Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://dspace.uzhnu.edu.ua/jspui/handle/lib/71479
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorБілощицький, Андрій Олександрович-
dc.contributor.authorНеффтісов, Олександр-
dc.contributor.authorКучанський, Олександр Юрійович-
dc.contributor.authorАндрашко, Юрій Васильович-
dc.contributor.authorБілощицька, Світлана-
dc.contributor.authorМухатаєв, Аідос-
dc.contributor.authorКазамбаєв, Іляс-
dc.date.accessioned2025-03-10T14:25:41Z-
dc.date.available2025-03-10T14:25:41Z-
dc.date.issued2024-
dc.identifier.citation5. Biloshchytskyi A., Kuchanskyi O., Neftissov A., Andrashko Y., Biloshchytska S., Kazambayev I. Fractal analysis of air pollution time series in urban areas in Astana, Republic of Kazakhstan. Urban Science. 2024. Vol. 8(3). Pub. 131. DOI: https://doi.org/10.3390/urbansci8030131uk
dc.identifier.urihttps://dspace.uzhnu.edu.ua/jspui/handle/lib/71479-
dc.description.abstractThe life quality of populations, especially in large agglomerations, is significantly reduced due to air pollution. Major sources of pollution include motor vehicles, industrial facilities and the burning of fossil fuels. A particularly significant source of pollution is thermal power plants and coal-fired power plants, which are widely used in developing countries. The Astana city in the Republic of Kazakhstan is a fast-growing agglomeration where air pollution is compounded by intensive construction and the use of coal for heating. The research is important for the development of urbanism in terms of ensuring the sustainable development of urban agglomerations, which are growing rapidly. Long memory in time series of concentrations of air pollutants (particulate matter PM10, PM2.5) from four stations in Astana using the fractal R/S analysis method was studied. The Hurst exponents for the studied stations are 0.723; 0.548; 0.442 and 0.462. In addition, the behavior of the Hurst exponent in dynamics is studied by the flow window method based on R/S analysis. As a result, it was found that the pollution indicators of one of the stations are characterized by the presence of long-term memory and the time series is persistent. According to the analysis of recordings from the second station, the series is defined as close to random, and for stations 3 and 4, anti-persistence is characteristic. The calculated Hurst exponent values explain the sharp increase in pollution levels in October 2021. The reason for the increase in polluting substances concentration in the air is the close location of thermal power plants to the city. The method of time series fractal analysis can be the ecological state indicator in the corresponding region. Persistent pollution time series can be used to predict the occurrence of a critical pollution level. One of the reasons for anti-persistence or the occurrence of a temporary contamination level may be the close location of the observation station to the source of contamination. The obtained results indicate that the fractal time series analysis method can be an indicator of the ecological state in the relevant region.uk
dc.description.sponsorshipThis research was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan within the project BR21882258 “Development of Intelligent Information and Communication Systems Complex for Environmental Emission Monitoring to Make Decisions on Carbon Neutrality”.uk
dc.language.isoenuk
dc.subjecturban air pollutionuk
dc.subjectR/S analysisuk
dc.subjecttime series analysisuk
dc.subjectHurst exponentuk
dc.subjectPM10uk
dc.subjectPM2.5uk
dc.titleFractal Analysis of Air Pollution Time Series in Urban Areas in Astana, Republic of Kazakhstanuk
dc.typeTextuk
dc.pubTypeСтаттяuk
Располагается в коллекциях:Наукові публікації кафедри cистемного аналізу та теорії оптимізації

Файлы этого ресурса:
Файл Описание РазмерФормат 
urbansci-08-00131-v2.pdf3.14 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.