ 1α + I, v : α → β, α, β ∈ ObA.

The induced functor F ∗
φ : R(Aφ) → R(A) in general isn’t an equivalence on its

image (as in Proposition 1), since I ̸= 0.

Remark 1. We remark also, that I = 0 in the important partial cases of φ :
either a projection on a factor algebra or a localization.

If we fix χ : Λ′ → k, then for every pair of representations V,W ∈ Rχ(A
φ) ⊂

R(Aφ) and f : V → W holds b(f)(I) = 0. From Proposition 1 and the preceding
construction follows

Lemma 2. 1) Let φ : Λ → Λ′ be a k− homomorphism, A = (A, V ) be a box
over A. Then induced by Fφ = (φ, F0 = iφ, F

φ
1 ) functor between the categories of

the scalar representations F ∗ : R(Aφ) → R(A) for every χ : Λ′ → k induced the
functor F ∗

χ : Rχ(A
φ) → Rχφ(A), that is an equivalence on its image.

2) For χ : Λ → k we denote by Aχ the box Aφ in the case φ = χ and induced by χ
morphism of boxes Fχ : A → Aχ by πχ. Then induced functor π∗

χ : R(Aχ) → R(A)
accomplishes an equivalence R(Aχ) on Rχ(A).

2.5. The dimension of a χ-scalar representation F is an indexed by S0 integer
vector dimF : S0 → Z, such that for α ∈ S0 (dimF )(α) (or (dimF )α) is equal
to the length of a compositional series (or, that the same, the k-dimension) of the
Λ-module F (α). In the case Λ = k this definition coincides with usual. A scalar
representation F we call finite dimensional, if F (α) is a finite dimensional k-space
for any α ∈ S0. The notions of a bilinear symmetrical form e.t.c in the case of the
free box are defined by the bigraph and coincides with introduced earlier.

2.6. As above, we assume that A is free, normal and triangular. By X = X(Λ)
= Specm Λ we denote an algebraic variety, formed by all the k-points χ : Λ →
k. All the scalar representations of A, having a fixed dimension x ∈ LA can be
parameterized with the points of a variety ΠΛ

x (A) = X ×
∏

a∈S0
1

Matk(xq(a) × xs(a)).

If A is fixed we write ΠΛ
x instead ΠΛ

x (A). We denote by |x| =
∑
a∈S0

1

xq(a)xs(a), so

dimk Π
Λ
x = dimk X+ |x| (the dimensions as algebraic varieties). By fΛ

A (x) we denote
a quadratic polynomial fΛ

A (x) = − dimk X + fA(x). Any morphism F : A → A′

between a Λ− box and a Λ′− box associated with some φ : Λ → Λ′, induces a linear
map of the spaces of dimensions l(F ∗) : LA′ → LA such that for V ∈R(A′) dimF ∗(V )
= l(F ∗)(dimV ). Analogously, it is defined for any dimension x ∈ LA′ the morphism
of the varieties Π(F ∗) : ΠΛ′

x (A′) → ΠΛ
l(F ∗)(A). The functor π∗

χ : R(Aχ) → R(A)

(Lemma 2) induced a morphism of varieties of representations πχ : Πk
x(Aχ)→ ΠΛ

x (A),
πχ : (1k, p) 7→ (χ, p).
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GENERIC REPRESENTATIONS OF FREE BOXES 115

By IAx we denote the set of the isomorphism classes of representations of the box
A in the dimension x. Then in the situation above Π(F ∗) induces the map IF : IA

′
x

→ IAl(F ∗)(x).

If S ⊂ ΠΛ
x (A) is some set, then the isoclosure S̄i ⊂ ΠΛ

x (A) we call the set of all
representations Y ∈ ΠΛ

x (A), such that exists X(= X(Y )) ∈ S, isomorphic to Y. S is
called isodence, if S̄i contains an open in Zarisky topology subset. Analogously we
define the isoclosure of a set S of objects in some category C and in this situation
S̄i is a full subcategory in C.

Denote by Gx the algebraic variety
∏

α∈S0

GLk(xα) ×
∏

a∈S1
1

Matk(xq(a) × xs(a)). The

next lemma follows from [14].

Lemma 3. Let A be a free, normal and triangular Λ− box. There is defined a
regular morphism of algebraic varietes u : Gx × ΠΛ

x → ΠΛ
x , such that for x ∈ ΠΛ

x

u−1(x) = x̄i. If X = X(Λ) is irreducible, then if S ⊂ ΠΛ
x is isodence and U ⊂ S is

Zarisky open, then U is also isodence.

2.7. The following lemma obviously follows from Lemma 1.

Lemma 4. Let A be a semi simple category over Λ, A = (A, V ) be an (ele-
mentary) triangular box and x ∈ LA, x > 0 be some dimension. Then the set of
all the isomorphism classes in the dimension x is in the natural bijection with X =
Specm Λ.

3. Functor Ext1A in category of representations of free box
3.1. In this section we suppose Λ = k. If A = (A, V ) is some box with a free

kernel, then we define ExtiA(X,Y ) = ExtiA−A(V, (X,Y )k), i ≥ 0, X, Y ∈ R(A) (we
denote Hom by Ext0. We consider this definition more detailed in the case of the
free box.

Let 0 → P−1
∂−→ P0

π−→ V → 0 be the above constructed A-bimodule resolution
of V, X, Y ∈ R(A) be two representation. Applying the functor HomA−A(?, (X,Y )k)
to this resolution we get the complex

0 → HomA−A(P0, (X,Y )k)
∂∗(X,Y )−→ HomA−A(P−1, (X, Y )k) → 0

The homology of this complex we denote by HA
i (X, Y ), so HA

i (X, Y ) = 0, i ̸= 0,−1.
By definition HA

0 (X,Y ) = Ker ∂∗(X, Y ) = HomA(X,Y ) = (X, Y )A, that we will
denote by (X, Y )0A. As we defined Ext1A(X, Y ) = HA

−1(X, Y ) = Coker ∂∗(X, Y ) =
(X, Y )1A. The standard homological algebra shows, that ExtiA(X, Y ) = ExtiA−A(V,
(X, Y )k) = ExtiA(V ⊗A X, Y ), i ≥ 0. Denote by (φ) the free A-bimodule, generated
by φ : α → β, obviously HomA−A((φ), (X, Y )k) ≃ Homk(X(α), Y (β)). From this
remark and the equality

0∑
i=−1

(−1)i | HomA−A(Pi, (X,Y )k) |=
1∑

i=0

(−1)i | (X, Y )iA |

we get, analogously [12], the following statement:

Proposition 2. < dimX, dimY >A=| (X, Y )0A | − | (X, Y )1A | .
We try shortly to show, that so defined Ext1A has enough good properties, though

the category R(A) is non abelian. We remain, that for every morphism f : X → Y
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from R(A) exists p : Y → Z, such that for every g : Y → T gf = 0 exists h : Z → T
and g = hp holds, c(p) = Coker((1V ⊗ c(f))(µ ⊗ 1X)). But in order to formulate
Ext1A properties we use some more restricted class of morphisms.

If we denote by A the box over A (A, A, 1A, 1A), then R(A) is canonically
equivalent to A −mod. The counit morphism ε : V → A induces the morphism of
the boxes Ω : A = (A, V ) → A = (A,A), such that Ω0 = 1A, Ω1 = ε. Then induced
by Ω functor Ω∗ : R(A) → R(A) is bijective on the objects. The morphism f , that
belongs to Ω∗(R(A)) or, equivalently, such that b(f)(V̄ ) = 0 we will call quiver like.
The sequence

0 → Ω∗(X)
Ω∗(σ)−→ Ω∗(Y )

Ω∗(π)−→ Ω∗(Z) → 0

in R(A) we will call q-exact if and only if

0 → X
σ−→ Y

π−→ Z → 0

is an exact sequence in the abelian category R(A) .
The morphism f : X → Y in R(A) we call a proper monomorphism (epimor-

phism) if for any α ∈ S0 b(f)(eα) : X(α) → Y (α) is a monomorphism (epimor-
phism). Then with the standard induction by the triangular hight ( see [14]) we
prove the following lemma.

Lemma 5. 1) For any proper epimorphism (monomorphism) in R(A) l :
F → G exists an isomorphism f : F ′ → F (g : G → G′), such that
l′ = lf : F ′ → G is a quiver like epimorphism ( l′′ = gl : F → G′ is a
quiver like monomorphism) in R(A).

2) Let 0 → X
i−→ Y

p−→ Z → 0 be a sequence in R(A), such that pi = 0 and

for every α ∈ ObA the sequence 0 → X(α)
b(i)(eα)−→ Y (α)

b(p)(eα)−→ Z(α) → 0 of
k− vector spaces is exact. Then there exists an isomorphism F : Y → Y ′,
such that the sequence 0 → X

σ−→ Y ′ π−→ Z → 0 where σ = Fi, π = pF−1 is
q-exact sequence.

3) In the assumption of 2) i (p) is in the category R(A) a categorical kernel
(cokernel) of p (i).

Proof. In the statement 1) we consider the case of the epimorphism, the case
of the monomorphism treats in the dual way. To avoid the boring denotations in
this part for f ∈ R(A) instead of b(f) we will write f. First we make the following
remark, analogous to [14]:

Remark 2. Let F be some representation from R(A), {F ′
α}α∈S0 be a family of

k− vectorspaces and is given a family of k−linear maps {fτ : F ′
q(τ) → F (s(τ))}, τ

∈ Ŝ1
1 , such that feα : F ′

α → F (α) is an epimorphism for any α ∈ S0. Then there
exists a representation F ′ ∈ R(A) and a morphism f : F ′ → F, such that f(τ) =
fτ for all τ ∈ Ŝ1

1 . If all feα , α ∈ S0 are isomorphisms, then F ′ ∈ R(A) is uniquely
determined and f is an isomorphism in the category R(A).

To construct the representation F ′ we must set all the morphisms F ′(a) : F ′
β →

F ′
α, a ∈ S0

1 , a : β → α. We can assume, as in [14], that F ′(b) is settled for all b ∈ S0
1 ,

h(a) > h(b). Then from the condition of the first chapter, 0 = f(d(a)) = f(eαa − aeβ
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+ δ(a)) follows, that for constructed F ′ and f holds feαF
′(a) = F (a)feβ − f(δ(b)).

Since A is triangular, the right side is defined and since feα is an epimorphism,
we can find from last equation the k− morphism F ′(a). The case feα , α ∈ S0 are
isomorphisms is treated in the same way.

Denote by N the triangular hight of the box A. For any morphism t ∈ R(A) by
n(t) we denote the minimal value of h(φ) for such φ ∈ S1

1 that t(φ) ̸= 0 and N +
1 if f(S1

1) = 0. To prove 1) we consider an isomorphism f : F ′ → F such that the
value of n(t) for t = fl is the maximal possible. If n(t) ̸= N + 1, then the set of
all φ ∈ S1

1 , such that h(φ) = n(t) S ′ isn’t empty. Following the preceding remark
there exists a representation F ′′, such that F ′′(α) = F ′(α) for all α ∈ S0 and an
isomorphism f ′ : F ′′ → F ′ such that f ′(eα) = 1F ′(α), α ∈ S0, f

′(φ) = −t(φ) for φ
∈ S ′, f ′(ψ) = 0 for all other ψ ∈ S1

1 . Then for any φ ∈ S ′ φ : α → β holds (f ′t)(φ)
= f ′(eβ) t(φ) + f ′(φ) t(eα) + m(f ′ ⊗ t)(δ(φ)) = t(φ) − t(φ) = 0 and, obviously
(f ′t)(ψ) = 0 for ψ, such that h(ψ) < h(φ), so n(f ′t) = n((f ′f)l) > n(fl) = n(t),
that is in the contrary with the minimality of the value n(t).

In order to prove 2) we make first an obvious remark. Let Y, Y ′ ∈ R(A) be such,
that Y (α) = Y ′(α) for all α ∈ S0, f : Y → Y ′ be an isomorphism, such that f(eα) =
1Y (α) for all α ∈ S0 and φ ∈ S1

1 be such, that h(φ) = n(f). Then f−1(φ) = −f(φ).
Denote hi,p = min(n(i), n(p)) and Si,p be the set of all φ ∈ S1

1 , h(φ) = hi,p and at
least one from the operators i(φ), p(φ) is nonzero. Suppose, that Si,p is nonempty
and consider φ ∈ Si,p, φ : α→ β.We will construct Y ′ ∈ R(A) and f : Y → Y ′ with
the conditions f(eα) = 1Y (α), f(ψ) = 0 for ψ ∈ S1

1 , ψ ̸= φ and for i′ = fi, p′ = pf−1

holds i′(φ) = 0, p′(φ) = 0. Since for ψ ̸= φ, h(ψ) ≥ h(φ) holds i′(ψ) = i(ψ), p′(ψ) =
p(ψ), we conclude, that either hi,p < hi′,p′ or hi,p = hi′,p′ and Si′,p′ ⊂ Si,p\ {φ}, so,
iterating this construction, we prove 2). Rewrite the condition i′(φ) = 0 : fi(φ) =
f(eβ) i(φ) + f(φ) i(eα) = i(φ) + f(φ) i(eα) = 0. Analogously, p′(φ) = pf−1(φ) =
−p(eβ) f(φ) + p(φ). The condition (pi)(φ) = 0 is equivalent to the commutativity
of diagram

X(α)
i(eα)−→ Y (α)

i(φ) ↓ ↓ p(φ)

Y (β)
−p(eβ)−→ Z(β)

But if in this diagram (in the vector spaces category) the upper arrow is a
monomorphism and the lower arrow is an epimorphism, then there exists h : Y (α)
→ Y (β), such that i(φ) = hi(eα), p(φ) = −p(eβ)h, so we can set f(φ) = h.

We prove 3) in the case of a kernel. Following 2), we can assume, that i and p
are quiver like. Let g : Y ′ → Y be such that pg = 0. For every φ ∈ S1

1 , φ : α →
β as in 2) we calculate 0 = (pg)(φ) = p(eβ) g(φ) + p(φ) g(eα) + m(p ⊗ g)(δ(φ))

= p(eβ) g(φ), so Img(φ) ⊂ Imi(eβ) = Ker p(eβ). Then g(φ), for all φ ∈ Ŝ1
1 defines

the unique f : Y ′ → X, such that g = if by setting f(φ) : Y ′(q(φ)) → X(s(φ)) as
f(φ)(y′) = g(φ)(y′), y′ ∈ Y ′(q(φ)).

3.2. In the case of Lemma 5, 2) the sequence E : 0 → X
i−→ Y

p−→ Z → 0 we
will call (short) exact in R(A) and by EA(Z, X) (Eq

A(Z, X)) we denote the set of all
exact (q-exact) sequences with the first term X and the last term Z. If

0 → X
σ−→ Y ′ π−→ Z → 0

is also an exact sequence, then we say that E is congruent to E ′, (E ∼ E ′) provided
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there exists an isomorphism f : Y → Y ′ such that fi = i′, p′f = p. By EA(Z, X)
(Eq

A(Z, X)) we denote the set of the congruence classes of exact sequences from
EA(Z, X) (Eq

A(Z, X)). Following Lemma 5 the canonical inclusion iE : EA(Z, X) ↪→
E(Z, X) induces the bijection iA : Eq

A(Z, X) ≃ EA(Z, X). Moreover Ω∗ : R(A) →
R(A) gives us the canonical identification iΩ : EA(Z, X) → E

q
A(Z, X) and induces

the projection πΩ : EA(Z, X) → EA(Z, X).
The introduced notions allow to formulate some statements of the category R(A),

analogous to the case of the modules category, for example there exists the vector
space structure on the set EA(X, Y ).

Lemma 6. Let σ : X → Y (π : Y → Z) be a proper monomorphism (a proper
epimorphism).
1) For every f : X → T (g : S → Z) exists the push-out (pull-back) in the category
R(A)

X
σ−→ Y Y ′ π′

−→ S
⊂ f ↓ ⊂ f ′ ↓ (1) ⊂ g′ ↓ ⊂ g ↓ (2)

T
σ′
−→ Y ′ Y

π−→ Z

where σ′ : T → Y ′ is a proper monomorphism (π′ : Y ′ → S is a proper epimorphism).
2) The diagram (1) ((2)) is universal if and only if for every α ∈ ObA the diagram
(1α) ((2α)) in the category of the vector spaces is universal

X(α)
σ(eα)−→ Y (α) Y ′(α)

π′(eα)−→ S(α)
⊂ f(eα) ↓ ⊂ f ′(eα) ↓ (1α) ⊂ g′(eα) ↓ ⊂ g(eα) ↓ (2α)

T (α)
σ′(eα)−→ Y ′(α) Y (α)

π(eα)−→ Z(α)

3) The diagram (1) ((2)) can be included in the commutative diagram with exact
rows 1′ (2 ′), where π, π′ is cokernel morphisms (σ, σ′ is the kernel morphisms)

0 → X
σ−→ Y

π−→ Z → 0
⊂ f ↓ ⊂ f ′ ↓ ∥ (1)

0 → X
σ′
−→ Y ′ π′

−→ Z → 00 → X
σ′
−→ Y ′ π′

−→ Z → 0
∥ ⊂ g′ ↓ ⊂ g ↓ (1)

0 → X
σ−→ Y

π−→ Z → 0


Proof. We consider the proper monomorphism

σ
−f : X → Y ⊕ T and an

isomorphism s : Y ⊕ T → Q such that the superposition i = s

(
σ
−f

)
is quiver like.

We set Y ′ = Q/Imi in the category A−mod and consider the canonical projection
p : Q → Y ′ as a morphism in R(A). After setting (f ′, g′) = ps : Y ⊕ T → Y ′ we
apply Lemma 5 ,3), that proves 1). 2) follows from Lemma 5, 2), 3) follows from 2)
and 5. The case of pull-back treated in the same way.

This defines the maps (Z ′, Z)A × EA(Z, X) → EA(Z
′, X), EA(Z, X) ×(X, X ′)A

→ EA(Z, X
′) that keeps the congruence relations, hence are defined the actions (Z ′,
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Z)A × EA(Z, X) → EA(Z
′, X), EA(Z, X) ×(X, X ′)A → EA(Z, X

′) with usual
associativity conditions. As in the category of modules in the category R(A) for E,
E ′ ∈ EA(Z, X) is defined E ⊕ E ′ ∈ EA(Z ⊕ Z, X ⊕X) and for ∆Z : Z → Z ⊕ Z,
z 7→ (z, z), z ∈ Z, ∇X : X ⊕ X → X, (x1, x2) 7→ x1 + x2, x1, x2 ∈ X is defined
∇Z(E⊕E ′)∆X ∈ EA(Z, X). If E and E ′ are the corresponding classes in EA(Z, X),
then the sum E + E ′ is defined as a class ∇Z(E ⊕ E ′)∆X ∈ EA(Z, X). Analogously
is defined the multiplication of the class of E on the λ ∈ k. The above constructed
πΩ : EA(Z, X) → EA(Z, X) is obviously a k− homomorphism.

3.3.

Lemma 7. There exists the k− vector space isomorphism J : EA(Z, X) →
Ext1A(Z, X).

Proof. We recall some properties of the morphisms in the categories of repre-
sentations of boxes. If f : X → Y and f = Ω∗(g), then c(f) : V ⊗A X → Y is
the superposition gc(1X). If we identify A⊗A Y with Y, then c(f) = ε⊗ f. From it
follows, that if f ′ : Y → Z is such, that f ′ = Ω∗(g′), then c(f ′f) is equal g′c(f) or
c(f ′)(1V ⊗g). The following property from [14] needs the normality and triangularity
of the box : a morphism f : X → Y is an isomorphism if and only if for every α ∈ S0

b(f)(eα) : M(α) → N(α) is a k-isomorphism or equivalently: for every α ∈ S0 c(f)
maps eα ⊗M(α) isomorphically on N(α).

Let E : 0 → X
σ−→ Y

π−→ Z → 0 be an exact sequence in R(A). Following to
Lemma 5, we can assume up to congruence in category R(A), that E is q−exact
and can be considered as an exact sequence in A − mod. The above constructed

exact sequence of A-bimodules 0 → V̄
i−→ V

ε−→ A → 0 splits as a right A-module
sequence, so by the tensor multiplication with Z we get the exact sequence of left

A-modules 0 → V̄ ⊗A Z
i⊗1Z−→ V ⊗A Z

ε⊗1Z−→ Z → 0, where V̄ ⊗ Z is a projective. The
corresponding long exact sequence in R(A) has a form

0 −→ (Z,X)0A −→ (V ⊗A Z,X)0A −→ (V̄ ⊗ Z,X)0A −→

(Z,X)1A
I−→ (V ⊗A Z,X)1A(≃ (Z,X)1A) −→ 0

In the category A−mod is defined the isomorphism JA : EA(Z, X) → Ext1A(Z, X)
and J = JA we define as a homomorphism, making the diagram commutative

EA(A,X)
πA→ EA(Z,X)

JA→ Ext1A(Z,X)
∥ ⊂ πΩ ↓ ⊂ I ↓

E
q
A(A,X)

πA→ Eq
A(Z,X)

JA→ Ext1A(Z,X)

where πA and πA are the canonical projections and Eq
A is identified with EA by iA.

Correctness of this correspondence and the lemma will be proved, when we show,
that EA ∈ (Z,X)1A belongs to Ker I if and only if the corresponding exact sequence
in R(A)

E : 0 → X
σ−→ Y

π−→ Z → 0
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can be included in the following commutative diagram in R(A)

0 → X

⊂ 1X
⊂ 0


−→ X ⊕ Z

(0,1Z)−→ Z → 0
∥ ↓⊂ φ ∥ (1)

0 → X
σ−→ Y

π−→ Z → 0

where φ is an isomorphism in R(A).
If EA ∈ Ker I, then in A−mod exists the following commutative diagram in the

category R(A)

0 → X

⊂ 1X
⊂ 0


−→ X ⊕ (V ⊗A Z)

(0,1V ⊗AZ)
−→ V ⊗A Z → 0

∥ ↓ ⊂ (f, g) ↓ ⊂ c(1Z) (2)

0 → X
σ−→ Y

π−→ Z → 0

The corresponding φ : X ⊕ Z → Y in the category R(A) we define by setting
c(φ) = (fc(1X), g) : (V ⊗AX)⊕(V ⊗AZ) → Y. Since c(1Z) ( fc(1X)) being restricted
on eα ⊗ Z(α) (eα ⊗ X(α)) induces a k−isomorphism on Z(α)( on X(α)), we infer
that c(φ) restricted on (eα ⊗ X(α)) ⊕ (eα ⊗ Z(α)) induces a k−isomorphism on
Y (α) ≃ X(α)⊕ Z(α) for any α ∈ S0, so φ is an isomorphism in R(A).

From the commutativity of the diagram (2) we get f = σ, (0, ε⊗ 1Z) = (πf, πg).

By definitions the inclusion for

(
1X
0

)
: X → X ⊕ Z

c(φ

(
1X
0

)
) = (f(ε⊗ 1X), g)

(
1V ⊗ ε⊗ 1X

0

)
(µ⊗ 1X) =

(f(ε⊗ 1X))((1V ⊗ ε⊗ 1X)(µ⊗ 1X)) = f(ε⊗ 1X)(1V ⊗ 1X) = σ(ε⊗ 1X) = c(σ)

Analogously c(πφ) = (ε ⊗ π)1V ⊗ (f(ε ⊗ 1X), 1V ⊗ g)

µ⊗ 1X 0
0 µ⊗ 1Z
.

 But

(ε⊗π)(1V ⊗f(ε⊗1X), 1V ⊗g) = (ε⊗πf(ε⊗1X), ε⊗πg) = (0, ε⊗1Z) and thereafter
c(πφ) = (0, εµ ⊗ 1Z) = c(0, 1Z). The diagram (1) with the constructed diagram φ
is commutative and it proves the part ”only if”.

On other hand, if exists φ, making the diagram (1) commutative, then we con-
sider c(φ) = (p, q) : (V ⊗A X) ⊕ (V ⊗A Z) → Y and the diagram in the category
A−mod, connecting EA and I(EA) :

0 → X
σ′
−→ Y ′ π′

−→ V ⊗A Z → 0
∥ ↓ ↓ ⊂ ε⊗ 1Z (3)

0 → X
σ−→ Y

π−→ Z → 0

From the commutativity of the diagram (1) in the category A−mod

πφ

(
0
1Z

)
= 1Z , we have in the category R(A) ε ⊗ 1Z = c(1Z) = πc(φ

(
0
1Z

)
) =
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πc(φ)(1V ⊗
(

0
1Z

)
) = πq. But the upper exact sequence in (3) is the pull-back of the

exact sequence below with respect to ε ⊗ 1Z . From the definition of the pull-back
and the equality ε⊗ 1Z = πq follows, that the sequence I(EA) splits in the category
A−mod.

3.4. In this part we bring some (unnecessary for the further proofs) remarks
in order to show, that so defined Ext1A has the common features with Ext1A over a
category (or an associative algebra).

Let A be finite dimensional and P ∈ R(A) be such that Ext1A(P, X) = 0. Since

in R(A) exists an exact sequence 0 → K
i−→ An −→ P → 0 for some n ≥ 1, P is a

direct summand of An and vice versa. Since V is a right projective and ExtiA(X,Y ) =
ExtiA(V ⊗X, Y ) we trivially get, that ExtiA(X, ?) and ExtiA(?, Y ) induce the standard
long exact sequences, connected with the short exact sequence in R(A).

The structure of the cocategory on the bimodule V induces the structure of
A(∞)− cocategory over A on the Z− graded A− bimodule P = {Pi}i∈Z, Pi =
0, i ̸= −1, 0, P0, P−1 as (see [15]). It induces the A(∞)− category structure
over the semisimple category with the set of the objects R(A) on the Z− graded
bimodule {HomA−A(Pi, (V,W )k)}i∈Z, V, W ∈ R(A). On the next hand it defines
on the {ExtiA(V, W )}i∈Z, V, W ∈ R(A) the structure of A(∞)− category, [7]. In
particulary, it defines on {ExtiA(V, W )}i∈Z, V, W ∈ R(A) the structure of a category,
that is accorded with the structure, given by the standard Joneda multiplication.

The preceding definitions makes possible the following formulation.

Proposition 3. Let A = (A, V ) be a triangular free box over a finite generated
domain Λ. Then for every dimension x ∈ L(= LA) exist subsets U ⊂ Ux1 ⊂ Ux2 ⊂
ΠΛ

x , where U is Zarisky open such that if for every (χ,U) ∈ Ux2, χ : Λ → k, U ∈
R(Aχ), U = Uk1

1 ⊕ . . .⊕ Ukt
t is a decomposition of U in the indecomposables, then

1) if (χ,U) ∈ Ux1, then (k1, . . . , kt) up to order doesn’t depend on (χ, U);

2) Ext1Aχ
(Ui, Uj) = 0 for i ̸= j, Ext1Aχ

(Ui, Ui) = 0 if ki ≥ 2, i, j = 1, . . . , t;

3) if xi = dim Ui, then < xi, xj >≥ 0 for i ̸= j and < xi, xi >≥ 0, if ki ≥ 2,
i, j = 1, . . . , t.

We use the following Lemma.

Lemma 8 ( [13]). 1) Let Λ = k. If 0 → X
σ−→ Y

π−→ Z → 0 is a non split
exact sequence in R(A), then |(Y, Y )0A| < |(X ⊕ Z,X ⊕ Z)0A|.

2) If X = X1 ⊕ X2 ∈ R(A) and for any Y ∈ R(A) with dimX = dimY holds
| (X,X)0A | ≤| (Y, Y )0A |, then (X1, X2)

1
A = 0.

Since σ and π are mutual Coker and Ker correspondingly, the proof of this lemma
coincides with given in [13].

The proof of Proposition 3 in situation of finite dimensional associative algebras
is good known, so here we bring only a short sketch of the proof of this statement
for free normal boxes.

Let Λ(ΠΛ
x ) be a coordinate ring of ΠΛ

x , Lx =
∏

a∈Ŝ1
1

Matk(xq(a)×ys(a)), and Λ(Lx) =

Λ[lij] be a coordinate ring of Lx. The stabilizer of every representationX ∈ R(A) can
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be computed as Ker ∂∗(X,X). This means, there exists a system of linear equations
in the unknown (lij) and coefficients from Λ(ΠΛ

x ), such that for every specialization of
the coefficients Φ : Λ(ΠΛ

x ) → k the solution of obtained linear system is a stabilizer of
corresponding point F ∈ ΠΛ

x . Therefore the set of all representations with a stabilizer
of the minimal possible dimension is open in ΠΛ

x . Moreover, the set of representation
R(k1,...,kt) ⊂ ΠΛ

x , x ∈ LA, having a decomposition in the indecomposable Uk1
1 ⊕ . . .⊕

Ukt
t is constructive for any (k1, . . . , kt). Hence, using Lemma 8, we obtain the

proposition 3, 2). Finally, the item 3) of Proposition 3 follows from Proposition 2.
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