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GENERIC REPRESENTATIONS OF FREE BOXES

In this paper we investigate some open sets in the variety of representations of a free box in a fixed
dimension. We introduce on the category of representations of the free normal box A the functor
EXt}q in the possible elementary way without a transition to some another category which is useful
in the box method applications. Using the standard homological methods and the bilinear forms
methods, we prove that the isomorphism classes of some open sets in the variety of representations
are parameterized by some open set in an affine space, and obtain the number of sub generic
representations.

B crarTi nocaimkyoTbes neski BiakpuTi MHOXKUHY OAraTOBUILY 300pakeHb BiIbHOTO OOKCa B (hiKCO-
BaHi# po3miprocTi. Ha kareropii 306pazkeHnb BLIBHOTO HOPMAJIbHOTO OOKCca A BBOAUTHLCA PYHKTOP
EXt}q eTeMEHTAaPHUM YUHOM 0e3 mepexomy J0 dAKoich iHImoi kareropii, Tak, 1mob e 6yao 3pydHO
BUKOPUCTOBYBATH Y 3aCTOCYBAHHSIX. BUKOPUCTORYIOUN CTAHIAPTHI TOMOJIOTIYHI METOIN Ta METOAN
GLmiHiitHIX GOPM, MU TOBOAMMO, IO KJIACH i30MOpPGI3My MesIKUX BIIKPUTUX MHOXKHUH OAraTOBU-
Iy 300pazkeHb OOKCA MapaMeTpPU3yIOThCS JIEsTKOI BIIKPUTOK MHOMXKHHOKI B adiHHOMY IPOCTOPI, i
OTPUMYEMO YHUCJIO 3araJbHAX 300DaKEHbD.

Introduction. In this paper we investigate some open sets in the variety of
representations of a free box in a fixed dimension. We generalize well known result
concerning a decomposition of the considered representations in terms of the non
symmetrical bilinear form [12] from the case of the finite dimensional algebras [5], [6]
on the case of the free boxes [14]. We prove that the isomorphism classes of some
open sets in the variety of representations are parameterized by some open set in
an affine space and prove a corollary on the number of sub generic representations,
analogous to [4] (by generic representation X we mean the following one: in the
variety of representations of corresponding dimension the set of all representations
isomorphic to X is a Zarisky open set). Remark, that in the free box situation work
both the standard homological methods and box reduction technique together with
inspired of it bilinear forms methods as well.

The part 1 contains the general definitions of a free box A, the representations
category of it R(A) e.t.c. To work with the family of the boxes, depending on the
points of some variety we introduce in the part 2 the notion of a scalar representation
over some commutative algebra A and investigate in this case a change of a basic
algebra.

In the part 3 we introduce on the category of representations R(A) of the free
normal k— box A (where k is a field) the functor Ext}. We do it in the possible
elementary way in the category R(A) without a transition to some another category.
It seems, that this way to define Ext} is the usual in the box method applications.
After the introducing of notion of extension in R(A) we show that Ext} classifies
the congruence classes of these. We bring also some statements in order to show
that so defined Exth has reasonable properties. Thereafter we are able to prove the
result on the decomposition of representations from an open set of the variety of the
representations of the fixed dimension (Proposition 3) and this proof is similar, in
fact, with given in [13] for finite dimensional associative algebras.
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110 S. A. OVSIENKO

1. General definitions

1.1. If S is some finite set, then by |S| we denote the number of elements in
S. We fix an algebraically closed field k. If V is a k-vector space, then by |V|x =
dimy V or by |V| we will denote the dimension of it.

1.2. Let A be a commutative finite generated algebra over k and A be a A—
category. If a, 5 € ODbA, then the set of morphisms from « to § we will denote
by Homy(a, 8), A(a, ), or by («,3)a, in case of the category of modules (k —
mod, A — mod etc.) we will write (X,Y)y instead Homy(X,Y") etc. We recall,
that 7 A is A— category” means, that for every a, 5 € ObA, Homu(a, ) is a
A— bimodule, where the left and right multiplications on A € A coincide and the
morphisms superposition in A is A-bilinear. A box over A is a quadruple A = (A,
V, u, €), often described as a pair A = (A, V'), where V is an A-bimodule, endowed
with the structure of an A-cocategory. This structure is defined by two A—bimodule
morphisms i : V — V®sV,e:V — A, where the comultiplication p is coassociative
and ¢ satisfies the A-counit axioms up to u. If we want underline, that the category
A is a A— category, we say, that A is a A— box. We assume usually, that the
category A is reduced. This means, that all idempotents in A are trivial and A
doesn’t contain isomorphic objects. If these assumptions will be wrong, it will be
especially noted. For example, we will consider the category add(A), that is the
fully additive closure of A.

1.3. A representations of A is a A-linear functor X : A — A — mod. The
representations of A form a category Rj(A), where the A-module of morphisms
from the representation X to the representation Y is equal to the A -module of
A-bimodule morphisms Hom 4 4(V, Homy (X, Y)). A morphism f from X to Y we
will as usually denote by f : X — Y. We use also some another presentation of the
category R(A), hence sometimes the corresponding to f A-bimodule morphism we
denote by b(f) : V — Homp(X,Y) (so b(f)(v) = f(v), v € V). The multiplication
of the morphisms f; : X = Y and fo: Y — Z in Ry\(A) fof1 : X — Z is defined in
such a way, that b(ff1) coincides with a superposition

VS v e v B (v 2y @4 (XY ) D (X, 2)a
where m is the morphisms superposition in A — mod. The space of the morphisms
from X to Y in R(A) we will denote by Homu4(X,Y) or (X,Y)4.

1.4. We need another but equivalent definition of the notions of the morphism
and the superposition in the category R(A), [1]. By using the conjugated associa-
tivity we get an isomorphism

¢ : Homp)(X,Y)(~ Homa_4(V, (X,Y)a)) ~ Homu(V ®4 X, Y),

soto f: X — Y corresponds to an A-module morphism ¢(f) : V ®4 X — Y and
in this terms for f; : X — Y and fo : Y — Z in Ry(A) c(fa2f1) is defined as the
superposition ¢(f2)(ly @ ¢(f1))(p®@1x) : V@4 X — Z.

IfA=(AV), A" = (A, V') are two boxes over A, then a morphism of boxes
F: A — A'is a pair (Fy, F}), where Fy : A — A’ is a A-functor, F} : V. — V’
is an A-bimodule morphism with the A-structure on V' induced by Fy and the
following holds : 74/(Fy @4 Fi)ua = paFy, Foeq = enFy, where pa, par (a4,
eu) are the comultiplications (counits) in A and A, 74 : V' @4 V=V’ @4 V' is
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GENERIC REPRESENTATIONS OF FREE BOXES 111

the canonical projection. The morphism F : A — A’ induces a natural functor
F*: RA(.A/) — RA(.A)

An important partial case is following. If A = (A,V) is a box and F': A — A’
is a A-functor, then we can construct a box A" = (A, V), VE=A @,V @4 A
with a box morphism, that is denoted also by F' F : A — A, ' = (Fy, F}), where
Fo=F:A—Aand F, : V = VF forv € V(a,B),a,8 € ObA is defined as
Fi(v) = 1pp) © v @ lp().

Proposition 1 ( [3]). The functor F* : R\(A") — Ra(A), induced by F is full
and faithful and its image consists all representations of A M : A — A — mod, which
can be factorized through F.

1.5. A box A = (A,V) is called free, provided A is a free category and the
kernel of ¢ : V — A V (called the kernel of box A, [14]) is a free A-bimodule. We
will consider a free normal box, that is described usually in terms of the bigraph
and differential. A bigraph S = (Sp, S1) contains the set of vertexes (or points)
Sp and the set of arrows S; separated in two parts SV, S{. The arrows from SY
(S1) are called and displayed as the solid (dotted) arrows. On S; is defined a
function of degree deg : S; — {0,1}, deg (S?) = {0}, deg(S]) = {1} and two
functions ¢,s : S7 — Sy of the source and the stink of an arrow. The denotation
a:a — f,a € S,a,p € Sy is equivalent to ¢(a) = «,s(a) = 5. By Si(a, f)
(SY(a, B), St(cv, B)) we denote the set of all arrows (solid, dotted arrows), leading
from a to 8. So called completed bigraph S of S we get from S by adding to .S; the
set of the loops ¥ = {e,},a € Sy, deg(e,) = 1. We will suppose, that the set Sy is
finite.

By @ = Q(S) we denote the graph, formed by all solid arrows from S,Q =
(Qo, Q1), Qo = Sp, Q1 = SY. By A® we denote the semi simple category over A with
the set of object Sy, and by Ax (or A, if A is fixed) we denote the free category
over A A[Q] , generated by Q. By U (U) we denote the free graded category over
A, generated by S (S) provided the degree on Sy (S) coincides with introduced
above and deg(A®°) = {0}. In this situation we can consider the decomposition in
the graded components U = &2, U;, (U = &2 1U,).

The kernel of the constructed normal free box A = (A,V) V and free A-
bimodules P_1, Py, Py, we define as the graded free bimodules over A, generated
by sets of generators, every from each can be identified with a subset in S. They are
endowed with the degrees 1,0, 1, 1 and coincides with SI, S?, SI, ¥ in the cases V and
the free A-bimodules P_y, Py, Py correspondingly. In the cases P_1, Py, Px: the gen-
erator, corresponding x € S; we will denote by [z]. If f € Uy(f € V) and f = fipfs,
fi, fo € A, o € S (o € S1), then we define [f] = fi[p]fo. Being prolonged by
A-linearity | | defines an isomorphism [ ] : U; — Py of A-bimodules. The isomor-
phism [ ] induces the canonical inclusion o : V < Py, 0 : ¢+ [p], p € St

In this situation the following equivalent data are used for a description of the
free normal box A = (A, V), [8], [14]:

a) a differential d : U — ﬂ, degd = 1,d* = 0, such that Leibniz formula holds,
d(ey) =€, € Sy and 6(z) = d(z) — eqr + (—1)%"zes € U for any x € Sy, 2 : f —
a,a, B € Sp;

b) a differential § : U — U, such that degd = 1,6*> = 0 and Leibniz formula
holds;
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112 S. A. OVSIENKO

c) the restriction of the differential § on Aand V,6: A =V, 0:V =V @4V,
defining on U the differential ¢, satisfying b).

We construct an A-bimodule homomorphism 0 : P_; — Py . It is enough to
define @ on the generators of P_;, so we set d([z]) = [d(z)],x € S{. Consider the
following commutative diagram with exact columns and rows

0 0 0
l \ \
0o - 0 — 1% B 7
4 ICo JC 1
0 - 2?2, 5% 2 S VvV =0
|| JC 7y IC e
- S’
1 \ \
0 0 0

The lower row is a free A-bimodule resolution of A, 04([z]) = [ea]z — zles), x : B —
a,r €8y, ma([ea]) = 1o, € Sp, 7 is the canonical projection, ms([z]) = 0, x € S},
mx([ea]) = [ea], @ € ObSy, € is induced by 7s; and i by o. So we can define the free
box A = (A, V) with the counit € : V' — A and the comultiplication p: V— V@,V
defined from the following diagram

I
C ppg \L C \L
w®2
3)0 XA fpo — V®Av

where g9, ([¢]) = ([ @[ ])d(p), ¢ € SL. From the Leibniz formula for d and the
equality d? = 0 follows, that p is an A-bilinear coassociative comultiplication. In
this case for two representations X, Y € R(A) we can consider a morphism f : X
— Y as an A— bimodule morphism f : Py — (X, Y)y, such that f([d(z)]) = 0 for
alz e S).If f: X - Y, g:Y — Z then for every ¢ € S{, ¢ : @ — (3 holds
b(gf)(e) = blg)(es)b(f) () + b(g)(0)b(f)(ea) + m(b(g) @ b(f))(6(¢)), where m is
the superposition in the category of the vector spaces.

1.6. We will suppose, that the box A = (A,V) is triangular ( [14], [2]). This
means, that exists a filtration S; = S%N) D S§N_1) D...D SP) D S§O) = (), that is
called the triangular filtration, and the following holds: if U; C U is the free graded
category, generated by Sf), then 6(U;) C U;—q,7 = 1,..., N, in particulary §(U;) = 0.
Such a system of free generators of the free category U we will call triangular. A
function of the triangular hight & : S; — Z is defined by following: if 2 € 5"\ $Y,
then h(z) = i. The triangular box we consider together with a triangular filtration
and the number N we will call the triangular hight of the box A. The category of
all representations of a triangular box over the field k is fully additive [8], [14].

1.7. A box A = (A,V) is called elementary, if the category A is semi simple.
An elementary box is automatically free. If A = k, then following evident lemma
holds.

Lemma 1. Let A be a semi simple category over k and A = (A, V') be an ele-
mentary (not necessary triangular) box. Then A is normal and the set of generators
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GENERIC REPRESENTATIONS OF FREE BOXES 113

of it admits the triangular filtration if and only if the family of k-dual vector spaces
{DV(a, B)}apes, forms a finite dimensional local (with the local endomorphism
rings) category DV, where the multiplication in DV m : DV (B,7) ®4 DV (a, 5) —
DV (a,7)apres, s dual to the comultiplication p: V(a,y) = V(B,7) ®a V(a, B).

1.8. The space of the dimensions of the box A (and the bigraph S) is a R -
vectorspace L = L4 with the basis {v,}acs,- In case A = k the dimension of a
representation V' € Ry(A) is defined as a vector dim V' € £, with the coordinates
(dim V), = dimy V (), a € Sy. Corresponding to the box A non symmetrical bilinear
form <,> (=<,>4=<,>g) : £ x L — R is defined as < vo,v5 >= | S}, ) |
— 189, B) |, B € Sy, [11]. In this situation we denote by (,)(= (,)a = (,)s) the
symmetrical bilinear form, corresponding <, > and f (= f4 = fg) the corresponding
quadratic form. A vector x € £ is called sincere in v € Sy, if z,, # 0; by suppz we
denote the set of v € Sy, such that =, # 0; z is called sincere, if suppz = Sp.

2. Box, depending on parameters

2.1. The usually assumption in the box method applications is A = k. In order
to consider a family of free box structures depending on some parameters, but with
the same bigraph, we introduce the notion of a scalar representation in case when
A is a commutative finite generated algebra over the field k.

2.2. If x : A = k is a k-homomorphism, then by U, we denote the 1— di-
mensional k-space with the A-module structure, induced by y. By x — mod we
denote the fully additive subcategory in A — mod, generated by U,. A representa-
tion F': A — A — mod we call x-scalar, (or scalar, if x isn’t important) when the
following equivalent statements hold:

1) there exists F) : A — x — mod, such that F' = i, F), where i, : y — mod —
A — mod is the canonical inclusion;

2) if A, = A®x k, where A acts on k with x and 7, : A — A, is the canonical
functor, then F' factorizes through m,;

3) for every A € A and a € A F(Aa) = x(A\)F(a) = F(al).

By R(A) we denote the category of the scalar representations for all xy : A — k
(if A = k, then R(A) = Rp(A)). The full subcategory, formed by all y-scalar
representations we denote by R, (A). If X € R,(A), X' € Ry (A), x # X, then
Homp4) (X, X’) = 0.

2.3. f A= (AV)and A = (A", V') are A— box and A'— box correspondingly
and ¢ : A — A’ is a k-homomorphism, that endows A" and V'’ with the A-bimodule
structure, then a morphism of boxes, associated with ¢ is a triple (@, Fy, F7) : (A, V)
— (A", V') of p, a A-functor Fy : A — A" and an A-bimodule morphism F; : V — V7,
commuting with the counits and the comultuplications. In the case p = 1, we omit
it and consider the morphism as a pair (Fp, F}).

2.4. The necessary example of a box morphism associated with ¢ is the following.
Let ¢ : A = A’ be ak—homomorhism and A = (A4, V) isabox, FF =i, : A - AQ)N
be induced by ¢ canonical functor A’ = A®,A’. We can construct as in Propositionl
a A— box AP = (A, VE? pare, eqre), where VB9 = A’ @, V @4 A’ together
with the canonical morphism of A—boxes F¥ : A — A% The A— bimodule V¥
has the obvious structure of A’—bimodule, but the box A% isn’t a A’—box, since
in general for v € V¢ )N € A’ the equation Nv = v\ isn’t true. We consider
in V% an A’—subbimodule I, generated by (N ®v®@1—1®@v® ) for all X' €
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114 S. A. OVSIENKO

A, v €V and set A? = A", V¥ = VE®/I. Since the comultiplication piyre is A'—
bilinear, pgre(I) C I @2 VE9 + VB @4 T and e4re(I) = 0, we get an induced
comultiplication p, : V¥ — V¥ @4 V¥ and a counit €, : V¥ — A¥. They endow
A? = (A®,V¥) with the structure of A’—box together with an associated with ¢
box morphism F, : A — A?, where [y = F, Fy (= FY : V — VE¥ — V%) is the
superposition

Fiiv=13009l, = 130001, +1,v:a—= [,a, B € ObA.

The induced functor F; : R(A¥) — R(A) in general isn’'t an equivalence on its
image (as in Proposition 1), since I # 0.

Remark 1. We remark also, that I = 0 in the important partial cases of ¢ :
either a projection on a factor algebra or a localization.

If we fix x : A — k, then for every pair of representations V,W € R, (A?) C
R(A?) and f : V — W holds b(f)(I) = 0. From Proposition 1 and the preceding
construction follows

Lemma 2. 1) Let ¢ : A — A be a k— homomorphism, A = (A, V) be a box
over A. Then induced by F, = (¢, Fy = iy, FY) functor between the categories of
the scalar representations F* : R(A¥) — R(A) for every x : ' — k induced the
functor Fy : Ry(A¥) — R\ ,(A), that is an equivalence on its image.

2) For x : A — k we denote by A, the box A¥ in the case ¢ = x and induced by x
morphism of boxes F\ : A — A, by 7. Then induced functor 7 : R(A,) — R(A)
accomplishes an equivalence R(A,) on R, (A).

2.5. The dimension of a y-scalar representation F' is an indexed by S, integer
vector dim F' : Sy — Z, such that for a € Sy (dim F')(«) (or (dim F'),) is equal
to the length of a compositional series (or, that the same, the k-dimension) of the
A-module F(«). In the case A = k this definition coincides with usual. A scalar
representation F' we call finite dimensional, if F'(«) is a finite dimensional k-space
for any a € Sy. The notions of a bilinear symmetrical form e.t.c in the case of the
free box are defined by the bigraph and coincides with introduced earlier.

2.6. As above, we assume that A is free, normal and triangular. By X = X(A)
= Specm A we denote an algebraic variety, formed by all the k-points y : A —
k. All the scalar representations of A, having a fixed dimension x € L, can be
parameterized with the points of a variety II}(A) = X x [] Maty(z4@) X Tsa))-

a€s?
If A is fixed we write II2 instead II2(A). We denote by |z| = qu(a)xs(a)7 SO
a€sy
dimy 118 = dimy X + |z| (the dimensions as algebraic varieties). By f4(z) we denote
a quadratic polynomial f4(z) = —dimy X + fa(z). Any morphism F : A — A’
between a A— box and a A’— box associated with some ¢ : A — A’, induces a linear
map of the spaces of dimensions [(F*) : £ 4 — L4 such that for V€ R(A’) dim F*(V)
= [(F*)(dim V). Analogously, it is defined for any dimension = € £ 4 the morphism
of the varieties II(F*) : IIY(A) — HﬁF*)(A). The functor 7} : R(A,) — R(A)
(Lemma 2) induced a morphism of varieties of representations r, : II¥(A,) — TIA(A),

Ty (L, p) = (X, p)-
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GENERIC REPRESENTATIONS OF FREE BOXES 115

By J# we denote the set of the isomorphism classes of representations of the box
A in the dimension 2. Then in the situation above II(#*) induces the map Jp : 4
= Jir) 0

If S C ITA(A) is some set, then the isoclosure S? C II2(A) we call the set of all
representations Y € IT4(A), such that exists X (= X(Y)) € S, isomorphic to Y. S is
called isodence, if S? contains an open in Zarisky topology subset. Analogously we
define the isoclosure of a set S of objects in some category C' and in this situation
S% is a full subcategory in C.

Denote by G, the algebraic variety [[ GLik(2a) X [] Maty(2g@) X Zs(a)). The

a€So aes]
next lemma follows from [14].

Lemma 3. Let A be a free, normal and triangular A— box. There is defined a
regular morphism of algebraic varietes u : Gy x 1A — TI%, such that for x € 112

ut(z) = 2. If X = X(A) is irreducible, then if S C 112 is isodence and U C S is

Zarisky open, then U is also isodence.
2.7. The following lemma obviously follows from Lemma 1.

Lemma 4. Let A be a semi simple category over A, A = (A, V) be an (ele-
mentary) triangular box and x € Ly, © > 0 be some dimension. Then the set of
all the isomorphism classes in the dimension x is in the natural bijection with X =
Specm A.

3. Functor Ext}, in category of representations of free box

3.1. In this section we suppose A = k. If A = (A4,V) is some box with a free
kernel, then we define Ext’(X,Y) = Exty, ,(V,(X,Y)),i > 0,X,Y € R(A) (we
denote Hom by Ext’. We consider this definition more detailed in the case of the
free box.

Let 0 — P_; 92, Py — V — 0 be the above constructed A-bimodule resolution
of V, X, Y € R(A) be two representation. Applying the functor Hom,_ 4 (7, (X, Y)x)
to this resolution we get the complex

0 — Homma_a(Po, (X, Y)) " Homu_a(P_1, (X, Y)) — 0

The homology of this complex we denote by H*(X,Y), so H*(X,Y) = 0,4 # 0, —1.
By definition H$(X,Y) = Ker 9*(X,Y) = Homy(X,Y) = (X,Y),, that we will
denote by (X,Y)Y. As we defined Ext} (X, V) = H4 (X, Y) = Coker 0*(X, Y) =
(X, Y)}. The standard homological algebra shows, that Ext’ (X, V) = Ext’,_,(V,
(X,Y)y) = Exty(V ®4 X, Y),i > 0. Denote by (¢) the free A-bimodule, generated
by ¢ : o — (3, obviously Homa_4((), (X, Y)i) =~ Homy (X («), Y(5)). From this
remark and the equality

0 1

> (1) | Homa—a(Ps, (XY )) = Y (=) [ (X, Y)Y |

i=—1 =0
we get, analogously [12], the following statement:
Proposition 2. < dim X, dimY >,4=| (X, V)% | — | (X, V)4 |.
We try shortly to show, that so defined Ext}; has enough good properties, though
the category R(A) is non abelian. We remain, that for every morphism f: X — Y
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116 S. A. OVSIENKO

from R(A) exists p: Y — Z, such that forevery g: Y — T gf =0existsh: Z — T
and g = hp holds, ¢(p) = Coker((ly ® ¢(f))(x ® 1x)). But in order to formulate
Ext} properties we use some more restricted class of morphisms.

If we denote by A the box over A (A, A, 14, 14), then R(A) is canonically
equivalent to A — mod. The counit morphism € : V' — A induces the morphism of
the boxes 2 : A = (A, V) = A = (A, A), such that Qy = 14, Q; = . Then induced
by Q functor Q* : R(A) — R(A) is bijective on the objects. The morphism f, that
belongs to Q2*(R(A)) or, equivalently, such that b(f)(V) = 0 we will call quiver like.

The sequence

0— 0 (X) X9 07 (v) L@ a*(2) - 0

in R(A) we will call g-exact if and only if
0+X-5Y 5270

is an exact sequence in the abelian category R(A) .

The morphism f : X — Y in R(A) we call a proper monomorphism (epimor-
phism) if for any a € Sy b(f)(en) : X(a) — Y(«) is a monomorphism (epimor-
phism). Then with the standard induction by the triangular hight ( see [14]) we
prove the following lemma.

Lemma 5. 1) For any proper epimorphism (monomorphism) in R(A) [ :
F — G exists an isomorphism f : F' — F (g : G — G'), such that
I'=1f : F/ — G is a quwer like epimorphism (1" = gl : F — G is a
quiver like monomorphism) in R(A).

2) Let 0 — X Y 2% Z 0 be a sequence in R(A), such that pi = 0 and
for every a € ObA the sequence 0 — X («) vlee) Y () v Z(a) = 0 of
k— wector spaces is exact. Then there exists an isomorphism F :Y — Y/,
such that the sequence 0 = X Y’ = 7 — 0 where 0 = Fi, 7 = pF~! is
q-exact sequence.

3) In the assumption of 2) i (p) is in the category R(A) a categorical kernel
(cokernel) of p (i).

Proof. In the statement 1) we consider the case of the epimorphism, the case
of the monomorphism treats in the dual way. To avoid the boring denotations in
this part for f € R(A) instead of b(f) we will write f. First we make the following
remark, analogous to [14]:

Remark 2. Let F' be some representation from R(A), {F.}acs, be a family of
k— wectorspaces and is given a family of k—linear maps {f; : F;(T) — F(s(m)}, 7
e S!, such that f., : F', — F(«) is an epimorphism for any o € Sy. Then there
exists a representation F' € R(A) and a morphism f : F' — F, such that f(1) =
fr forallT € SY. If all f.., o € Sy are isomorphisms, then F' € R(A) is uniquely
determined and f is an isomorphism in the category R(A).

To construct the representation F” we must set all the morphisms F'(a) : Fj —
F! ae Sy a: B — a We can assume, as in [14], that F’(b) is settled for all b € S?,
h(a) > h(b). Then from the condition of the first chapter, 0 = f(d(a)) = f(eaa — aegs
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+ d(a)) follows, that for constructed F” and f holds f., F'(a) = F(a)fe, — f(5(D)).
Since A is triangular, the right side is defined and since f., is an epimorphism,
we can find from last equation the k— morphism F’(a). The case f., , a« € Sy are
isomorphisms is treated in the same way.

Denote by N the triangular hight of the box A. For any morphism ¢ € R(A) by
n(t) we denote the minimal value of h(p) for such ¢ € S| that t(p) # 0 and N +
1if f(S}) = 0. To prove 1) we consider an isomorphism f : F’ — F such that the
value of n(t) for t = fl is the maximal possible. If n(t) # N + 1, then the set of
all ¢ € ST, such that h(p) = n(t) S’ isn’t empty. Following the preceding remark
there exists a representation F”, such that F”(a) = F'(«) for all @ € Sy and an
isomorphism f’ : F"” — F’ such that f'(en) = 1p(a), @ € So, f'(p) = —t(p) for ¢
€ S, f'(v) = 0 for all other ¢ € S}. Then for any o € S’ v : @ — 8 holds (f't)(p)
= f'(es) t(p) + f'(¢) tlea) + m(f' @ 1)(0(¢)) = t(p) — t() = 0 and, obviously
(JH)(6) = 0 for 1, such that A(¥) < h(p), so n(f't) = n((f'1)1) > n(fl) = n(t),
that is in the contrary with the minimality of the value n(t).

In order to prove 2) we make first an obvious remark. Let Y, Y’ € R(A) be such,
that Y (o) = Y'(a) for all « € Sy, f : Y — Y’ be an isomorphism, such that f(e,) =
ly(q) for all @ € Sy and ¢ € S} be such, that h(p) = n(f). Then f~(p) = —f(p).
Denote h;, = min(n(i), n(p)) and S;, be the set of all p € S, h(¢) = h;, and at
least one from the operators i(¢), p(¢) is nonzero. Suppose, that S;, is nonempty
and consider ¢ € S;,,, ¢ : @« — . We will construct Y’ € R(A) and f: Y — Y’ with
the conditions f(eq) = ly(a), f(¥) = 0for ¢ € Si, ¢ # p and for i’ = fi,p' = pf~*
holds #() = 0, /(1) = 0. Since for £ o, h() > h(p) holds () = i(4), /() =
p(), we conclude, that either h;, < hy, or h;, = hyy and Sy, C S\ {¢}, so,
iterating this construction, we prove 2). Rewrite the condition ¢'(¢) = 0 : fi(p) =
Fles) ile) + £(9) ilea) = i) + () i(ea) = 0. Analogously, /() = pf () =
—pleg) f(¢) + p(p). The condition (pi)(¢) = 0 is equivalent to the commutativity
of diagram

Y(a)
i(p) i/ i/ p(¥)
v 2 z(8)
But if in this diagram (in the vector spaces category) the upper arrow is a
monomorphism and the lower arrow is an epimorphism, then there exists h : Y («)
— Y (f), such that i(p) = hi(e,), p(¢) = —p(es)h, so we can set f(¢) = h.

We prove 3) in the case of a kernel. Following 2), we can assume, that ¢ and p
are quiver like. Let g : Y/ — Y be such that pg = 0. For every ¢ € S{, ¢ : a —

B as in 2) we calculate 0 = (pg)(p) = p(es) g(@) + p(¢) glea) + mp ® g)(5())
= p(es) g(v), so Img(p) C Imi(eg) = Ker p(eg). Then g(p), for all ¢ € S} defines

the unique f: Y’ — X, such that g = if by setting f(p) : Y'(¢(p)) = X(s(¢)) as
F@)y) = 9()y), v € Y'(a(p))-

3.2. In the case of Lemma 5, 2) the sequence £ : 0 - X Y 2 Z 50 we
will call (short) exact in R(A) and by E4(Z, X) (€%(Z, X)) we denote the set of all
exact (g-exact) sequences with the first term X and the last term Z. If

0-X Y 57250

is also an exact sequence, then we say that F is congruent to E’, (E ~ E’) provided
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there exists an isomorphism f : Y — Y’ such that fi =, p'f = p. By Ex(Z, X)
(E%(Z, X)) we denote the set of the congruence classes of exact sequences from
Ea(Z, X) (E%(Z, X)). Following Lemma 5 the canonical inclusion ig : E4(Z, X) <
&(Z, X) induces the bijection i4 : EY(Z, X) ~ E4(Z, X). Moreover Q* : R(A) —
R(A) gives us the canonical identification iq : €4(Z, X) — £} (Z, X) and induces
the projection mq : EA(Z, X) — E4(Z, X).

The introduced notions allow to formulate some statements of the category R(A),
analogous to the case of the modules category, for example there exists the vector
space structure on the set E4(X, Y).

Lemma 6. Leto: X — Y (n:Y — Z) be a proper monomorphism (a proper
epimorphism).
1) For every f: X — T (g: S — Z) exists the push-out (pull-back) in the category
R(A)

/

x 5 Y Y’ s S
cfb ocfl M) g Cgl (2)
T I Y’ Y =  Z

where o’ : T — Y is a proper monomorphism (' : Y — S is a proper epimorphism,).
2) The diagram (1) ((2)) is universal if and only if for every a € ObA the diagram
(1a) ((2a)) in the category of the vector spaces is universal

X@) ™ y() Yia) ™9 S
Cflea)d  Cflea) b (lo)  Cg'lea)d Cyglea) L (20
T@) =9 vy Y@ ™ Z)

3) The diagram (1) ((2)) can be included in the commutative diagram with exact
rows 1 (2'), where m, 7' is cokernel morphisms (o, o' is the kernel morphisms)

0o—» x = Yy 5 Z =50

cri cfi I (1)

0 X S vV T Z 50
0> X % v " 7z 50

| cqgl cgl (1)
0—- X = Yy S Z =0

Proof. We consider the proper monomorphism 7 X 5> Y®T and an

—f

isomorphism s : Y @& T — () such that the superposition i = s is quiver like.

o
—f
We set Y/ = @/Imi in the category A — mod and consider the canonical projection
p: @ — Y’ as a morphism in R(A). After setting (f', ¢') =ps: Y & T — Y’ we
apply Lemma 5 ,3), that proves 1). 2) follows from Lemma 5, 2), 3) follows from 2)
and 5. The case of pull-back treated in the same way.

This defines the maps (Z', Z)4 x E4(Z, X) — E4(Z', X), Ea(Z, X) X (X, X )4
— E4(Z, X') that keeps the congruence relations, hence are defined the actions (7,
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Da X Ex(Z, X) = Ex(Z', X), Ea(Z, X) (X, X')a — Ex(Z, X') with usual
associativity conditions. As in the category of modules in the category R(A) for E,
E € &4(Z, X)isdefined E@QE € E4(ZdZ, XD X)and for Ay : Z — Z D Z,
2 (2,2),2€ Z, Vx : X®X = X, (£1,22) — 71 + X2, 71, x5 € X is defined
V2(E®E)Ax € E4(Z, X). If E and E’ are the corresponding classes in E4(Z, X),
then the sum E + E’ is defined as a class Vz(E @© E')Ax € E4(Z, X). Analogously
is defined the multiplication of the class of E on the A € k. The above constructed
o Ea(Z, X) — Eq(Z, X) is obviously a k— homomorphism.
3.3.

Lemma 7. There exists the k— wvector space isomorphism J : Ex(Z, X) —
Euty(Z, X).

Proof. We recall some properties of the morphisms in the categories of repre-
sentations of boxes. If f : X — Y and f = Q*(g), then ¢(f) : V@4 X — Y is
the superposition ge(1y). If we identify A ®,4 Y with Y, then ¢(f) = e ® f. From it
follows, that if f': Y — Z is such, that f" = Q*(¢’), then ¢(f'f) is equal ¢’'c(f) or
c(f)(1y ®g). The following property from [14] needs the normality and triangularity
of the box : a morphism f : X — Y is an isomorphism if and only if for every o € .Sy
b(f)(eq) : M(ar) = N(«) is a k-isomorphism or equivalently: for every a € Sy ¢(f)
maps e, ® M («) isomorphically on N(«).

Let £:0— X -2 Y - Z — 0 be an exact sequence in R(A). Following to
Lemma 5, we can assume up to congruence in category R(A), that E is g—exact
and can be considered as an exact sequence in A — mod. The above constructed
exact sequence of A-bimodules 0 =V —= V — A — 0 splits as a right A-module
sequence, so by the tensor multiplication with Z we get the exact sequence of left
A-modules 0 — V ®4 Z By a2 i /N 0, where V ® Z is a projective. The
corresponding long exact sequence in R(A) has a form

00— (Z,X)% — (Veriaz,X))— (VezX)—

(Z, X))y -5 (V@u Z,X)4 (= (Z, X)) — 0

In the category A —mod is defined the isomorphism Ju : Ex(Z, X) — Ext4(Z, X)
and J = J4 we define as a homomorphism, making the diagram commutative

EA(AX) ™ EuZ,X) 8 Exti(Z X)
| Cmol crll

E1(AX) ™ EYZX) ¥ Exti(Z X)

where 74 and 74 are the canonical projections and EY is identified with Ej4 by ix4.
Correctness of this correspondence and the lemma will be proved, when we show,
that Ea € (Z, X)) belongs to Ker I if and only if the corresponding exact sequence
in R(A)

E:0-X -3Y 55750
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can be included in the following commutative diagram in R(A)

(<)
- O (011Z)

00— X — X/ = 7 =0
| lcy | (1)
0—» X = Y s Z 50

where ¢ is an isomorphism in R(A).
If E4 € Ker I, then in A —mod exists the following commutative diagram in the

category R(A)
Clx
co0

0—- X "—' Xo(VesZ) (0’1&”2) V ®aZ —0
I L C(f.9) b Ce(ly) (2)

0—- X Y SN A —0

The corresponding ¢ : X & Z — Y in the category R(A) we define by setting
clp)=(fc(lx),9) : (Vs X)D(V®aZ) — Y. Since c(1z) ( fe(lx)) being restricted
on e, ® Z(a) (eq ® X()) induces a k—isomorphism on Z(«)( on X («)), we infer
that c(p) restricted on (e, @ X()) ® (eq ® Z(«)) induces a k—isomorphism on
Y(a) ~ X(a) & Z(«) for any a € Sp, so ¢ is an isomorphism in R(A).

From the commutativity of the diagram (2) we get f =0, (0,e® 1) = (7 f,7g).

By definitions the inclusion for <16( ) X —=XaeZ

e (3 ) = rew g (V5T ) s in) -

(fe@lx)(ly®e®lx)(p®1x)) = f(e®@1x)(ly ® 1x) = 0(e ® 1x) = ¢(0)

,u®1x 0
Analogously c¢(my) = (e ®@ 1)1y ® (f(e ® 1x),1ly ® g) 0 p®lz | But

(exm)(ly@fe®1lx), ly®g) = (e@7nf(e®1x), e®@mg) = (0, e®1y) and thereafter
c(mp) = (0, ep ®1z) = ¢(0,1z). The diagram (1) with the constructed diagram ¢
is commutative and it proves the part "only if”.

On other hand, if exists ¢, making the diagram (1) commutative, then we con-
sider ¢(¢) = (p,q) : (V®a X) B (V ®4 Z) — Y and the diagram in the category
A —mod, connecting E4 and I(Ejy) :

0> X 5 v " vVeuZ 0
|| d } Ce®ly (3)
0—- X - v S A =0

From the commutativity of the diagram (1) in the category A — mod

T <1OZ) = 1z, we have in the category R(A) e ® 1z = c(1z) = mc(p <10Z)) -
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me(p)(ly @ (10 )) = mq. But the upper exact sequence in (3) is the pull-back of the
zZ

exact sequence below with respect to ¢ ® 1. From the definition of the pull-back
and the equality e ® 1, = mq follows, that the sequence I(E4) splits in the category
A — mod.

3.4. In this part we bring some (unnecessary for the further proofs) remarks
in order to show, that so defined Ext}; has the common features with Ext) over a

category (or an associative algebra).
Let A be finite dimensional and P € R(A) be such that Ext (P, X) = 0. Since

in R(A) exists an exact sequence 0 — K — A" — P — 0 for some n > 1, P is a
direct summand of A™ and vice versa. Since V' is a right projective and Ext’ (X,Y) =
Ext’ (V®X,Y) we trivially get, that Ext’y (X, ?) and Ext%(?,Y) induce the standard
long exact sequences, connected with the short exact sequence in R(A).

The structure of the cocategory on the bimodule V' induces the structure of
A(oco)— cocategory over A on the Z— graded A— bimodule P = {P;}icz, P; =
0,7 # —1, 0, Py, Py as (see [15]). It induces the A(oo)— category structure
over the semisimple category with the set of the objects R(A) on the Z— graded
bimodule {Homa_4(P;, (V,W)k)}icz, V. W € R(A). On the next hand it defines
on the {Ext’ (V, W)}ticz, V, W € R(A) the structure of A(co)— category, [7]. In
particulary, it defines on {Ext’(V, W)}icz, V, W € R(A) the structure of a category,
that is accorded with the structure, given by the standard Joneda multiplication.

The preceding definitions makes possible the following formulation.

Proposition 3. Let A = (A, V) be a triangular free box over a finite generated
domain A. Then for every dimension x € L(= L4) exist subsets W C Uy C Uy C
1A, where W is Zarisky open such that if for every (x,U) € Uz, X : A =k, U €

R(A,), U= U%‘l D...P Uf‘t is a decomposition of U in the indecomposables, then
1) if (x,U) € Uy, then (ki,... k) up to order doesn’t depend on (x, U);
9) Exty (U;,Uj) =0 fori # j, Buty (U, U) =0 ifk > 2,0,5 = 1,...,t;

3) if x; = dim U, then < z;,x; >> 0 fori# j and < x;,z; >> 0, if k; > 2,
ii=1,... .1

We use the following Lemma.

Lemma 8 ([13]). 1) LetA=k. If 0= X Y - Z — 0 is a non split
ezact sequence in R(A), then (VY| < |[(X @ Z, X & 2)Y].

2) If X =X, ® Xy € RA) and for any Y € R(A) with dim X = dimY holds
| (X, X% | <[ (V.Y )5 |, then (X1, Xa)) = 0.

Since o and 7 are mutual Coker and Ker correspondingly, the proof of this lemma
coincides with given in [13].

The proof of Proposition 3 in situation of finite dimensional associative algebras
is good known, so here we bring only a short sketch of the proof of this statement
for free normal boxes.

Let A(II}) be a coordinate ring of 114, L, = ] Maty(2qa) X Ys(a)), and A(L,) =

acs]
A[l;;] be a coordinate ring of L,. The stabilizer of every representation X € R(A) can
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be computed as Ker 0*(X, X). This means, there exists a system of linear equations
in the unknown (/;;) and coefficients from A(II2), such that for every specialization of
the coefficients ® : A(IT%) — k the solution of obtained linear system is a stabilizer of
corresponding point ' € IT2. Therefore the set of all representations with a stabilizer
of the minimal possible dimension is open in IT2. Moreover, the set of representation
Ru,,..x) C H;\, x € L4, having a decomposition in the indecomposable UE“ ®...P
U}‘“ is constructive for any (ki,...,k;). Hence, using Lemma 8, we obtain the
proposition 3, 2). Finally, the item 3) of Proposition 3 follows from Proposition 2.
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