Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.uzhnu.edu.ua/jspui/handle/lib/60392
Назва: FROM TEXT TO DIAGNOSE: CHATGPT’S EFFICACY IN MEDICAL DECISION-MAKING
Автори: Mykhalko, Yaroslav
Kish, Pavlo
Rubtsova, Yelyzaveta
Kutsyn, Oleksandr
Koval, Valentyna
Ключові слова: artifcial intelligence, large language models, ChatGPT, clinical decision support, diagnose
Дата публікації: 2023
Видавництво: ALUNA Publishing ul. Przesmyckiego 29, 05-510 Konstancin – Jeziorna
Бібліографічний опис: Yaroslav Mykhalko, Pavlo Kish, Yelyzaveta Rubtsova, Oleksandr Kutsyn, Valentyna Koval FROM TEXT TO DIAGNOSE: CHATGPT’S EFFICACY IN MEDICAL DECISION-MAKING Wiadomości Lekarskie Medical Advances, VOLUME LXXVI, ISSUE 11, NOVEMBER 2023
Короткий огляд (реферат): ABSTRACT The aim: Evaluate the diagnostic capabilities of the ChatGPT in the feld of medical diagnosis. Materials and methods: We utilized 50 clinical cases, employing Large Language Model ChatGPT-3.5. The experiment had three phases, each with a new chat setup. In the initial phase, ChatGPT received detailed clinical case descriptions, guided by a “Persona Pattern” prompt. In the second phase, cases with diagnostic errors were addressed by providing potential diagnoses for ChatGPT to choose from. The fnal phase assessed artifcial intelligence’s ability to mimic a medical practitioner’s diagnostic process, with prompts limiting initial information to symptoms and history. Results: In the initial phase, ChatGPT showed a 66.00% diagnostic accuracy, surpassing physicians by nearly 50%. Notably, in 11 cases requiring image interpretation, ChatGPT struggled initially but achieved a correct diagnosis for four without added interpretations. In the second phase, ChatGPT demonstrated a remarkable 70.59% diagnostic accuracy, while physicians averaged 41.47%. Furthermore, the overall accuracy of Large Language Model in frst and second phases together was 90.00%. In the third phase emulating real doctor decision-making, ChatGPT achieved a 46.00% success rate. Conclusions: Our research underscores ChatGPT’s strong potential in clinical medicine as a diagnostic tool, especially in structured scenarios. It emphasizes the need for supplementary data and the complexity of medical diagnosis. This contributes valuable insights to AI-driven clinical diagnostics, with a nod to the importance of prompt engineering techniques in ChatGPT’s interaction with doctors.
Тип: Text
Тип публікації: Стаття
URI (Уніфікований ідентифікатор ресурсу): https://dspace.uzhnu.edu.ua/jspui/handle/lib/60392
Розташовується у зібраннях:Наукові публікації кафедри терапії та сімейної медицини

Файли цього матеріалу:
Файл Опис РозмірФормат 
Scopus.pdf8.96 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.