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The presented calculation model enables to estimate a change in the stress-strain
behaviour of a reinforced concrete bar during a simple proportional loading at all
stages of'its performance, including destruction, with due account of the actual proper-
ties of materials.
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Introduction. Rational design of building structures encounters the well-known
obstacles as concrete is a composite, non-elastic, heterogeneous and anisotropic mate-
rial susceptible both to crack formation and brittle fracture as well as to demonstration
of plastic behaviour, creeping, shrinkage and swelling.

Resistance of reinforced concrete elements to external loads under complex stress-
strain condition which is characterized by origination of transverse and axial forces,
bending and twisting moments has been understudied. Consequently, a semi-empirical
approach to their calculation is practiced.

Therefore, the research in this line is important and relevant. It is closely related
to the research mix of the Academy, is systemic by its nature and makes an integral
component of the state-funded topic No.0108U000559 of the Ministry of Education,
Science, Youth and Sports of Ukraine.

Analysis of prior research. Pioneer research of physical non-linearity of concrete
and reinforced concrete was conducted by A.F. Loleyta [1] and V.I. Murashev [2]. Their
works have created prerequisites for the development of engineering methods to calcu-
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late the reinforced concrete structures subjected to bending. However, these theories de-
scribe the nature of stress distribution across the height of element section just at certain
stages of their behaviour and do not allow of tracing the actual stress-strain condition
until the boundary condition is reached, as a rule of normal sections.

As it turned out, in order to study the process of strain of the considered complex
stressed reinforced concrete elements, it is necessary to apply a theory of plasticity and
methods used in mechanics to describe deformation and destruction of a solid body.

First studies of plasticity of materials subjected to stress-strain condition were con-
ducted by L. Prandtl, Ye. Reiss, O.A. Ilyushin et al. However, quite soon it was found
that said classic theories used for describing concrete plasticity are inadequate as con-
crete shows different strength at compression and tension and can crack causing strain-
induced anisotropy and dilatation under three-axial compression.

G.Geniyev, V.M.Kissyuk and G. A. Tyupin [3] were the first who proposed to take
into account all above mentioned peculiarities of concrete strain and to consider con-
crete as a non-linear elastic isotropic material, and reinforced concrete — as a trans-
versely isotropic material both prior to and after cracks have been formed.

The works by A.l. Kozachevskyi, V.M. Kruglov [4], S.F. Klovanych [5] and
V.I.LKorsun [6] substantially developed the plasticity theory for concrete and reinforced
concrete that had been proposed in [3].

In their studies [7, 8, 9] M.1. Karpenko and his disciples developed a theory of small
elastic-plastic deformations which considers concrete, both before and after the cracks
appear, as an anisotropic material with discrete arrangement of reinforcement.

Modern concepts of the theory of strength of concrete under three-axial stress con-
dition were laid by M.M. Filonenko- Borodych [10], G.O. Geniyev, V.M. Kissyuk,
G.A. Tyupin [3], G.S. Pysarenko, A.A. Lebedev [11], T.A. Balan, S.F. Klovanych [12],
M.I. Karpenko [7] and his disciples - Dei Poli [13], K.H. Gerstle [14], H.B. Kupfer [15]
and others.

Emergence of modern high-performance computers with large memory has made
it possible to engage numerical methods for solving problems with the aid of complex
computation models. Under such circumstances the main point is to select an effective
numerical method.

Figure 1. Diagram of internal forces in a
bar cross-section for the general case of its stress-

strain behaviour
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Formulation of the problem and basic premises. We consider a rectangular cross-
section reinforced concrete bar (Fig. 1) which has a fixed rigidity along its length and
is characterized by a general case of stress condition in the sections to be calculated.

The bar is made of a heavy concrete which was hardened under normal natural
environment. Its reinforcement was made conventional as a system of orthogonally
oriented bars of the working and handling reinforcements arranged along z-axis and
transverse vertical (along y-axis) and horizontal (along x-axis) axes. The load applied
to the bar is simple and proportional.

The task of this research stage is to determine the bearing capacity of the reinforced
concrete bar with due account of its central compression (tension), skew bending with
free or constrained torsion, influence of structural factors and the ambient effects of
non-linear properties of concrete and reinforcement. Main symbols, indices and legend
are used in this model in conformity with the recommendations of the existing stand-
ards [16, 17].

Basic prerequisites:

- the reinforced concrete bar is stiff;

- the links between stresses and relative strain in concrete and reinforcement are

established with the aid of complete compression/ tension and shear diagrams;

- the calculated sections are normal to the longitudinal axis;

- distribution of the general linear relative strains along the calculated section
height meets the plane section hypothesis when the concrete is subjected to
compression (tension) and bending;

- tangential stresses in the calculated section of the element that arise at free
bending are determined in accordance with the recommendations [18, 19];

- tangential and normal stresses in the calculated sections of the bar under con-
strained torsion condition are determined with due account of the solution pro-
posed by M.I. Bezukhov [20] and the recommendations by Yu.O. Shkola [21];

- concrete and bars of the axial reinforcement are subjected to normal ox, oy, 6z
and tangential tzx, 12y, TXy stresses;

- the bars of the transverse reinforcement are subjected to tangential stresses tzx
and tzy only. Their distribution along the bar lengths is assumed non-uniform;

- phenomenological condition of strength proposed by V.M. Kruglov [4] or
M.I. Karpenko [7] and his disciples may be accepted as a concrete destruction
criterion (macrocrack formation);

- prior to macrocrack origination, the condition of compatibility of strains in con-
crete and reinforcement is considered correct. After the cracks appear, concrete
ceases to work and all forces in the cracked section are taken by reinforcement
only;

- bar rods cease to work when yield begins. As a criterion, the Huber-Mises-
Hencky flow rule [20, 22] is accepted;

- when transiting from stresses to the generalized internal forces, a procedure for
numerical integration of elementary internal force factors across the entire area
of the calculated section is applied. In doing so, the calculated section of the
bar element is conventionally subdivided into individual tiny elements — parts
— wherein the stresses are considered equal.

In accordance with [3, 7, 23], concrete strength in the main stress coordinate sys-

tem o©,0,0, is described by a surface, which is continuous, convex, symmetrical as
to the octahedral normal stress o, and equally inclined to said coordinate axes, that is
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constructed in accordance with the method developed by M.M. Filonenko-Borodych
with the use of the equation:

f(Goc,Tac,ec,)ZToc —To1c(Goc)'p(9c)=0 (N

where 6 7, — octahedral normal and tangential stresses;
O — a stress state kind;
p ©, — interpolation function between o1 (6 =60°) and 1,2 (B =0°) [23]:

P (90)= |:2ac cosO. + bc\/ac (4 cos’0, —1)+ b? }/(4ac cos?0. + b7 ) )
where a, =1—¢?, b, =2¢. —1, c. =T o2¢[Tolc -

The relation between octahedral stresses at a stress state pattern angles will be
©,=60°and O =0° can be represented in accordance with [23] as:

2 2
Goc = Altolc + Blrolc + Cl, Goc = A2T02c + BZTOZC + Cl (&)

Coefficients 4,4 B,B,C, were obtained by referencing to the characteristic points
on the surface of concrete strength. Using the dependences experimentally obtained by
V.M. Bondarenko and V.I. Kolchunov [24] and taking [16, 23] into account, it is pro-
posed to determine the coefficients by the following simplified formulae:

A =414/ (fu — far);

By = (5,384 + fur fou — 6,381k )/ [4,24(ﬂk = e )2];

4= (4,00 £ 4,16 £ua )/ (L20 £ = 2,20 fu fow + 1 )

By = (4,46 £ — 2,04 fux for — 0,73 £ )/ (4,32 = 7,92 fux fo +3,60.1 )
Ci=-H =—(0,82fu fuur )/ (fot = fout )»

where [, f . is a characteristic strength of concrete (or a calculated strength f ,
/.., at design) at compression and tension, accordingly. With the aid of formula (1) it is
possible to uniquely describe the surface of concrete strength because it includes, due
to coefficients (4), five independent strength parameters of concrete that correspond to
the individual cases of the stress pattern:

at uniaxial compression f, and tension f ,

at biaxial compression 1,2 f and tension f,

as well as at a triaxial uniform tension H

The angle of the studied stress pattern of the bar in concrete can be determined by
means of [20, 23] with due account of 6,=0,=0

| 20% +9(T2e +Te +T 2
0. = Jarccos( 252 Lurecon Jox[2on voGi tei )] | 9)
3 2N Ds 3 2\/(ts§c/3+'v:§ycJr'urzzycﬁulzfxc)3

4)

ke
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where D,D, - mean the second and third invariants of the stress deviator.
Taking (1) and (3) into consideration,

S oc = Toc + Cl (6)

A e B

oc

P> () P (©.)
The boundary values of concrete strength (on the strength “surface) expressed

through Goc and L are determined by solving a system of equations:

Toc —Tm = Goc —GCm);
oc mc( oc ), (7)

—~2 —
Toc + Toc+C1,

S _ Al Bl
Topte) T e ()

Where o, and 7, mean the stresses at the previous loading level (at simple propor-
tional loading o =7 =0);

m_is a coefficient that characterizes the stress-strain condition of concrete. For in-
stance at the uniform triaxial tension m_=0, at biaxial tension - m, = -+2 /2 and at uni-

axial tension/compression Mo = 12 (the sign «+» corresponds to tension strain, and the
sign «-» - to compression).

The Huber-Mises-Hencky flow rule for the reinforcement steel [20, 22] equals, at
o =0 =0:

72
st +3Txys +3szs +3szs - fyd, (8)

72
where 7% is a calculated strength of reinforcement at the yield limit with due ac-
count of its reduction because of the complex stress condition as compared with the
central tension/compression.
In the general case of the complex stress strain behaviour this criterion is of the
form:

2 2 2 2 2 72 (9
O xs +Gys +0 _stcys _Gysczs —0 0 xs +3Txys +3rzys f

To construct the shear diagram, [21] makes use of the hypothesis advanced in the
elastic-plastic deformation theory which tells that the stress intensity is linked to the
deformation intensity and is described by the same dependence for all stress patterns.
For the uniaxial tension case M.M. Malinin suggested [25] to describe the intensities
of stresses and strains as:

c: =c; & =¢(1-2v)/3E, (0

where ¢ are normal stresses;
¢ - relative axial strains.
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At pure shear the intensity of stresses and strains can be found out according to the
formulae:

o =-3t; e =v/J3,0D

where 7 are tangential stresses and y — angle strains.
Making use of the above hypothesis and based on expressions (10) and (11),
M.M. Malinin [25] established the expressions:

. _ o . _ _(@-2v)s | (12
o =2 y_ﬁ[s 2 }

Thus, the diagram illustrating shear of a material can be obtained from the diagram
illustrating its axial tension. Hence, the modulus of elasticity of a material at shear
equals:

T o 1—2v -
GZVZE(S_ 3E G] -(13)

In accordance with M.I. Karpenko [7] recommendations the diagram of concrete
deformation at compression (tension) with due account of [16] can be represented as
follows:

Oy O,
Sb = = = 8C 5 (14)
Eb(.)V b EcmC_, c

where ¢,=¢_means the relative linear strains of concrete;

o,=o — normal stresses in concrete;

E,0 = E_ — the initial modulus of elasticity of concrete;

v, = ¢ — the coefficient accounting for a change of the secant modulus of elasticity
of concrete.

Strain dependencies for the concrete subjected to a complex stress-strain condition
should also be formulated as a link between octahedral stresses and deformations [23].
At this, the following hypotheses [7] are assumed to be fair:

- alink between octahedral stresses 7 and shears in octahedral areas y_ is non-
linear; Tee =Ge (o) Yo where G () isa secant (octahedral) shear modulus of concrete

- alink between octahedral normal stresses o, and medium deformations ¢ _ is
also non-linear and looks like o =% G«) G~ —pa&) where p, is a dilatation modulus (ac-
cording to G.O. Geniyev [3]-g ); K(y,)isa modulus of volume clasticity.

To determine the secant moduli by analogy with the hypothesis [3, 7] about the
“unified curve of strain”, it is expedient to use the hypothesis [23] stating that the form
of the link between stresses and strains does not depend on the kind of stress state, i.e.
the link between z and y  can be assumed the same as at axial compression, and the
secant modulus of shear can be adopted (Fig. 2) based on diagram which is used in
Eurocode and was suggested by Sayence - G. (y.c )= Guc - f (1, ), Where:

B 1 (15)
(o) = 1+ AN + B> +Cn°
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where C=A(1-&)/[& (-1 =1, |; B=1-2C; 4=C+1.-2; & =5,/ fa =085 and
N =Y /7 =LA4L & =Goe/fek: M =Yoc/Vocs A=EM;

the initial shear modulus:

Goc = Gcm = Ecm/|:2(1+vc):|: Goc = (ch +Gyc +Gzc)/3; €oc :(ch +8yc +82c)/3;

Toe = 1/3\/(cxc 6, ) +(0: 6, ) +(0 —0u ) + 6(1:fyc +12e +‘tfxc);

Yoc = 2/3\/(8xc _gyc)2 + (Szc _8yc )2 + (Szc _ch )2 +3/2(’YA2'yc +Yzzyc +Yz2xc)
Taking into account o, =0, =0 for the analysed bar: o, =c_/3;
1
3262 +6(de +T5c +12)
_ 2
oc 3\/28220 +3/2 (yfyc +72e +'Yz2xc)‘

It is recommended that the boundary (maximum possible) shears ¥» on octahedral
areas are determined by means of the regression equations [23] that were obtained by
A.V. Yashyn and M.D. Kotsovos when processing the known experimental data related
to triaxial compression:

€oc = 820/3; Toc =

>

Y

7o =7,97@oc/ fr ¥ 15,220/ f )=3,713 (16)

A«f:()'oc /5oc
L
-
P 7 | |
. L
/ | |
4 | |
v §a=arctg7» | | = yoc /7oc
| | »
1 nr

Figure 2. Diagram illustrating concrete deformation at complex loading conditions

The concrete dilatation modulus can be determined with due account of [14, 12]
according to the formula:
Pe=8oe=—0./T2=
= —(sxc +Eye +Ex )Goc/4fbk 7)
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where O, I are, respectively, boundary volume strains and the intensity of shear strain
in concrete at pure shear; f, means a characteristic (at design it is the calculated f, )
value of boundary stresses of cohesion [17] which equals, approximately, & =07Vr&.
according to [28].
The modulus of volume elasticity is determined, according to [23] in a similar way:
K. (Y oc): Koe' f ('Yoc ), where ;. _ _Een_is the initial modulus of volume elasticity.
1-2v,

Taking into consideration the above, the secant elasticity modulus £ and the trans-
verse strain coefficient v of the complex stressed concrete are determined in accord-
ance with [8] as:

Ee =3K. (Yoe )Ge (Yoo )/[ Ge (Yo )+ Ke (yoe ) | (18)
b K. (yoc)— 2G. (Yoc)

" 2[Ge (Yo )+ Ke(voe)]

By similarity with the expressions for concrete, it is possible to obtain the formulae
applicable for the secant modulus of elasticity at shear for the reinforcement steel as
well as the dependencies for the diagram of its shear:

Eskss Eskes ( 1 9)

EIE N FTCE)

where Ss is a coefficient describing a change in the secant elasticity modulus.

G, =

Axial deformation in the transversal reinforcement bars and the relative shearing
strain in the adjacent concrete can be calculated according to [26]:

Eow = Y: =Y [1 +d g EeVey (l +, )/ (lew E. 9, )J-l (20)

When calculating reinforced concrete elements, combined behaviour of the axial
and transverse reinforcement is taken into account by reducing the theoretical value of
the axial reinforcement yield limit according to [26, 28]:

fra = fra \/1 =357k (ctgzoc [ +ctgB 15, )/[4(1 + )2}, @1

where «, - is a reduction factor which was established experimentally, x,=0,08...0,10.

Calculated cross-section of the element. The concrete part of the bar cross-section
is conventionally divided into tiny parts of rectangular shape (Fig. 3) which size is
coordinated with the fineness of the biggest fraction of the concrete [26]. Each tiny part
is assigned the appropriate number [26]. For each n-th part of the concrete in the calcu-
lated section records are taken of the coordinates of its centre of gravity relative to the
centre of the axes of symmetry of the section x_, y_, area 4 , characteristic (standard-
ized) compression strength of concrete f,, tension f, and initial elasticity modulus £ .
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Figure 3 Components of the calculated cross-section of a bar

Poisson ratio (v, =0,2) is assumed to be constant. This way of recording strength and
strain parameters of concrete for each element enables to calculate reinforced concrete
bars in the reinforced concrete section, which concreting or reinforcement was made
in several stages, and with concrete of different strength and strain, as well as the re-
inforced concrete elements damaged with corrosion and/or thermal and other effects.

Arrangement of axial reinforcement bars is assumed to be discreet. Each axially
oriented bar is assigned its number j, and its following characteristics are indicated: the
diameter d , ” location of the centre of gravity of element x , y _ relative to the centre of
the axes of symmetry of the section, characteristic value of strength at the yield limit f o
(orf, /)> characteristic values of the relative strain of rebar or pre-stressed steel at maxi-
mum loadlng €, the initial elasticity modulus £ and the reinforcement class. Poisson
ratio v _is assumed to be constant for all bars of the axial reinforcement and equals 0,25.
Arrangement of the transversely oriented bars in the calculated section is also assumed
to be discreet. Horizontal and vertical bars of the transverse reinforcement (stirrups)
are conventionally divided into separate sites, each site being given its number i, and
records are taken of its diameter d_ , cross-sectional area 4, surface of the contact
area with concrete 4 and the coordlnates of its centre of gravity in the calculated
cross-sectional area xswi, v, relative to the symmetry axes. Strength and deformation
parameters of all transverse bars located in the section area are preset: characteristic
value of strength at the yield limit /' , characteristic value of the tension strength f,
elasticity modulus £_, Poisson ratio vs =0,25, characteristic values of relative strains
euwk, the limit or level of elasticity and the class of the transverse reinforcement.

The transverse reinforcement for the section indicated in Fig.3 is accounted for
along the length of the reinforcement element (along z-axis) as a layer of area per unit
length divided on the section plane in accordance with the recommendations [26].

Azswi =T dszwi/(4si ) 7(22)

where s, is a spacing of the transverse bars in the axial direction.

Equation of equilibrium. With due account of the above assumptions and pre-req-
uisites, the equation of equilibrium for the calculated section of the spanned reinforce
concrete element can be represented as:
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k m k 3
N =2 AsSan +D_ASeys My =2 AelScnXen +D AOy Xy
= = =
k. m k L3 bow-23-4
M, = ASnYor +D> ArSeg ¥y Ve =D Aoitoun+D Aftog+ D AsuCoouis
= = = =

hewia23

STt Atog+ D Anims (23)
=S oo X T WS A X ¥ I

o

+ Z At Cuoi X — O Yo )

where o_ is a normal stress in the n-th part of the concrete section;
oisa normal stress in the j Jj-th axial bar;
rmn, 7, are tangential stresses in the n-th part of the concrete section;
rz'w., 7, are tangential stresses in the ]—My axial bar;
wr a'm are normal stresses arising in the i-t4 site of the horizontal and vertical

transverse reinforcement, accordingly.

Normal and tangential stresses in equations (23) are determined with the aid of
complete diagrams illustrating strain of concrete and deformation of the reinforcement
[7, 24, 26, 30] on the basis of the assumed hypotheses in accordance with the formulae

below: S ot = EpnitQ zont€ zmt 3 T zxmi = Gt zemt’Y zemi 3
Tomt = GourSoymrY zymis Txomi = GmirSypmrY xymi s (24)
S yowi = EsuiQ yswi€ Sswi3 S xswi = EswiQ xswi€ xswi »

where ¢ - a coefficient reflecting a change of the secant modulus of elasticity £,, 4 - a
coefficient reflecting changes of the secant modulus of elasticity at shear G, ; m=c for
the parts of concrete section, m=s for the bars of the axial reinforcement; m=sw for the
bars of transverse reinforcement; / — a number of the part of concrete or bar.
Generalized linear and angular strains are determined with due account of the

plane section hypothesis, solutions of the elasticity theory [31] at cross bending as well
as of the stress distribution function at compressed [29] and free [32] torsion. These can
be represented as:

Ezmt = €0 + AxXmi + Ky Yms + B0 (X,tno[ LYk ), (25)

Y zomt = KxGxmt + Ky Pymi + Oz fomi»

Y omi = Ky Zymi + KxPoomi —Oz fzymi »

Y xomt = —Oz frymi s

where g - the axial relative deformation of an element along the line of the longitudinal
Z-axis; X X, - curvatures that reflect bending in the bending moment planes M, M,

respectlvely They can be found with the aid of average strains of the tenswned
reinforcement and compressed concrete; K, Ky — curvatures of shear in the planes of
transverse forces V, V, respectively; O, a relanve length angle of twist of the bar length
unit (rad/m); ¢ ( tor mr) a Saint-Venant torsion function with respect of the torsion

centre; ﬁ a twist factor of the section which is determlned for the case of constrained
torsion in accordance with the formula B, =mne™ ; 5 - a compression ration [21];

z —a distance to the nearest rigid fixture taken along the element axis. At free torsion of
barsf=1;g . &yp h,, ,,h are the distribution functions of angular deformations in case

of cross-bendlng [31];
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fomt =7 2t /ez Gty fomi =Tomi /92 Gty fom =Tomi /92 G,y are the distribution functions

at free [32] and constrained torsion [29].

General physical relations. Using the equilibrium equation (23), generalized
linear and angular strains (25), strain diagrams of materials [30] and the general
physical relations for the calculated cross-section of a reinforced concrete bar can be
represented as:

N D D> Dhs o o Do o

A, D2y Daa Das o o Doe || %

M. | | Dsi D> Dss o o Dss || %~ (26)
. [ | o o o Dia  Duas Das K.’
v, o o o Dsa  Dss  Dss || &,

T Dsi  Dsz Des Desa Dess Dess e

or {N}=[D){e}. 27)
where D, is the axial stiffness of an element:

Dis =3 A Fermnoen + 35 Ay By [ 5 (28)

D,, D,, are bending stiffnesses in planes z_, z

22

k 7.
Doy = Z Acn Eemnl chc?n -+ Z Ay EgC z.\_'iX.s'i' /\V s 29
= (29)
L3 ”m
=" AenEemnGenYer + D Ay EyC =Y W 53 (30)
n=1 J=1

D, is a stiffness illustrating mutual influence of bending in two planes:

I3 .
Do3 = D3> = > AcnEemnlon Xen¥en + > Ay Byl -9 X Yo /W 55 (3 ])
p= =

D,, D,,— are the stiffness values reflecting the influence of the axial force on bend-

ing, and of bending moments on elongation of an element:
3 ”m
Dz = Doy = 3" Aen EerneonXen + 3 Ay EC oy Xt 57 (32)
J=1

n=1
Dy = Dy = 30 Ao B cn¥en + 3 Ay Byl ¥ S 5 (33)

D,, D, — are shear siffness values in planes zox, zoy originating due to transverse

forces:

_ & A BennDzsenGsen Ay EySevr
=> B +JZ ) ZAw,Ewgwgmm (34)

- & Aen EcnnSzyen G yen EyS:5 8y
Drs = 2 T v Z [2G+m)] +Zf“*W'E wosmi@omes (35)

D,, D, — are the stiffness values reflecting the mutual influence of bending in

planes zox, zoy:

_ & A EonnS cxenPixen Ay EQ s Py 36
Das —; EED +§ P+ ZAW,E@,W.AM.‘, (36)

&\ Aen Eemnsyenyen AyEySanhyy
Z;’ [2@+ve)] Z [20+v)] ZAWE:WQM oniics (37)

D, D,, D, — are the stiffness values reflecting the influence of the twisting mo-
ment 7 on elongatlon and curvature of bending in z_, z, planes, and of the axial force

N and béndlng moments M, M on the shear in xoy plane
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Dio = Dot = zk; A EulocnBotp (XY Y4 3 Ay EL B (X7 X5 Y2 (38)
Das = Dis = 3 s Eann X8 B (X8 T Yo 3 A Bl X5 B (X7 5 Yo, (39)
Dio = Diy = z*;AC,,Em,,,gc,, e B (X5, Y ) i: AE G ¥ B (X3 Y Yo s (40)

n= J=

D,, D, are the stiffness values reflecting the influence of the twisting moment 7

on shearinz , z,, planes, and of transverse forces V, V, on the shear in xoy plane:

o A EonSeen S 2 AyEySny Sy
Dus = Dos = 3 oz 1 3 G S + B A En i (41)

s o A B en forn Ay By [ (42)
Dss = Des =2 Gae)] Z )] ZAW,E“gysw,f,ysw,c,

D, is the stiffness at twisting the rod in x y plane:

Acn EennDsyen Ay EyS sy oy, (43)
Z T20+v)] (foen X = fon ¥ )+Z[2(1+v 3] (fo X5 = Fug Yo Y+

+ fﬁ, " i B st (Forms X525 = oo V25 )

where v, is V.I. Murashev coefficient which can be determined in accordance with Rus-
sian standards by the formula:

Yy =1—-0Gy./cy, (44)

where o, reflects the stress in j-th bar at the moment when a crack originates; o
is a current stress in the Jj-th bar of the axial reinforcement at the considered levef
of loading; w is a coefficient illustrating completeness of the tensioned concrete dia-
gram which can be adopted, in accordance with the recommendations [3], as w=0,7.
It is considered [30] that the physical relations (26)...(43) are fair at all stages of the
stress-strain behaviour of rectangular cross-section reinforced bar elements in case their
loading is simple and proportional. These relations make a part of the algorithm which
determines strength and deformation properties of individual calculated sections (Fig.
4) of these elements.

Conclusions. The applied approach makes it possible, by introducing secant mod-
uli, to take into account a discreet arrangement of the axial and transverse reinforce-
ment and non-linear properties of materials at tension (compression) and shear, and a
non-uniform distribution of stresses along the length of transverse reinforcement, as
well as to analyse the general case of complex stress behaviour under the influence of
constrained or free torsion, central or eccentric compression (tension) with small or
great eccentricity, and skew bending.

The mentioned physical relations can also be applied to other reinforced concrete
elements under stress-state condition which are subject to complex stress-strain behav-
iour and have arbitrary shape of their cross-section provided the appropriate functions
of tangential stress distribution are available.

With the constant relation of external forces at any loading stage it is possible to
find a vector of strains using the physical relations (26)...(43):

{e3=[pT" (v} 4
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Figure 4. Block diagram illustrating the algorithm for determination of the calculated
section bearing capacity of the reinforced concrete rod subject to a complex stress
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